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Abstract – We show the formation of bright and dark slow optical solitons based on intersubband
transitions in a semiconductor quantum well (SQW). Using the coupled Schrödinger-Maxwell
approach, we provide both analytical and numerical results. Such a nonlinear optical process
may be used for the control technology of optical delay lines and optical buffers in the SQW
solid-state system. With appropriate parameters, we also show the generation of a large cross-
phase modulation (XPM). Since the intersubband energy level can be easily tuned by an external
bias voltage, the present investigation may open possibilities for electrically controlled phase
modulators in solid systems.
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Solitons describe a class of fascinating shaping-
preserving wave propagation phenomena in nonlinear
media. Over the past few years, the subject of extensive
theoretical and experimental investigations on solitons in
optical fibers [1,2], cold-atom media [3–7], Bose-Einstein
condensates (BEC) [8,9], and other nonlinear media [10],
have received a great deal of attention mainly due to
the fact that these special types of wave packets are
formed as a result of the interplay between nonlinearity
and dispersion properties of a medium under excitations,
and can lead to undistorted propagation over extended
distance. In the optical domain, most optical solitons are
produced with intense electromagnetic fields, and far–off-
resonance excitation schemes are generally employed in
order to avoid unmanageable optical-field attenuation
and distortion [1]. As a result, optical solitons produced
in this way generally travel with a propagation speed
very close to the speed of light in vacuum. As well known,
the wave propagation velocity in a highly resonant
medium can be significantly reduced via the electromag-
netically induced transparency (EIT) technique [11] or

(a)E-mail: wxyang@mx.nthu.edu.tw

Raman-assisted interference effects. Recently, ultraslow
optical solitons including two-color solitons with very
low group velocities based on the EIT technique or on
Raman-assisted interference effects, have been studied in
an atomic medium [3–7].
There is a great interest in extending these studies to

semiconductors, not only for the understanding of the
nature of quantum coherence in semiconductors, but
also for the possible implementation of optical devices
such as XPM phase shifters [12], switches [13], etc. It is
well known, in the conduction band of a semiconductor
quantum structure, that the confined electron gas exhibits
atomiclike properties. For example, it has been shown that
they can lead to gain without inversion [14–16], coherently
controlled photocurrent generation [17], electron intersub-
band transmissions [18], and EIT [19,20], slow light [21],
interferences [22], optical bistability [23], etc. Devices
based on intersubband transitions in SQW structures
have many inherent advantages such as large electric
dipole moments due to the small effective electron mass,
high nonlinear optical coefficients, and a great flexibility
in device design by choosing the materials and structure
dimensions. Furthermore, the transition energies, dipoles
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Fig. 1: (a) Schematic of the energy level arrangement for the quantum wells under consideration here. Subband levels are labeled
as |1〉, |2〉, and |3〉, respectively. The subband transition |1〉↔ |2〉 is driven by a weak probe field with central frequency ωp and the
subband transition |2〉↔ |3〉 is coupled by a control field with central frequency ωc. (b) Schematic of the three-level cascade elec-
tronic system synthesized in a semiconductor quantum well. (c) All the light propagates along the z-axis within our SQW sample.

can be controlled by an external bias voltage. The
implementation of XPM phase shift in semiconductor-
based devices is very attractive from the viewpoint of
applications, such as the electroptical modulator.
In this paper, we show the formation of ultra-slow bright

and dark solitons in a semiconductor double quantum well
using intersubband transitions by applications of a pulsed
probe field and a continuous-wave (cw) strong control laser
field. With appropriate parameters choices, we also show
the generation of a large XPM phase shift. As shown in
fig. 1, we consider an quantum well structure with three
energy levels that forms the well-known cascade configu-
ration [24]. ω21 and ω32 presents the energy differences of
the |1〉↔ |2〉 and |2〉↔ |3〉, respectively. As a rule, such
SQW samples are grown by the molecular beam epitaxy
(MBE) method. The sample consists of 30 periods, each
with 4.8 nm In0.47Ga0.53As, 0.2 nm Al0.48In0.52As, and
4.8 nm In0.47Ga0.53As coupled quantum wells, separated
by modulation-doped 36 nm Al0.48In0.52As barriers. The
sample can be designed to have desired transition energies,
i.e., E12 in the range of 185meV and E23 in the range of
124meV. As shown in fig. 1(c), all the light propagates
along the z-axis within our SQW sample, and we consider
a transverse magnetic polarized probe incident at an angle
of 45 degrees with respect to the growth axis so that all
transition dipole moments include a factor 1/

