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A new hyperbolic metamaterial based on a modified semiconductor Bragg mirror structure with embedded
periodically arranged quantum wells is proposed. It is shown that exciton polaritons in this material feature
hyperbolic dispersion in the vicinity of the second photonic band gap. Exciton–photon interaction brings
about resonant nonlinearity leading to the emergence of nontrivial topological polaritonic states. The forma-
tion of spatially localized breather-type structures (oscillons) representing kink-shaped solutions of the effec-
tive Ginzburg–Landau–Higgs equation slightly oscillating along one spatial direction is predicted.
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1. INTRODUCTION
The propagation of electromagnetic radiation in

artificial sophisticatedly structured inhomogeneous
media known as metamaterials suggests the analogy
between their unusual properties and the (curvilinear)
geometry of spacetime used to describe physical phe-
nomena in general relativity (see, e.g., [1]). From the
viewpoint of basic research, this circumstance offers a
promising way to search for analogs of fundamental
effects in gravitation and cosmology that could be sim-
ulated in these media (see [2]). The idea of creating
media where light propagates along designed trajecto-
ries, which is known as transformation optics [3],
opens the way for the simulation of various gravita-
tional effects like gravitational lensing [4], event hori-
zon [2], etc. Media of this kind include hyperbolic
metamaterials (HMMs), i.e., materials characterized
by hyperbolic spatial dispersion [5]. The analogy
between the propagation of electromagnetic waves
described by the Helmholtz equation in HMMs and
the effective Klein–Gordon equation describing the
dynamics of a massive particle with a fictitious time
coordinate can be employed to simulate the Minkow-
ski spacetime using HMMs [6]. However, obtaining a
more complete analogy with problems in gravitation,
field theory, and cosmology also requires a strong

Kerr-type nonlinearity in HMM structures. Mean-
while, the nonlinear response in “traditional” HMMs
is fairly weak. In addition, HMMs containing metallic
elements feature high ohmic losses, which lead to the
strong damping of propagating electromagnetic fields.

Here, we propose a novel approach to the simula-
tion of phenomena taking place in “curved spacetime”
by means of resonant HMMs implemented as multi-
layer semiconductor exciton–polariton structures,
which can be fabricated on the basis of modified Bragg
mirror structures containing periodically arranged
semiconductor quantum wells (QWs) [7, 8]. These
structures are characterized by strong optical nonlin-
earity resulting from exciton–exciton interaction [9].
The possibility of controlling the dispersion properties
of resonant HMM structures makes them suitable for
studying the properties of the Higgs field (see [10]).

2. MODEL OF RESONANT HMM
Let us consider a modified semiconductor Bragg

mirror shown schematically in Fig. 1a. The structure
represents a lattice formed by alternating dielectric
layers, with a QW being embedded at the center of
each layer of one type. It should be noted that the
Bragg resonance condition is not satisfied in the struc-
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ture under consideration; i.e., n1d1 ≠ n2d2. This causes
the opening of the second photonic band gap.

To find the eigenmodes of the structure, we use the
transfer matrix method [11]. The dispersion equation
for an infinite periodic structure is

(1)

where K is the wave vector component in the direction
perpendicular to the QW plane, D is the lattice period,
and  is the transfer matrix for a single period of the
structure. For the configuration under study, this
transfer matrix can be expressed as

where , , and  are the transfer matrices for
half of the first layer, the QW, and the second layer,
respectively. Hereinafter, we consider the case of s-
polarized light. Then, the transfer matrix for half of the
first layer is written as

(2)

where k0 = ω/c, kz1 = , kρ = (kx, ky) in the
wave vector component in the QW plane, and n1 is the
refractive index of the first layer. The transfer matrix of
the second layer can be written in a similar form by
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replacing d1/2 with d2 and kz1 with kz2 in Eq. (2). The
transfer matrix of the QW is [11]

where r and t are the reflection and transmission coef-
ficients of the QW, respectively. For s polarization,
these coefficients are expressed as

where Γ0 and Γ are the exciton radiative and nonradi-
ative decay rates, respectively, and ωX is the exciton
resonance frequency.

Thus, Eq. (1) determines the frequencies ω(K, kρ)
of the exciton–polariton eigenmodes formed in the
medium. The combination of the Bragg splitting of the
photon dispersion branch and the Rabi splitting
caused by the interaction with QW excitons leads to
the formation of four exciton–polariton branches in
this structure [8, 12]. From now on, we disregard the
interaction between the polariton branches and con-
sider only the lowest branch. The dispersion surface
for the lowest branch in a resonant HMM structure is
shown in Fig. 1b.

