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With a nonlinear effective mass, we study the quantum particles described by the generalized
Schrödinger equation in a harmonic oscillator. Using the Gauss-Hermite functions, an infinite di-
mensional discrete dynamical system and its stationary solutions are obtained. Furthermore, we
also study the perturbation on any eigenmode of the corresponding potential under the influence of
nonlinear effective masses.

I. INTRODUCTION

For particles (electrons or holes) moving inside a periodic potential, or interacting with other identical particles, their
motions differ from those in a vacuum, resulting in effective masses denoted asm∗ [1]. In particular, with a nonuniform
composition in potential or particle distributions, a position-dependent effective mass (PDEM) Schrödinger equation
has gained much interest for its applications from semiconductors to quantum fluids [2–6]. Recently, a PDEM
Schrödinger equation exhibiting a similar position dependence for both the potential and mass was exactly solved [7].
By extending this concept, in this article, we consider the nonlinear effective mass Schrödinger equation with a

harmonic oscillator (ω > 0)

iΨt +Ψxx − b|Ψ|2Ψxx − ωx2Ψ = 0, (1)

and it also has the conserved density of Eq. (1)

1

b

∫ ∞

−∞
ln | − 1 + b|Ψ|2|dx. (2)

As one can see, when the nonlinear effective mass term is zero b = 0, Eq. (1) is reduced to the well known scenario
for a quantum particle in a parabolic potential. On the contrary, in electromagnetically induced transparency (EIT)
configuration, considering atomic media trapped near a nano-waveguide, one can also arrive at a similar equation [8]:

i∂tΨ = γ∆(Ψ)Ψ + [1− b∆(Ψ)]Ψxx, (3)

where Ψ is the EIT polariton field and ∆(Ψ) accounts an effective nonlinearity induced due to the interaction.
Compared to the nonlinear Schrödinger (NLS) or 1D Gross-Pitaevskii (GP) equation, the existence and linear stability
of dark solitons, as well as the proof of periodic solutions, are examined [9, 10]. After introducing a potential, Eq.
(1) has a similar structure as the GP equation (see below). Then, we can study the perturbation of any eigenmode
of the corresponding potential under the influence of the nonlinear effective mass.
The article is organized as follows: in Section II, we introduce the quantum oscillator into this nonlinear effective

mass Schrödinger equation and reduces Eq. (2) to an infinite dynamical system. Then, we investigate its stationary
solutions. Section III is given for concluding remarks.

II. NONLINEAR EFFECTIVE MASS SCHRÖDINGER EQUATION WITH HARMONIC OSCILLATOR

Suppose the stationary solution of Eq. (1) is Ψ = P (x; c)e−ict. Then, one has

cP (x; c) + P ′′(x; c) − bP (x)2P ′′(x; c)− ωx2P (x; c) = 0. (4)

From Eq. (2), the conserved density becomes

Q(c) =
1

b

∫ ∞

−∞
ln | − 1 + b|P (x; c)2|dx. (5)

If b = 0 and ω = 1, then Eq. (1) becomes the well-known equation for the quantum harmonic oscillator. And its
stationary localized solutions of Eq. (4) are the Gauss-Hermite functions [11]

φn(x) = µne
−x2/2Hn(x), (6)

http://arxiv.org/abs/1911.12477v1
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where µn = (2nn!
√
π)−1/2 and Hn(x) is the Hermite polynomials defined by the Rodrigues’ formula

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2.

For example, H0(x) = 1, H1(x) = 2x,H2(x) = 4x2 − 2, H3(x) = 8x3 − 12. The corresponding eigenvalue of φn(x) is
cn = 2n+ 1, n = 0, 1, 2, 3 · · · , that is,

− d2φn(x)

dx2
+ x2φn(x) = (2n+ 1)φn(x). (7)

To investigate Eq. (1), we use the perturbation theory based on the expansion of the solution on the eigenfunction
φn(x), that is,

Ψ =

∞
∑

n=0

Bn(t)φn(x) (8)

Plugging this expansion into Eq. (1), one has

i
∞
∑

n=0

dBn(t)

dt
φn(x) +

∞
∑

n=0

Bn(t)
d2φn(x)

dx2

−
∞
∑

k=0,l=0

Bk(t)B̄l(t)φn(x)φl(x)(b

∞
∑

n=0

Bn(t)
d2φn(x)

dx2
)− ωx2

∞
∑

n=0

Bn(t)φn(x)

