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Abstract — For matter wave scattering from passive quantum obstacles, based on probability
conservation we propose a phase diagram in terms of phase and modulus of scattering coefficients
to explore all possible directional scattering probabilities. In the phase diagram, we can not only
have the physical bounds on scattering coefficients for all channels, but also indicate the probability
competitions among absorption, extinction, and scattering cross-sections. With the help of this
phase diagram, we discuss different scenarios to steer scattering probability distribution, through
the interference between s- and p-channels. In particular, we reveal the required conditions to
implement a quantum scatterer, i.e., a quantum dot in semiconductor matrix, with a minimum (or
zero) value in the scattering probability toward any direction. Two sets of realizable semiconductor
materials and geometry are proposed for the desired probability distribution. Our results provide
a guideline in designing quantum scatterers with controlling and sensing matter waves.

Copyright © EPLA, 2018

Introduction. — A deep understanding of the wave
scattering in passive obstacles plays a crucial role in
nanophotonics, with a variety of practical applications
from nanoantennas, metasurfaces, sensors, imaging sys-
tems, to light harvesting [1,2]. Exotic scattering
phenomena at the subwavelength scale have been re-
vealed such as coherent perfect absorbers, superscatter-
ers, invisible cloaks, directional radiation scatterers, and
superabsorbers [3-9]. To have a universal picture of all
the allowable scattering coefficients, we apply the concept
of energy conservation law to absorption cross-section, re-
sulting in a phase diagram for electromagnetic waves [10].
Regardless of the details on the geometric configurations
and material properties, physical boundary and limitation
for zero backward/forward scatterings, known as Kerker
effects, can be easily illustrated in the phase diagram [11].

Similarly to the classical counterpart, discussions on
quantum particles encountering collisions have been an ex-
tensive research subject with different physical disciplines.
For ultracold atoms of 87Rb, the Fano-signature inter-
ference in quantum scattering, between resonant d-wave
and the background s-wave, was observed experimen-
tally [12,13]. Through the classical quantum correspon-
dences between optical and matter waves, the concept for

invisible cloaking has been applied to quantum scatter-
ers formed by spherical quantum dots in core-shell het-
erostructures for a variety of applications, such as electron
mobility control, enchancing thermoelectric power, and
cloaking electronic devices [14-17]. Moreover, it was real-
ized that even though the electron dynamics in graphene
is governed by the relativistic massless Dirac equation,
the approach to deal with the related scattering prob-
lem of electronic transport in graphene is similar to that
used in the electromagnetic Mie theory [18-20]. Under
the scattering picture, Klein tunneling, with a complete
suppression in the backward direction, can be trans-
formed as an isotropic scattering process with spin-orbital
interactions [21].

To design quantum resonant scatterers at subwave-
length scale, detailed physical quantities, such as effective
mass, size, operating energy, and potential of a quantum
particle, have been taken into account through higher-oder
expansions [22]. Nevertheless, a systematic way to have all
scattering solutions from quantum matter waves, irrespec-
tively of the configuration in a scattering system, is still
lacking. In this work, we consider the inelastic scattering
from quantum matter waves, based on the Schrodinger
equation. In terms of the phase and modulus of scattering
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coefficients for passive quantum obstacles, we propose a
phase digram to provide complete information among ex-
tinction, absorption and scattering cross-sections. With
probability conservation, i.e., the unitary relation, we dis-
cuss directional scatterings of matter waves by means of
the phase diagram. Unlike the electromagnetic counter-
part [6], a perfect zero scattering at specific angles can
be achieved in quantum particles through the self-matter
wave interference by s- and p-waves when they have the
same phases and modulus. Moreover, a systematic way to
realize scattering matter wave with a reduced scattering
probability at any arbitrary direction is also demonstrated
at the framework of the phase diagram. We also provide
two sets of realizable semiconductor materials to support
minimization scattering probabilities at forward or back-
ward directions. Our results provide the guideline to de-
sign a directional quantum scatterer with matter waves.

Phase diagram for quantum scattering matter
waves. — For a quantum particle with energy £ > 0
and momentum along the z-direction, in the absence of
a finite-ranged obstacle, the unbounded stationary eigen-
states can be described by a plane wave, 1); = e***, with
the corresponding wave vector k = k. Even though the
introduction of a quantum obstacle may alter the origi-
nal eigen-states, the corresponding eigen-energy remains
unchanged in the elastic process. Then, one can apply
the Lippmann-Schwinger equation to construct the new
scattered state for a finite-ranged obstacle in an arbitrary
shape [23].