The calculations were carried out using the param-
eters of a GaN/Al0.3Ga0.7N structure with narrow
In0.12Ga0.88N QWs. For this structure, the exciton
binding energy is about 45 meV, the exciton Bohr
radius is ab ≈ 18 nm, the width of the QW is dQW =
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Fig. 1. (Color online) (a) Schematic layout of a spatially periodic resonant HMM structure. Narrow quantum wells at the center
of each layer of one type are shown in black. (b) Dispersion surface of the lowest exciton–polariton branch in a GaN/Al0.3Ga0.7N
modified Bragg mirror structure with In0.12Ga0.88N quantum wells located at the centers of the GaN layers. The parameters of
the system used for the calculation are given in the main text.
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10 nm, and the Rabi frequency is ΩP ≈ 2π × 7.1 THz.
The center of the second photonic band gap appears at
ℏωB = 3 eV, and its width is ℏωB = 0.05 eV. The thick-
nesses of the layers are d1 = 64.8 nm and d2 = 115.3 nm
and their refractive indices are n1 = nGaN = 2.55 and
n2 = nAlGaN = 2.15. The full lattice period equals D =
d1 + d2 = 180.1 nm. The radiative and nonradiative
decay rates of excitons in InGaN are ℏΓ0 = 2 meV and
ℏΓ = 0.1 meV, respectively. The exciton energy is tai-
lored to be at ℏωX = 2.95 eV.

Notably, the dispersion surface of the lowest polar-
iton branch features a saddle point [13, 14]. Therefore,
an interesting feature of this system is that the lowest
branch polaritons are characterized by the effective
mass tensor

with the diagonal elements of opposite signs:
sgn = –sgn  = 1. Indices || and ⊥ characterize
the components of the tensor parallel to the QW plane
and to the structure growth axis, respectively. In the
general case, the effective mass tensor depends on the
wave vector; however, the tensor components for wave
vectors lower than the reciprocal lattice period 1/D
may be considered constant.

Let us derive analytical expressions for the compo-
nents of the effective mass tensor of polaritons on the
lowest branch near the saddle point. Taking into
account that the Bragg condition is not satisfied in the
structure under consideration, we introduce small
parameters ξ = n1d1/n2d2 – 1 and δ = ω/ωB – 1, where
ωB = 2πc/(n1d1 + n2d2) is the center frequency of the
second photonic band gap in the absence of QWs. Let
us expand the right- and left-hand sides of Eq. (1) with
respect to small parameters ξ and δ taking into
account that K, kρ ≪ 1/D. Then, we can find the com-
ponents of the effective mass tensor of polaritons m* =

 at the center of the first Brillouin zone
along the structure growth axis and in the QW plane:

where ΩB = ωB|(n2 – n1)(1 – ξ)/2(n1 + n2)| is the half-
width of the second photonic band gap.
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3. GROSS–PITAEVSKII EQUATION 
FOR BRAGG POLARITONS

The Hamiltonian of the system can be expressed
via the direct-space boson-field operator 
as [11, 15]

(3)

In the effective-mass approximation, the kinetic
energy operator for kρ, K ≪ π/D is expressed as

In the following calculations, the constant contri-
bution E0 = ℏ(ωB – ΩB – ΩP) to the polariton energy
will be omitted. The coefficient g describes nonlinear
interaction between the excitons and can be estimated
as  [8].

We assume that the ground state of the lowest
polariton branch is macroscopically occupied. Then,
in the mean-field approximation, the operator 
can be replaced with its average value ,
which represents the polariton wavefunction [16]. As a
result, we obtain the Gross–Pitaevskii master equa-
tion for the polariton wavefunction Ψ(r):

(4)

To find the steady-state solution of Eq. (4), we
introduce a new variable ϕ defined as

 and dimensionless coordi-
nates X = x/κ, Y = y/κ, and Z = z/κz, where the nor-

malization parameters κ =  and

 represent characteristic macro-
scopic scales of the polariton system. The parameter E
is the energy of the system, which can be estimated as

, where n∞ is the mean density of the exci-
ton–polariton gas in the structure. Substituting Ψ into
Eq. (4), we obtain the dimensionless steady-state
equation

(5)
where η = EV/g and G = V/κ2κz. The dimensionless
polariton wavefunction ϕ satisfies the normalization
condition  = N, where N is the

number of polaritons in the structure and LX = LY = L
and LZ are the normalized characteristic sizes of the
system.

In the linear limiting case, equivalent to the case of
low polariton density, where nonlinear effects caused
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by polariton–polariton interaction can be disre-
garded, the solution of Eq. (5) is a plane wave Ψ ∝ eiQR.
The components of the wave vector Q along the opti-
cal axis of the structure and in the QW plane obey the

relation QZ = , where .
The corresponding frequency contours are plotted
in Fig. 2a.

4. POLARITON HIGGS FIELD

Nonlinear Eq. (5) with pseudotime coordinate Z is
a Ginzburg–Landau–Higgs-type equation, which
was discussed in relation to the issues of the evolution
of the Universe [17, 18]. To analyze the properties of
this equation, it is convenient to express the Higgs field
ϕ as a complex scalar field ϕ = ϕR + iϕI. The “Mex-
ican hat” potential W ≡ W(ϕR, ϕI) is shown schemat-
ically in Fig. 2b. The false vacuum state corresponds to
ϕ = 0, while the true vacuum states are described by
ϕ± =  =  [10], where  is the dimension-
less density of the exciton–polariton gas, related to the
dimensional density as  = n∞κ2κz.