= i

∞
∑

n=0

dBn(t)

dt
φn(x) +

∞
∑

n=0

Bn(t)[x
2φn(x)− cnφn(x)]

−
∞
∑

k=0,l=0

Bk(t)B̄l(t)φn(x)φl(x)[b
∞
∑

n=0

Bn(t)(x
2φn(x)− cnφn(x))] − ωx2

∞
∑

n=0

Bn(t)φn(x)

= i

∞
∑

n=0

dBn(t)

dt
φn(x) + (1 − ω)

∞
∑

n=0

x2Bn(t)φn(x) −
∞
∑

n=0

cnBn(t)φn(x)

+ b

∞
∑

n=0,k=0,l=0

cnBn(t)Bk(t)B̄l(t)φn(x)φk(x)φl(x)

− bx2
∞
∑

n=0,k=0,l=0

Bn(t)Bk(t)B̄l(t)φn(x)φk(x)φl(x) = 0. (9)

Multiplying Eq. (9) by φm(x), averaging and using the orthonormal property of φm(x), one obtains

i
dBm(t)

dt
− cmBm(t) + (1− ω)

∞
∑

n=0

Γm,nBn(t)

+ b

∞
∑

n=0,k=0,l=0

(cnVm,n,k,l −Wn,m,k,l)Bn(t)Bk(t)B̄l(t) = 0, (10)

where

Γm,n =

∫ ∞

−∞
φm(x)φn(x)dx,

Vm,n,k,l =

∫ ∞

−∞
φm(x)φn(x)φk(x)φl(x)dx,

Wm,n,k,l =

∫ ∞

−∞
x2φm(x)φn(x)φk(x)φl(x)dx.

From Eq. (8) and plugging it into Eq. (1), one reduces the PDE to the infinite discrete dynamical system given in
Eq. (10). Letting ω = 1 and when comparing Eq. (10) with the GP equation in [10] by the expansion given in Eq.
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(8), we see that there is no term Wn,m,k,l which comes from the second order derivative in Eq. (1) via the relation
shown in Eq. (7).

One notices that from the recursive relation of Hermite polynomial Hm(x) (Chapter 13 in [11])

x2Hm(x) = m(m− 1)Hm−2(x) + (m+ 1/2)Hm(x) + 1/4Hm+2(x), (11)

it’s not difficult to obtain

Wm,n,k,l =

√

m(m− 1)

2
Vm−2,n,k,l + (m+ 1/2)Vm,n,k,l +

√

(m+ 1)(m+ 2)

2
Vm+2,n,k,l. (12)

Also, it is known that

Γn−2,n =

√

n(n− 1)

2
,Γn,n =

2n+ 1

2
,Γn+2,n =

√

(n+ 1)(n+ 2)

2
, otherwise = 0. (13)

To obtain the stationary solution of Eq. (4), we assume

P (x; c) = e−ict
∞
∑

n=0

Bnφn(x), Bn ∈ R, (14)

Then from Eq. (10), given a value c, one yields

(c− cm)Bm + (1− ω)

∞
∑

n=0

Γm,nBn + b

∞
∑

n=0,k=0,l=0

(cnVm,n,k,l −Wn,m,k,l)BnBkBl = 0. (15)

For simplicity, we assume P (x) is even function, i.e., P (x) = P (−x), and then B2n+1 = 0, n = 0, 1, 2, 3, · · · .

Next, we consider perturbation for any Gauss-Hermite eigenmode φ2n(x). As in the case of GP equation [12, 13],

by substituting P (x; c) =
√

Q(c)φ(x) with ‖φ(x)‖ = 1 into Eq. (4), one obtains

cφ(x) + (1− bQ(c)φ2(x))φ
′′

(x) − wx2φ = 0. (16)

From Eq. (16), we see that if Q(c) → 0 as c → c2n = 4n+ 1, then the non-linear term in Eq. (16) can be neglected
and φ(x) approximated by the Gauss-Hermite function φ2n(x). By substituting φ(x) with φ2n(x) defined in Eq. (6)
into Eq. (16), we obtain the following relation between c and Q(c) near c = c2n = 4n+ 1

c ≈ c2n + bQ(c)[wW2n,2n,2n,2n − (4n+ 1)V2n,2n,2n,2n]

= c2n + bQ(c)µ4
2n[w

∫ ∞

−∞
x2e−x2

H2n(x)
4dx− (4n+ 1)

∫ ∞

−∞
e−x2

H2n(x)
4dx].