Furthermore, if the scattering obstacle possesses rota-
tional invariance, the Hamiltonian for the quantum matter
wave commutes with angular momentum operators, i.e.,
L2 and L., corresponding to the total and z-component
angular-momentum operators, respectively. Further, we
apply partial wave analysis to the matter wave scattering
problem. In the asymptotic region, one can write down
the wave function for the quantum obstacle as [24]

eikr

—f(0).

r

Y(Z) =e®F+ (1)
Here, we have the incident matter wave as a plane wave,

and the corresponding scattering amplitude f(60) can be
defined as

& > (20 + DaPi(cos ), (2)

=0

with the complex scattering coefficient a;, the Legendre
polynomial P, and the index in angular-momentum chan-
nels labeled as I. Tt is noted that a monopole (I = 0) is also
called s-wave; while a dipole (I = 1) is called p-wave. From
the asymptotic result shown in eq. (1), by integrating the
probability flux along the radial component r over a closed
area, we can directly find the corresponding absorption
(also called as the reaction), scattering, and extinction
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Fig. 1: (Color online) Phase diagram for quantum matter
waves, defined by the phase Arg[a;] and modulus |a;|* of the
scattering coefficient a;, in each angular-momentum channel
labeled by the index [. Here, the contour plot shows the
value of the normalized extinction cross-section, defined as
oglz)tk2 [4m(20 + 1)]7" with the range [0,1]. Two different sets
of constant normalized absorption cross-sections, defined as
O'((Ilb)ski2[47l'(2l + 1)]7" bounded within [0,0.25], are depicted
as black curves. The maximum value in the normalized
absorption cross-section is also marked by the black cross,
i.e., O'((Ilb)ski2[47T(21 + 1)]7' = 0.25 located at (Arglai], |ai|?) =

(,0.25).

cross-sections, respectively,

=00
4
Oabs = 7? (2l+1){|al|2+Re[al]}7 (3)
=0
A "X
Oscat = ﬁ (QZ =+ 1)|al|27 (4)
=0
Ocat = Oabs T Oscat- (5)

One can see that in these convergent series, the dominant
terms are often determined by environment size param-
eters, i.e., ka with the effective range of the scatterer
radius a [14,15,18]. We want to remark that through
the optical theorem, the extinction cross-section is also
linked to the scattering amplitude in the forward direc-
tion [23] gerr = 4w Im[f(0)]/k. In addition, an alter-
native method to calculate the cross-section can use the
phase shift d§;, by re-defining the scattering coefficient as
2a; + 1 = explid] [24].

With probability conservation, i.e., the unitary rela-

tion, one can deduce that U((llb)s =0 (or Ugi)at = oé?t) for
each angular-momentum channel. Here, J¢(zll7)s is the par-

tial absorption cross-section for the [-th channel, defined
as —4m(20 + 1){|a;|? + Re[a;]}/k?. Then, one can see that
the unitary relation guarantees a real value for the phase
shift, ;. On the contrary, if some incident quantum par-
ticles are annihilated by scattering obstacles or lose their
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1 .
energy, we have G<(zl))s > 0 for a non-zero absorption cross-

section. Next, we introduce a phasor representation for the
scattering coefficients, by writing a; = |a;| exp{i Argla;]},
into this inequality Ul(llb)s > 0. As a result, a phase di-
agram for every partial extinction cross-section emerges
naturally, as shown in fig. 1, defined by the phase Arg|a;]
and modulus |a;|? of the scattering coefficient a;, in each
angular-momentum channel labeled by the index [. Here,
we note that in this phase diagram, the vertical axis gives
the strength in the scattering channel; while the horizontal
axis reflects the phase in the scattering coefficient. More-
over, the colored region reveals all the allowable solutions
for a passive quantum obstacle, i.e., U¢(zll7)s > 0; while the
uncolored (or in white color) regions correspond to un-
allowable solutions. Moreover, between the colored and
uncolored regions, the boundary is depicted by a trajec-
tory in light-blue color, which exactly follows the unitary
relation.