√
2, as inter-

subband transitions are polarized along the growth axis.
The sheet electron density is about 4.7× 1011 cm−2. By
using the standard approach (this method has described
quantitatively the results of several papers [13,15,16,18,
20,25,26]), under the rotating-wave and electro-dipole
approximations the semiclassical Hamiltonian describing
the electron-field interaction for the system under study

in the Schrödinger picture, is given by

H=

3
∑

j=1

Ej |j〉〈j| − �(Ωce−iθc |3〉〈2|

+Ωpe
−iθp |2〉〈1|+h.c.), (1)

where the symbol h.c. means the Hermitian conjugate,
θn = kn · r−ωnt corresponds to the positive-frequency
part of the respective optical field, Ωn(n= p, c) are
one-half Rabi frequencies for the revant laser-driven
intersubband transitions, and Ej = �ωj(j = 1–3) is the
energy of the subband |j〉. For simplicity, in the following
analysis we take ω1 = 0 for the ground-state level |1〉 as
the energy origin. Turning to the interaction picture,
with the assumption of �= 1, the free and the interaction
Hamiltonian can be respectively rewritten as follows:

H0 = ωp|2〉〈2|+(ωp+ωc)|3〉〈3|, (2)

HI = −∆1|2〉〈2| −∆2|3〉〈3|
−(Ωceikc·r|3〉〈2|+Ωpeikp·r|2〉〈1|+h.c.), (3)

where the intersubband transition detunings of the two
optical fields are defined, respectively, by ∆1 = ωp−E2/�
and ∆2 = ωp+ωc−E3/�. Let us assume the electronic
wave function of the form

|ψ〉=A1|1〉+A2eikp·r|2〉+A3ei(kp+kc)·r|3〉, (4)

together with Aj(j = 1, 2, 3) being the time-dependent
probability amplitudes of finding the electron in subbands
|j〉. Making use of the Schrödinger equation in the inter-
action picture i∂|ψ〉/∂t=HI |ψ〉 for the three level model,
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the equations of the motion for the probability amplitude
of the electronic wave functions and the wave equation for
the time-dependent probe field can be readily obtained as

∂A1
∂t
= iΩ∗pA2, (5)

∂A2
∂t
= i(∆1+ iγ2)A2+ iΩ

∗

cA3+ iΩpA1, (6)

∂A3
∂t
= i(∆2+ iγ3)A3+ iΩcA2, (7)

∂Ωp
∂z
+
1

c

∂Ωp
∂t
= i
2Nωp|μ21|2

c
A2A

∗

1, (8)

with N and μ12 being the concentration and the dipole
mement between states |1〉 and |2〉, respectively. In writing
eq. (8), we have assumed colinear propagation geometry
and applied the slowly-varying-envelope approximation.
γ2 and γ3 denote the total decay rates of the subbands |2〉
and |3〉, which are added phenomenologically [13,18] in
the above coupled amplitude equations. In semiconductor
quantum wells, the overall decay rate γi of the subband
|i〉 comprises a population-decay contribution γil as well
as a dephasing contribution γid, i.e., γi = γil+ γid. The
former γil is due to longitudinal optical (LO) photon
emission events at low temperature. The latter γid may
originate not only from electron-electron scattering and
electron-phonon scattering, but also from inhomogeneous
broadening due to the scattering on interface roughness.
The population decay rates can be calculated by solving
the effective mass Schrödinger equation. For temperatures
up to 10K, and a carrier density smaller than 1012 cm−2,
the dephasing decay rates γdphij can be estimated according
to ref. [13]. For SQW our structure considered here, the
total decay rates turn out to be γ2 = γ3 = 5meV. A more
complete theoretical treatment taking into account these
processes for the dephasing rates is though interesting
but beyond the scope of this paper.
In order to describe clearly the interplay between

the dispersion and nonlinear effects of the SQW system
interacting with two optical fields (probe and control
fields), we now first focus on the dispersion properties
of the system. It requires perturbation of the system
with respect to the first order of probe field Ωp while
keeping full orders of the control field Ωc. In the follow-
ing, we show effects that are due to higher-order Ωp
that are required for balancing the dispersion effect,
thus we can show the formation of ultraslow solitons.
Considering the situation that almost all electrons
remain in the subband level |1〉 due to the fact that the
laser-matter interaction is weak, hence we may assume
that A1(t= 0) = 1, and the strong pump condition that
the control laser is strong enough to make κ=Ωp/Ωc be
a small parameter (weak probe approximation). Then