(17)

To compute the integrals in Eq. (17), noticing that Eq. (11), one can utilize the Feldheim Identity ( Chapter 13 in
[11] ) for the Hermite polynomials

Hm(x)Hn(x) =

min(m,n)
∑

ν=0

Hm+n−2ν(x)2
νν!

(

m
ν

)(

n
ν

)

, (18)

and the Titchmarsh’s integral formula (p. 804 in [14] )

∫ ∞

−∞
e−2x2

H2m(x)H2n(x)H2p(x)dx

= π−12m+n+p−1/2Γ(n+ p+
1

2
−m)Γ(m+ p+

1

2
− n)Γ(m+ n+

1

2
− p), (19)
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where n+ p ≥ m,m+ p ≥ n,m+ n ≥ p; otherwise, the integral is zero. From Eqs. (18) and (19), a direct calculation
can yield

∫ ∞

−∞
e−2x2

H2m(x)H2n(x)
3dx

=
1

π
2m+3n−1/2

min(2m,2n)
∑

ν=0

ν!

(

2m
ν

)(

2n
ν

)

Γ(n+ ν + 1/2−m)Γ(m+ n+ 1/2− ν)2.

(20)

Let w = 1 in Eq. (17). We can verify by the Maple software that

∫ ∞

−∞
x2e−x2

H2n(x)
4dx − (4n+ 1)

∫ ∞

−∞
e−x2

H2n(x)
4dx < 0 (21)

or

W2n,2n,2n,2n − (4n+ 1)V2n,2n,2n,2n < 0 (22)

for several values of n ≥ 0. The prove using Eqs. (11) and (20) for any positive integer n is given in the appendix.
Now, we can formulate the

Conjecture: Let P (x; c) = P (−x; c), w = 1, and b > 0 in Eq. (4). Then under the condition given in Eq. (21)

solutions with linear limit P (x; c) ≈
√

Q(c)φ2n(x) exist only if c < 4n+ 1 and Q(c) → 0 as c→ 4n+ 1.
We give some examples for this conjecture.

• n=0: (one-soliton case) We start with the ground state φ0(x). Assuming B0 >> B2n, n = 1, 2, 3, · · · , from
Eq. (15), one has

B2
0 ≈ c− c0 + Γ0,0(1− w)

b(W0,0,0,0 − V0,0,0,0)
(23)

and

B2n ≈ bB3
0(W2n,0,0,0 − c2nV2n,0,0,0)

[c− c2n + Γ2n,2n(1− w)]
.

= B0
[c− c0 + Γ0,0(1 − w)](W2n,0,0,0 − c2nV2n,0,0,0)

[c− c2n + Γ2n,2n(1− w)](W0,0,0,0 − V0,0,0,0)
. (24)

By Eqs. (12) and (13), a simple calculation yields

Γ00 = 1/2,W0,0,0,0 =
1

4
√
2π
, V0,0,0,0 =

1√
2π

Γ2n,2n = 2n+
1

2
, V2n,0,0,0 =

(−1)n
√

π22n+1(2n)!
(2n− 1)!!

W2n,0,0,0 =
(−1)n+1

√

π22n+5(2n)!
(2n− 1)!!(2n− 1), n ≥ 1

Therefore, from Eqs. (23) and (24), we obtain, noting that c0 = 1, c2n = 4n+ 1,

B2
0 ≈ −4

√
2π

3b
[c− 1

2
(1 + ω)],

B2n ≈ bB3
0

(−1)n+1(92n+ 3
4 )(2n− 1)!!

√

π22n+1(2n)![c− 4n− 1 + (2n+ 1
2 )(1 − ω)]

, n ≥ 1

≈ bB3
0

(−1)n+1(92n+ 3
4 )(2n− 1)!!