In addition to the allowable solutions for scattering co-
efficients, in a single-phase diagram, one can also display
information among the normalized absorption, scatter-
ing, and extinction cross-sections, defined as ol k2 /

abs
Ar(20 + 1), oD k2 /am (20 + 1), and oD, k2/4m (20 + 1), re-

ext

spectively. As shown in fig. 1, the value of the normalized
extinction cross-section is depicted in the contour plot,
which is bounded within [0,1]. Then, we also give two

sets of constant absorption cross-sections in black color,
o) k2 /47(214 1) = 0.1 and 0.2, respectively. These black

cgii/es reveal non-trivial scattering events, with a constant
absorption cross-section, but totally different extinction
and scattering cross-sections. The maximum value in the
normalized absorption cross-section is 0.25, see the black-
cross marker, which reflects the resonance condition for
a complete cancellation in the outgoing spherical matter
wave, as a; = —0.5 or (Argla)], |a;|?) = (7,0.25). Exotic
scattering phenomena, such as quantum sensors [25] and
anti-laser [26] can also be clearly illustrated in this phase
diagram [10]. In addition, for the common adopted Born
approximation to deal with weak scattering, valid for a
shallow potential or a small particle size compared to the
matter wave wavelength of quantum particles, the phase
in the scattering coefficient is always 7/2 or 37 /2 (see foot-
note 1). Moreover, for the case of annihilation of quantum
particles, one can introduce a complex potential into the
Schrédinger equation or impose an imaginary term on the
phase shift [24,27] to model such a phenomenology, but
this is beyond the scope of this work.

Interference from dominant s- and p-waves. — Al-
though at a first glance, this phase diagram for quantum
matter waves, shown in fig. 1, shares the same similarity
to that introduced for the electromagnetic system, the

Mn the first-order Born approximation, the corresponding scat-
tering amplitude for a general potential is always a real number, but
its sign (negative or positive) depends on the barrier or well in po-
tentials [24], resulting in the phase of scattering coefficients being
w/2 or 3mw/2.

underlined physical interpretations and properties are
totally different. In quantum matter wave formalism,
the physical measurement for probability is implemented
through an ensemble average. Moreover, instead of elec-
tric and magnetic dipoles often excited in electromagnetic
waves by subwavelength structures with proper materi-
als [11], the two lowest orders for predominant scatter-
ing phenomena in a quantum subwavelength system are
monopole and dipole, i.e., s-wave with [ = 0 and p-wave
with [ = 1, respectively.

Now, at the subwavelength scale, we study the differ-
ential scattering cross-section dogeq:/d€Q) for a quantum
scatterer by calculating

dascat

et |0, (6)

which means the ensemble average for probability scat-
tered toward the angle 6 [23].

In particular, we seek directional scattering events by
asking for the zero probability distribution through the
superposition from dominant s- and p-waves. This result
means that there is a zero probability opportunity to de-
tect such particles at this angle. This corresponds to find
a family of solutions for the scattering coefficients ag and
a1 to satisfy the following condition:

ap+ 3ay cost =0,

(7)
or equivalently in the phasor representation:

|a0|eiArg[a0] + 3|a1 |€iArg[a1]| CoS 9|€iArg[C°S 0] _ 0.

(8)

Here, 0 is defined in the spherical coordinate, which is
bounded by [0,7]. In the regime § = [0,7/2], the argu-
ment of cosf would be 0; while when 6 = [7/2, 7], the
argument is 7.

Instead of trivial solutions, ag = a; = 0, let us consider
the scenario when two scattering coefficients are the same
both in their phase and modulus. Then, to satisfy the re-
quired condition given in eq. (7), we have 1 4+ 3cosf = 0,
or equivalently = 109.5°, which reveals a node (zero) in
the corresponding probability distribution. It should be
remarked that in this scenario, once the phase and modu-
lus for s- and p-wave are the same, the system can possess
any scattering cross-section, as indicated in fig. 1. We
should stress that this finding, for the first time to our
knowledge, is proposed clearly by our analysis and phase
diagram.

For possible experimental implementation, we consider
conducting electrons within a semiconductor matrix en-
countering an artificial quantum dot as an example. This
artificial scatterer is constituted by two concentric spheres,
with isotropic, homogeneous effective masses and poten-
tials in the shell and core regions, denoted as (mq, V1) and
(ma, Vo) as illustrated in fig. 2(a), respectively. Effects
of edge roughness and Coulomb screening are neglected
for the illustration. With advances in fabrication tech-
nologies, quantum dots with a controllable size and tun-
able energy-band structure demonstrated recently can be
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Fig. 2: (Color online) (a) Illustration of our quantum scatterer,
formed by a two-layered quantum dot in the shape of a core-
shell sphere. The corresponding (b) modulus and (c¢) phase for
the the scattering coefficients: ag (s-wave) and aq (p-wave), in
red and blue colors, respectively, as a function of the effective
potential in the core region, V2. Note that both in (b) and (c),
two curves intersect at the same point with Vo = —3.07eV.
(d) The trajectories in the phase diagram for the solutions
shown in (b) and (c). The differential scattering cross-sections
as a function of the angles are shown in (e) log-plot and (f) 3D
plot, with a clear dip (node) at 6 = 109.5°.