we take Aj =ΣnA
(n)
j with A

(n)
j =O(κ

n) and assume
the adiabatic condition ω̂/Ωc =O(κ). Performing the
time Fourier transformations for eqs. (6)–(8) [27–29], we

can obtain the equations (ω̂+∆1+ iγ2)α2+Ω
∗

cA3 =−Λ̃,
(ω̂+∆2+ iγ3)α3+Ωcα2 = 0, and ∂Λ̃/∂z− iΛ̃ω̂/c=
iǫ12α2, where ǫ12 = 2Nωp|μ12|2/c, and Λ̃, ω̂, and
α are the Fourier-transform variable, the Fourier
transforms of Aj(j = 2, 3) and Ωp, respectively.
Those equations can be solved analytically, yielding
Λ̃(z, ω̂) = Λ̃(0, ω̂) exp(iK(ω̂)z), where

K(ω̂) =
ω̂

c
+

ǫ12(ω̂+∆2+ iγ3)

|Ωc|2− (ω̂+∆1+ iγ2)(ω̂+∆2+ iγ3)

≃K0+
ω̂

vg
+K2ω̂

2+O(ω̂3), (9)

with higher-order derivative terms have been neglected.
The physical interpretation of eq. (9) is rather clear.
K0 =Φ+ iα describes the phase shift Φ per unit length
and absorption coefficient α of the pulsed probe field, K1
gives the group velocity Vg =Re[1/K1], and K2 represents
the group velocity dispersion that contributes to the probe
pulse’s shape change and additional loss of the pulsed
probe field intensity. With the dispersion coefficients
obtained, then we describe the nonlinear evolution of the
probe field. We should emphasize that it is indeed possible
to obtain a set of experimentally achievable parameters
that will lead to the formation of ultraslow solitons, and
solitons produced in this way generally travel with a group
velocity given by Vg =Re[1/K1(0)].
By taking a trial function Ωp(z, t) =Ωp(z, t)exp(iK0z)

and substitute it into the wave function (8), we can have
the nonlinear wave equation of the slowly varying envelope
Ωp(z, t),

∂Ωp
∂z
+
1

c

∂Ωp
∂t
= iA∗1

[

K(ω̂)− ω̂
c

]

(ΩpA0), (10)

where the right-hand terms of eq. (10) can be obtained
based on the following equations:

A∗1

[

K(ω̂)− ω̂
c

]

(ΩpA1) = |A1|2
[

K(ω̂)− ω̂
c

]

Ωp+O(κ
4),

(11)

K(ω̂)Ωp =

[

K0+
ω̂

vg
+K2ω̂

2

]

Ωp+O(κ
4), (12)

|A1|2 ≃ 1− |A2|2+ |A3|2, (13)

with Aj , (j = 2, 3, 4), given by

Aj =
[(∆2+ iγ3)δj2−Ω∗cδj1]Ωp
|Ωc|2− (∆1+ iγ2)(∆2+ iγ3)

+O(κ2). (14)

Equation (14) is readily obtained by solving eqs. (5),
(6) under steady-state conditions, i.e., ∂A2,3/∂t= 0 and

A
(1)
1 = 1. Here we have used the relations ∂A2,3/∂t=
O(κA2,3) =O(κ

2) and A1 = 1+O(κ
2). Using the above

results and discussion, it is then straight-forward to
obtain the following nonlinear evolution equation, which
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α= Im

[

ǫ12(∆2+ iγ3)

|Ωc|2− (∆1+ iγ2)(∆2+ iγ3)

]

, (16)

W =
ǫ12(∆2+ iγ3)(|Ωc|2+∆22)+ γ23

[|Ωc|2− (∆1+ iγ2)(∆2+ iγ3)]|[|Ωc|2− (∆1+ iγ2)(∆2+ iγ3)]|2
. (17)

Ωp =Ωp0sech(η/τ) exp[−iξWr|Ωp0|2/2], (21)

Ωp =Ωp0
4[cosh(3η/τ)+ 3 exp(−8iK2rξ/τ2) cosh(η/τ)] exp(−iK2rξ/τ2)

cosh(4η/τ)+ 4 cosh(2η/τ)+ 3 cos(8K2rξ/τ2)
, (22)

is accurate up to the order O(κ3), for the slowly varying
envelope Ωp(z, t),

i
∂Ωp
∂ξ
−K2

∂2Ωp
∂η2

=We−αξ|Ωp|2Ωp, (15)

here we have assumed ξ = z, η= t− z/vg. The velocity vg
and the dispersion coefficientK2 are determined by eq. (9),
the absorption coefficient α= Im(K0) and the nonlinear
coefficient W are explicitly given by

see eq. (16) above

see eq. (17) above

Now we briefly discuss the cross-phase modulation
(XPM). Let us consider the following parameter condition:
∆1 ≃ 0, with other parameters unchanged and writing
K0L=ΦXPM+ iαL (L is the length of the SQW system),
it is straightforward to show that

ΦXPM ≃
|Ωc|2∆2ǫ12

γ22∆
2
2+(|Ωc|2+ γ2γ3)2

,

α≃ |Ωc|2γ3ǫ12
γ22∆

2
2+(|Ωc|2+ γ2γ3)2

.