√

π22n+1(2n)![(2n+ 1
2 )(1 − ω)− 4n− 1]

, as n→ ∞. (25)

Using Eq. (25), we could obtain the perturbation of φ0(x) as

ψ0(x) ≈ B0φ0(x) +B2φ2(x) +B4φ4(x) +B6φ6(x) + · · · ≈ B0φ0(x). (26)
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By the Ratio Test for B2n and boundedness of φ2n(x), it is not difficult to see that Eq. (26) is convergent. Let
w = 1 and we can obtain the convergence of stationary solution given in Eq. (26) near c = 1 for the conserved
density given in Eq. (2) assuming b > 0, c < 0. It can be seen as follows. We notice that ψ0(x) → 0 as c → 1
from Eqs. (25) and (26). Using the orthonormality of φ2n(x) and a simple calculation, one has, noticing that

(2n− 1)!! = (2n)!
2nn! ,

Q(c) =
1

b

∫ ∞

−∞
ln | − 1 + bψ2

0(x)|dx ≈
∫ ∞

−∞
ψ2
0(x)dx = B2

0 +B2
2 +B2

4 +B2
6 + · · · .

=
−4

√
2π

3b
(c− 1)[1 +

9

16
(c− 1)2

∞
∑

n=1

(2n)!

(n!22n)2
]. (27)

Therefore, we see that Q(c) → 0 as c→ c0 = 1

• n=2: Assuming B2 >> B2n, n = 0, 2, 3, · · · , also from Eq. (15), one has after a direct calculation

B2
2 ≈ c− c2 + Γ2,2(1− w)

b[
√
2
2 V0,2,2,2 + (52 − c2)V2,2,2,2 +

√
3V4,2,2,2]

(28)

and

B2n ≈ bB3
2(W2n,2,2,2 − c2nV2n,2,2,2)

[c− c2n + Γ2n,2n(1− w)]
. (29)

By the product formula given in Eq. (20), a direct calculation yields

V2n,2,2,2 =
(−1)n−3(2n− 1)!!(8n3 − 60n2 + 94n− 1)

√

π22n+10(2n)!
. (30)

Consequently, we have

B2
2 ≈ −256

√
2π

435b
[c− c2 + (1 − w)Γ2,2], (31)

and, using Eqs. (29) and (12), one also has

B2
2n ≈ b2B6

2(2n)!(4n
4 − 28n3 + 8n2 + 119n+ 23

4 )2

24n+10π(n!)2[c− c2n + Γ2n,2n(1− w)]2

≈ b2B6
2

(2n)!(4n4 − 28n3 + 8n2 + 119n+ 23
4 )

2

24n+10π(n!)2[(2n+ 1
2 )(1− ω)− 4n− 1]2

. (32)

Then the perturbation of φ2(x) is

ψ2(x) ≈ B0φ0(x) +B2φ2(x) +B4φ4(x) +B6φ6(x) + · · · ≈ B2φ2(x). (33)

Also, the Ratio Test for B2n and boundedness of φ2n(x) show that Eq. (33) is convergent. Letting w = 1, from
Eqs. (31) and (31), we also obtain ψ2(x) → 0 as c→ c2 = 5. As in the case n = 0 for b > 0, c < 0, we see that

Q(c) =
1

b

∫ ∞

−∞
ln | − 1 + bψ2

2(x)|dx ≈
∫ ∞

−∞
ψ2
2(x)dx = B2

0 +B2
2 +B2

4 +B2
6 + · · · .

≈ −256
√
2π

435b
(c− 5)[1 +

2× 2562

4352
(c− 5)2

∞
∑

n=1

(2n)!n6

(n!22n+5)2
]. (34)

Therefore, we see that Q(c) → 0 as c→ c2 = 5.

For general case n, the formula shown in Eq. (34) is similar but it is more involved.
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III. CONCLUDING REMARKS

By using the orthonormal property of Gauss-Hermite functions, we reduce the PDE given in Eq. (1) to the infinite
discrete dynamical system given in Eq. (10). Then, the corresponding stationary solution are studied by using the
expansion (14), resulting in obtaining the infinite dimensional equation given in Eq. (15) for (B0, B1, B2, · · · , Bn, · · · ).
Inspired by the results from nonlinear Schrödinger (NLS) or 1D Gross-Pitaevskii (GP) equation [9, 12], we also
investigate the perturbation of any eigenmode φ2n(x) using Eq. (15) and propose the conjecture of critical value for
the perturbation. On the other hand, compared to NLS equation [10], one sees that the dynamical system revealed
in Eqs. (10) and (15) needs further investigation. Also, the equation (1) with ω = 0 is interesting [15].