a good candidate as our quantum scatterer [28]. Here, we
choose the system parameters from a single quantum dot
as r1 = 4nm for the radius of the whole sphere, ro = 0.4
for the core region, £ = 0.022¢€V for the incident energy,
and V3 = —2.83eV for the effective potential in the shell
region. As for the effective mass outside the quantum scat-
terer, inside the shell region, and inside the core region, we
set mg = 0.065 m., m; = 0.034 m., and mo = 0.021 m,
(in the unit of electron mass m.), respectively. Then, by
scanning the effective potential in the core region, V5, we
report the changes in the modulus and phase for the cor-
responding scattering coeflicients in the two lowest orders,
ap and aq, as shown in the red- and blue-colored curves of
fig. 2(b) and (c), respectively. As one can see, in the range
Vo =[-3.15eV,—3eV], there exists a crossing point from
two scattering coefficients, which is located at the same
effective potential in the core region, i.e., Vo = —3.07eV.
At this effective potential, we have exactly ag = a1, which
gives the operation point to satisfy a directional scattering
with a node at 6 = 109.5°.

For a lossless system, our Hamiltonian ensures a unitary
relation, guaranteeing the scattering coefficients ag and
a1 located in the light-blue—colored trajectory shown in
fig. 1. Regardless of the material parameters and geometry
size, we have afllb)s = 0 due to the unitary relation. To
illustrate such a trajectory along the boundary between
allowable and unallowable regions, in fig. 2(d), we depict

the locations from the solutions shown in figs. 2(b), (c)
in the phase diagram. As one can see that, in this chosen
range, V5 = [—3.15eV, —3eV], the corresponding modulus
of scattering parameter for the p-wave, |a1|, increases as V5
increases; while the modulus for the s-wave, ag, remains
almost unchanged?.

The advantage of the phase diagram includes not only
the integrated information of phase and modulus for
each scattering channel, but also the corresponding cross-
sections at the same map. For the crossing point at
Vo = —3.07eV, we also calculate the corresponding dif-
ferential scattering cross-section as a function of angles,
as shown in fig. 2(e) and (f) for the log-plot and 3D plot,
respectively.

Now, we go one step further by considering the case
ap # a1 in two scattering channels. For 6 € [0,7/2], the
argument of cos 6 is 0. Thus, in order to minimize eq. (8),
the arguments between ag and a; need to be out of phase,
to form a destructive interference. As clearly illustrated
in the phase diagram, such an out-of-phase condition can
only be satisfied when this scattering obstacle is asked
to support scattering events located in the two opposite
boundaries. The corresponding condition for the modulus
to satisfy eq. (8) becomes

|ao|

] (9)
As an example, in the first column of fig. 3, we demon-
strate the scattering pattern with a minimization in the
scattering distribution at § = 72°. The corresponding
locations of the s- and p-wave channels in the phase di-
agram are depicted in fig. 3(a), while the resulting scat-
tering distributions are represented in the log-plot and 3D
plot, i.e., fig. 3(b) and (c), respectively. Since the phase
difference between ag and a; is almost 7, one can expect to
have a node in the scattering cross-section for 6 € [0, 7/2].
In this example, the system parameters used are all the
same as those shown in fig. 2(f), but with V4 = 1.2¢eV and
Vy = —2.4906 eV.

For 6 € [r/2,7], the argument of cosf is m. As a re-
sult, eq. (8) can be reduced to the condition |ag|e?r8l®] =
3lay|e*relel| cos @), Then, only when 6 € [7/2,7], we can
have a minimum (or zero) value in the corresponding scat-
tering distribution. Moreover, from the phase diagram
shown in fig. 3(d), we can see that both ag and a; locate
at the same side, minimizing their phase difference. Due
to the same sign in the phases of agp and ai, the resulting
scattering pattern is enhanced along the forward direc-
tion. In figs. 3(e), (f), we report the differential scattering
cross-section with a dip (node) at § = 120°. Here, the
parameters are all the same as those in fig. 2(f), but with
Vi =1.2eV and Vo = —2.4884 ¢V.

It is known that for electromagnetic waves, Kerker
et al. proposed to generate zero backward scattering

= 3| cosb)|.

2It should be noted that in this case, by tuning Vo p-wave can
be excited to be on resonance to the background s-wave, forming a
Fano signature in the scattering cross-section.
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Fig. 3: (Color online) Four selective-angles to minimize the directional scattering cross-section. The corresponding locations of
s and p in the phase diagram are shown in the first row ((a), (d), (g), (j)) corresponding to a minimum (or zero) value in the

scatting angle at § = 72°, 120°, 0° (nearly), and 180° (nearly).