Let us consider the behavior of polaritons in the
presence of weak perturbations δϕR, δϕI of the
ground state ϕ0 of the system. In other words, we rep-
resent the solutions of Eq. (5) in the form ϕR = ϕ0 +
δϕR and ϕI = δϕI (where δϕR, δϕI ≪ ϕ0). Taking
into account that the Lagrangian corresponding to
Eq. (5) possesses global U(1) symmetry, it can be
assumed that the field δϕR has a characteristic analo-
gous to the effective mass in (2 + 1)-dimensional space,
while the field δϕI is massless and similar to the
Nambu–Goldstone boson. Let us focus on the proper-
ties of the field ϕR. Equation (5) has a classical (steady-

2Q||± − η 2 2 2
X YQ Q Q|| = +

n∞± � /G± η n∞�

n∞�

state) solution in the form of a kink or dark soliton ϕ0(X,
Y) = , where the
parameters X0 and Y0 define the position of the mini-
mum of the envelope function. We rewrite the solution
in a generalized form. In so doing, we perform a rota-
tion of the reference frame by an angle π/4 about the Z
axis; this is equivalent to the introduction of new Car-
tesian coordinates X → (X – Y)/  and Y → (X +
Y)/ . Upon such a rotation, the parameters X0 and Y0

are evidently transformed as X0 → (X0 – Y0)/  and
Y0 → (X0 + Y0)/ . Then, the steady-state soliton
solution assumes the form

(6)

For X → ∞, the soliton solution given by Eq. (6)
approaches the vacuum states ϕ±. For simplicity, we
assume that the minimum of the kink is located at the
center of the structure; i.e., we assume that, in the
new coordinates, X0 = L/  and Y0 = 0. The normal-
ization condition on ϕ yields the expression for the
critical number of particles in the kink:

, where 
is a dimensionless parameter.

According to [10], in the limiting case  ≫ 1, a
soliton may be considered as a classical object. We
consider a field ϕ that is weakly f luctuating along the
Z direction; i.e., the field can be represented as a sum
ϕ = ϕ0 + εδϕ (δϕR ≡ εδϕ, |ϕ0| ≫ ε|δϕ|), where the
oscillon solution δϕ = δϕ(X)cos(Ω(Z – Z0)) charac-
terizes longitudinal oscillations with a spatial fre-
quency Ω. Substituting this expression for ϕ with ϕ0
given by Eq. (6) into Eq. (5) and linearizing the latter
with respect to δϕ, we obtain the first excited state of
the system

with Ω2 = 3η/2. As a result, we have a state called the
“Higgs oscillon,” where a classical kink ϕ0 is accom-
panied by the low-amplitude oscillations of the Higgs
field ϕ.

Figure 3a shows the excited kink ϕ2 as a function of
the dimensional spatial coordinates x and z for a fixed
value of y. The darkened plane in Fig. 3a corresponds
to the vacuum state . Taking into account that the
solution is periodic along the direction Z (with a
period of 2π/Ω), we consider the formation of an
oscillon in three-dimensional volume LX × LY × LZ.

The condition  corresponds to a nor-
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Fig. 2. (Color online) (a) Frequency contours for Bragg
exciton polaritons in the linear regime. The values of Q||

and QZ are given in units of . The effective masses of
polaritons in the structure are  ≈ 5.6 × 10–35 kg and

≈ –0.8 × 10–36 kg. (b) Schematic plot of the Higgs
potential W as a function of the components ϕR and ϕI of
the complex field ϕ.
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malized energy of η = EjV/g. Figure 3b shows the
squared amplitude δϕ2 of a quantized Higgs oscillon in
the ground state (j = 1).

The energy density J of the polariton Higgs field is
given by

.

Integrating J with respect to the spatial coordinates
X and Y taking into account that |ϕ0| ≫ ε|δϕ|, we obtain

2 2 2 2 41 ( ) ( ) ( )
2 2Z X Y

GJ ⎡ ⎤= ∂ ϕ + ∂ ϕ + ∂ ϕ − ηϕ + ϕ
⎢ ⎥⎣ ⎦

the following expression for the energy density distri-
bution along the Z direction:

(7)

The energy density of vacuum states ϕ± in the Z

direction is . The analog of the “effec-
tive mass” of the kink can be introduced as M ~ E0,Z –
E±,Z taking into account Eq. (7) [17].

5. CONCLUSIONS

We have suggested a physical principle for model-
ing the properties of hyperbolic metamaterials based
on a spatially periodic structure representing a modi-
fied Bragg mirror with quantum wells. We have shown
that the Gross–Pitaevskii master equation for polari-
tons can be transformed into a nonlinear Ginzburg–
Landau–Higgs-type equation, which describes the
physically nontrivial properties of the field. We have
predicted the formation of kink-shaped patterns in a
system of weakly interacting polaritons. Low-ampli-
tude oscillations (oscillons) appear in the polariton
Higgs field owing to f luctuations. Resonant polari-
tonic hyperbolic metamaterials offer considerable
promise for simulating fundamental processes of the
evolution of the Universe.
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