(18)

These results in our structure are similar to those of
the giant cross-phase modulation in cold-atom media [4],
but, we only need one control laser field and do not
need to introduce another control laser field. The ratio
of ΦXPM/αL, characterizing the ability achieving the
cross-phase modulation phase shift without appreciated
absorptions, has the form ∆2/γ3 and is independent
of the coupling field intensity. Furthermore, since the
intersubband energy level can be easily tuned by an
external bias voltage, we may provide another possibility
to realize an electrically controlled phase modulator at low
light levels.
If a reasonable and realistic set of parameters can be

found so that exp(−αL)≃ 1, i.e., the losses of the probe
pulse are small enough to be neglected, then the balance
between the nonlinear self-phase modulation and the
group velocity dispersion (described by the coefficient K2)
may keep a pulse with shape-invariant propagation, which
yields K2 =K2r + iK2i ≃K2r, and W =Wr + iWi ≃Wr.
Thus eq. (15) can be reduced to the standard nonlinear

Schrödinger equation governing the pulsed probe field
evolution [3,4]

i
∂Ωp
∂ξ
−K2r

∂2Ωp
∂η2

=Wr|Ωp|2Ωp, (19)

which admits of solutions describing bright (K2rWr < 0)
and dark (K2rWr > 0) solitons, including the N -soliton
(N = 1, 2, 3, . . .) for dark and bright solitons. And whether
the solutions to eq. (19) are the bright solitons or the
dark solitons depends on the sign of the product K2r ·Wr.
The single soliton is called as the fundamental soliton, and
the N -soliton (N = 2, 3, . . .) is named as the higher-order
soliton.
The fundamental dark soliton of eq. (19) withK2rWr<0

is
Ωp =Ωp0 tanh(η/τ) exp[−iξWr|Ωp0|2], (20)

where amplitude Ωp0 and width τ are arbitrary constants
subjected only to the constraint |Ωp0τ |2 =−2K2r/Wr.
The fundamental bright soliton, and the bright 2-soliton

(bright second-order soliton) of eq. (19) with K2rWr > 0
are given respectively by

see eq. (21) above

see eq. (22) above

where the amplitude Ωp0 and width τ are arbitrary
constants subjected only to the constraint |Ωp0τ |2 =
2K2r/Wr. It is worth noting that the bright 2-soliton
solution in eq. (22) satisfies Ωp(ξ = 0, η) = 2Ωp0sech(η/τ).
Our scheme is different from the EIT in a SQW struc-

ture, in which solitons cannot be formed. Because slow
group velocity propagation requires weak driving condi-
tions, this leads to very narrow transparency windows.
Thus the EIT operation with weak driving conditions
requires single- and two-photon resonance excitations, i.e.,
∆1 =∆2 = 0 in eq. (17). Deviations from these conditions
will result in significant probe field attenuation and distor-
tion. Besides, one can find the nonlinear coefficient W is
almost purely imaginary under these EIT conditions. This
is contradictory to the requirement of W ≃Wr in order to
preserve the complete integrability of the standard non-
linear Schrödinger eq. (19). However, here we have found
that by appropriate choosing the intensities and detunings
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Fig. 2: Surface plot of the amplitude for the generated funda-
mental bright soliton |Ωp/Ωp0|

2exp(−2αξ) with |Ωp|
2 being

the numerical solution to eq. (15) vs. dimensionless time η/τ
and distance ξ/L under the boundary condition Ωp(ξ = 0, η) =
Ωp0tanh

2(η/τ), where L= 1.0 cm, and τ = 1.0× 10−6 s and
other fitting parameters are explained in the main text.

of laser fields, we can achieve exp(−αL)≃ 1 for L within a
few centimeters, K2 ≃K2r, W ≃Wr, and ultraslow group
velocities for both bright and dark solitons studied in this
paper with the typical population decay and dephasing
decay rates of the transitions in SQW structures, for exam-
ple, a system with total decay rates γ2 = γ3 = 5meV.
As an example, we now present numerical examples to

demonstrate the existence of ultraslow dark solitons in
the system studied through simulating eq. (15) under the
boundary condition Ωp(ξ = 0, η) =Ωp0tanh(η/τ). Take
ǫ12 = 80 cm