The resulting differential scattering cross-sections as a function

of the angle are depicted in the second and third rows, for the log-plots and 3D plots, respectively.

(ZBS) and zero forward scattering (ZFS) through a proper
combination of magnetic and electric dipoles [6]. However,
due to the optical theorem, there is always a residue in the
forward scattering direction for any passive electromag-
netic scatterer. In our system, eliminating the scattered
probability in the forward direction 8 = 0, the correspond-
ing scattering amplitude f(6 = 0), shown in eq. (6), is also
linked to the extinction cross-section. Instead of a perfect
ZFS, we can only minimize the scatting distribution at the
angle # = 0. To do this, by fixing # = 0, one can perform
the minimization for f(0) with the conditions |ag| = 3|a4]
and Arglag] — Arg[a;] = +m, meaning that the system
would intrinsically have weak interaction with impinging
matter wave.

Now, we consider a realizable semiconductor dot
system constructed by AlSB(environment)/GaSb(shell)/
AlISB(core) with a straddling alignment of the energy band
structures. Within the I' valley, the effective mass of the
conduction electrons would be mg = 0.14 m., m; = 0.04
me and mo = 0.14 m, in which the conduction band offset
of GaSb to AlSb is about —0.5eV, representing a well po-
tential [29]. As shown in the third column in fig. 3(g)—(i),
we report the scattering pattern for matter waves with
a nearly zero value in the forward scatting by using the
parameters r1 = 6.89nm, 7o = 2nm, £ = 0.003eV and
Vi = —0.503eV. Furthermore, ZBS can be easily gener-
ated with a family of scattering events in the phase di-
agram [11]. A typical example for ZBS is illustrated in

fig. 3(j), (k) with r1 = 3.5nm, ro = 1.7nm, £ = 0.012eV
and V3 = —0.512eV.

We want to stress that although our discussion is lim-
ited to the plane-wave formalism of quantum scatterers,
the partial wave decomposition is independent of the in-
cident wave form. As for other geometry for the quantum
scatterer, one may also find a suitable orthogonal basis
to decompose the incident and scattered waves. All the
physical principles we apply here consist in embedding the
law of probability conservation on the absorption cross-
section.

Before conclusion, we should note that in electromag-
netism the polarization is a characteristic, but there is no
equivalent correspondence in our studies. For the work by
Kerker et al. [6], they found that only two directions can
achieve zero field intensity, but in our case, with proper
phase and amplitude, we can have a minimization prob-
ability distribution in the wanted direction. The finding
of # = 109.5°, meeting a perfect zero of the scattering
probability by the dominant s- and p- channels, is unique,
which cannot be found in electromagnetism. In addition,
extra divergence free constraints for electric and magnetic
fields need to be carefully considered in electromagnetic
vector solutions, but there is no such issue in our studies.
Last but not least, it is well known that if one can control
quantum particle mobility by a proper design of the obsta-
cle (or defect), the property of the whole system would be
dramatically changed. Such results have been practically
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discussed in thermoelectric and graphene systems [17,18].
Our proposed architecture wants to highlight a conserved
probability condition that is often neglected in scattering
phenomena. As a result, the finding of a phase diagram
and the consequences of its use can provide a framework
to manipulate scattering probability, beyond any specific
cases.

Conclusion. — In conclusion, by considering inelastic
scattering for quantum matter waves with the condition
¢(1lb)5 > 0, we propose a phase diagram for every angular-
momentum channel. In the phase diagram, we can re-
veal not only the physical bounds on phase and modulus
of scattering coeflicients, but also indicate the competi-
tions among absorption, extinction and scattering cross-
sections. With the help of this phase diagram, we discuss
different scenarios through the interference between s- and
p-waves, with the demonstrations to steer the scattering
probability distribution from quantum matter waves. We
find that with the same phase and modulus from domi-
nant channels, one can have a zero value in the scattering
probability distribution at § = 109.5°. However, as the
scattering coefficients in the s- and p-waves are different,
we can also minimize the scatting probability distribution
at a given angle, with proper phase and modulus. With
an artificial core-shell quantum dot in the semiconductor
matrix as an example, such a systematic way by means of
the phase diagram is able to provide guidelines in the de-
signing quantum scatterers. We also demonstrate how to
realize systems in real semiconductor cases with zero scat-
tering probability in the desirable directions. We believe
that our discussion can be extended to recent hot topics
such as controlling Dirac-electron motion in graphene 2D
materials.

g
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