IV. APPENDIX:

We prove the inequality given in Eq. (22).
From Eq. (12), we see that

W2n,2n,2n,2n − (4n+ 1)V2n,2n,2n,2n (35)

=

√

2n(2n− 1)

2
V2n−2,2n,2n,2n − (2n+ 1/2)V2n,2n,2n,2n

+

√

(2n+ 1)(2n+ 2)

2
V2n+2,2n,2n,2n

< nV2n−2,2n,2n,2n − (2n+ 1/2)V2n,2n,2n,2n + (n+ 1)V2n+2,2n,2n,2n

= n(V2n−2,2n,2n,2n − V2n,2n,2n,2n) + n(V2n+2,2n,2n,2n − V2n,2n,2n,2n)

+ (V2n+2,2n,2n,2n − 1

2
V2n,2n,2n,2n). (36)

Using Eq., (20) and the formula

Γ(h+
1

2
) =

(

h+ 1
2

h

)

h!
√
π =

(2h− 1)!!

2hh!
h!
√
π, (37)

one has

V2n,2n,2n,2n =
1√
2π

2n
∑

ν=0

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2

. (38)

Similarly, by Eqs. (20) and (37), a simple calculation yields

V2(n−1),2n,2n,2n =
1√
2π

2(n−1)
∑

ν=0

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2
(2n− ν)(2n− ν − 1)

(2n− ν − 1
2 )

2
.

Since (2n−ν)(2n−ν−1)

(2n−ν− 1

2
)2

< 1, we know that

V2(n−1),2n,2n,2n < V2n,2n,2n,2n − 1√
2π

2n
∑

ν=2n−1

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2

. (39)

Also,

V2(n+1),2n,2n,2n =
1√
2π

2n
∑

ν=1

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2
2

2ν − 1

(2n− ν + 1
2 )

2

(2n− ν + 1)(2n− ν + 2)

<
1√
2π

[

2
∑

ν=1

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2
2

2ν − 1

(2n− ν + 1
2 )

2

(2n− ν + 1)(2n− ν + 2)

+
1

2

2n
∑

ν=3

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2

] (40)
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since
(2n−ν+ 1

2
)2

(2n−ν+1)(2n−ν+2) < 1. Now, a simple calculation yields

2
∑

ν=1

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2
2

2ν − 1

(2n− ν + 1
2 )

2

(2n− ν + 1)(2n− ν + 2)

= π3/2[
(4n− 5)!!

22n(2n)!
]2[

2n(4n− 1)2(4n− 3)2

2n+ 1
+

4n(2n− 1)2(4n− 3)2

2n− 1
]

< π3/2[
(4n− 5)!!

22n(2n)!
]2[(4n− 1)2(4n− 3)2 + 3(2n− 1)2(4n− 3)2].

= π3/2[
(4n− 5)!!

22n(2n)!
]2(448n4 − 992n3 + 796n2 − 276n+ 36) (41)

On the other hand,

2
∑

ν=0

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2

= π3/2[
(4n− 5)!!

22n(2n)!
]2[576n4 − 896n3 + 472n2 − 96n+ 9]. (42)

From Eqs. (41) and (42), one obtains

2
∑

ν=1

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2
2

2ν − 1

(2n− ν + 1
2 )

2

(2n− ν + 1)(2n− ν + 2)

<

2
∑

ν=0

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2

(43)

when n ≥ 1. Consequently, using Eqs. (40) and (43), we have

V2(n+1),2n,2n,2n <
1

2
V2n,2n,2n,2n +

1

2

2
∑

ν=0

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2

. (44)

From Eqs. (36), (39) and (44), we obtain

W2n,2n,2n,2n − (4n+ 1)V2n,2n,2n,2n < −n
2n
∑

ν=2n−1

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2

−n
2

2n
∑

ν=3

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2

+
1

2

2
∑

ν=0

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2

. (45)

One considers the last two terms in Eq. (45). Let’s take ν = 3, 4. Then

−n
2

4
∑

ν=3

(

ν − 1
2

ν

)(

2n− ν − 1
2

2n− ν

)2

= −π3/2[
(4n− 5)!!

22n(2n)!
]2[10

n(2n− 2)2(2n− 1)2(2n)2

(4n− 5)2

+35
n(2n− 3)2(2n− 2)2(2n− 1)2(2n)2

(4n− 5)2(4n− 7)2
]. (46)

Comparing with Eq. (42) and using the Maple software, we obtain that the last two terms in Eq. (45) is negative
when n ≥ 2. For n = 0, 1 in Eq. (22), it can be verified directly.
This completes the proof.
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