−1meV, Ωc = 8meV, ∆1 =−10meV, ∆2 ≃ 0,
and γ2 = γ3 = 5meV, we have Vg/c≃ 2.7× 10−4, and
α≃ 0.00019 cm−1. With these parameters, the standard
nonlinear Schrödinger equation (19) with K2r ·Wr < 0
is well characterized, and thus we have demonstrated
the existence of dark solitons that travel with ultraslow
group velocities in SQW structures. As shown in fig. 2,
the numerical simulation of eq. (15) for the fundamental
dark soliton shows an excellent agreement with eq. (20).
In our scheme, all the parameter sets also lead to

negligible loss of the probe field for both the bright and
dark solitons (including 2-soliton) described. Besides, we
have used the one-dimensional model in calculation where
the momentum dependency of subband energies has been
ignored. However, there is no large discrepancy between
the reduced one-dimensional calculation [13] and the
full two-dimensional calculation [19,30–33]. In addition
we have mentioned that our scheme and the strength of
quantum interference in SQW depends on carrier density.
Although the present study focuses only on the low
temperatures up to 10K, the results of additional broad-
ening effects can be included by first rewriting the corre-
sponding detunings, i.e., ∆1 = ωp−E2/�→∆1−∆a1,

∆2 = ωp±ωc−E3/�→∆2−∆a2 with ∆a1 ∼ kpz,
∆a2 ∼ kpz ± kcz being the additional broadening effects,
which can be suppressed by a proper choice of the prop-
agation directions of the lights. By considering ref. [30],
we find that even for the moderate density, additional
broadening effects are on the order of 1meV. Combining
the effect of the additional broadenings and the parameter
values above mentioned, the absorption coefficient of
the probe field is still on the order 10−4. It is worth
noting that some other many-body effects also contribute
to the broadening effects except for the relaxation, for
example, the depolarization effect, which renormalizes
the free-carrier and carrier-field contributions. These
contributions and their interplay have been investigated
quite thoroughly by some authors in refs. [31,34,35]. Note
that, due to the small carrier density considered here,
these effects only give a small extent.
Just as done before by some authors [13,23], we have

used the Maxwell-Schrödiner formalism with decay rates
included in order to obtain the analytical results. It can
readily be checked by numerical simulations that the
results of such a treatment are essentially the same as
those from the usual density matrix formalism under the
condition of weak probe approximation.
In conclusion, using the coupled Schrödinger-Maxwell

equations in a three-level system of electronic subbands,
we have presented and analyzed a novel scheme to achieve
ultraslow bright and dark optical solitons, and a large
XPM phase shift can also be obtained with appropriate
parameters. Such investigation of ultraslow optical solitons
in the present work may lead to important applications
such as high-fidelity optical delay lines, optical buffers in
SQW structure. Besides, achieving a large XPM phase
shift in a SQW structure may open up an avenue to
explore possibilities for nonlinear optics and quantum
information processing in solid system and may result in
substantial impacts on technology of electrically controlled
phase modulator.
Before ending, we note that there are some relevant

works on optical solitons and optical breathers in semicon-
ductor devices (for example [36,37]). The optical breathers
discussed in refs. [36,37] are under the condition of self-
induced-transparency (SIT) in multilevel quantum dots.
Unlike SIT systems, where a single optical field with 2π
or 0π area is needed to induce coherent pulse propagation,
here we use two input optical fields, i.e. the control and
probe beams, to provide the quantum interference chan-
nels. With the suppression of linear absorption and a large
XPM phase shift induced by the control field, our proposed
cascade quantum structure supports the shape-invariant
transport of optical pulse not only on the nanoscales but
also at low light powers.
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A., Butov L. V. and Schmidt H., Phys. Rev. Lett., 79
(1997) 4633; Nottelmann B., Axt V. M. and Kuhn T.,
Physica B, 272 (1999) 234.

[35] Faleev S. V. and Stockman M. I., Phys. Rev. B,
66 (2002) 085318; Waldmüller I., Woerner M.,
Förstner J. and Knorr A., Phys. Status. Solidi B, 238
(2003) 474.

[36] Adamashvili G. and Knorr A., Opt. Lett., 31 (2006)
74.

[37] Adamashvili G., Weber C., Knorr A. and
Adamashivili N. T., Phys. Rev. A, 75 (2007) 063808.

14002-p6


	epl11025-offprints.pdf

