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We study the quantum phase transition of an N two-level system ensemble interacting with an optical degen-
erate parametric process, which can be described by the finite size Dicke Hamiltonian plus counter-rotating
and quadratic field terms. Analytical closed forms of the critical coupling value and their corresponding sepa-
rable ground states are derived in the weak and strong coupling regimes. The existence of bipartite entangle-
ment between the two-level system ensemble and photon field as well as between ensemble components for
moderate coupling is shown through numerical analysis. Given a finite size, our results also indicate the co-
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existence of squeezed fields and squeezed atomic ensembles. © 2010 Optical Society of America

OCIS codes: 270.0270, 270.5580, 270.5585.

1. INTRODUCTION

The study of light-matter interaction has been the cen-
tral topic of quantum optics; it has laid the foundation for
laser theory, quantum state engineering, fundamental
testing of quantum mechanics, and implementation of
quantum information processing [1]. Among the various
systems involving the interaction of photons and atoms,
the simplest and the most important building block to il-
lustrate interesting quantum phenomena involves just
the one two-level atom (TLA) [2]. As the number of TLAs
increase, collective effects give rise to intriguing many-
body phenomena; e.g. the existence of a coherent super-
radiant phase at zero temperature [3].

The Hamiltonian describing the coupling of a non-
interacting atomic ensemble with a single quantized elec-
tromagnetic field mode is equivalent, via a Power—Zineau
transformation, to the Hamiltonian of a free particle un-
der a field related potential [1]. The ground state energy
of such a system is bounded from below by the atomic
ground state and the vacuum field, ergo a super-radiant
phase transition of the ground state in a charge only sys-
tem coupled to a single field mode is not possible [4,5].
Within the standard minimal coupling, long wavelength,
and rotating wave approximation—and discarding qua-
dratic terms—the interaction of a photon field with an en-
semble of TLAs is described by the Dicke Hamiltonian,

. . N N
Hiporo = heoyd'a + hol. + h=(ad, +0'), (1)
\J

where the transition energy for each one of the N TLAs
and the radiation field frequency are w, and w,, in that
order. The atomic ensemble operators are defined in

terms of the Pauli matrices for the jth TLA as :]Z
=(1/2)2j]\ilag) and Jizﬁj{log). The coupling strength for
the photon—atom interaction is denoted by . The impos-
sibility for a quantum phase transition (QPT) in the
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source model translates into a violation of the Thomas—
Reiche—Kuhn (TRK) sum rule for an atom, if the relation
between coupling strength and quadratic parameter for a
phase transition in the Dicke model were to occur [6]. In
order to observe the effect of the radiation—-matter cou-
pling known as super-radiant phase transition in charge
only systems, more realistic models, such as spin mag-
netic moment, statistics, or infinitely many electromag-
netic field modes, should be taken into account [7].

Despite the fact that a QPT is forbidden in the physical
system that originated the Dicke model, the phenomenon
is interesting by itself. First, the existence of a QPT in the
Dicke Hamiltonian was reported as a series of instabili-
ties of the ground state for a finite size ensemble of two-
level systems [8]. Then, the existence of a super-radiant
thermodynamic phase transition was proved for an infi-
nitely large ensemble interacting with a coherent boson
field at a given temperature [9-11]. Also, in the classical
limit, studies indicated that this quantum critical phe-
nomenon is associated with quantum chaos and
ensemble—field entanglement [12—-14]. Non-trivial scaling
exponents at the critical point have been discussed on the
large ensemble size regime [15]. Bipartite intra-ensemble
entanglement resulting from finite size effects, was dem-
onstrated for the Dicke Hamiltonian [16]. This theoretical
understanding has motivated proposals for the realiza-
tion of the Dicke model in systems that might allow a
super-radiant phase transition; e.g., open dynamical sys-
tems involving semiconductor quantum wells or quantum
dots [17,18], open dynamical cavity-QED systems with
neutral atoms [19] and ions [20], and superconducting
quantum devices [21,22], just to mention a few. Recently,
it has been shown that a standing-wave laser driven
Bose-Einstein condensate (BEC) coupled to a high finesse
optical cavity accounting for the center of mass motion re-
alizes the Dicke model, and that the super-radiant phase
corresponds to a periodical self-organized phase of the at-
oms [23,24].

© 2010 Optical Society of America
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Currently, there is great interest in pursuing quantum
phase transitions of light, since photons interacting with
atoms should be much easier to study and probe than
electrons in condensed matter systems [25,26]. Schemes
to realize composite Dicke models have been proposed,
e.g., by combining photon hopping between identical cavi-
ties in the photon-blockade regime. Mott-insulator to su-
perfluid QPT has been demonstrated in the Dicke—Bose—
Hubbard model for an arbitrary number of two-level
atoms [27]. More exotic QPTs of light have been predicted
in a Heisenberg spin 1/2 Hamiltonian [28], two species of
Bose-Hubbard model [29], arrays of coupled cavities
[30,31], and dual-species optical-lattice cavities [32].
These studies have brought the possibility of analyzing
critical quantum phenomena in conventional condensed
matter systems by manipulating the interaction between
photons and atoms.

As nonlinear optics plays an important role in quantum
optics, especially in the generation of quantum noise
squeezed states [33,34], a natural question one may ask is
how to associate nonlinear quantum processes with the
phenomenon of QPT. Sub-Poissonian photon statistics of
the field state and momentum squeezing of the atomic
state have been predicted for the Dicke model [14]. It also
has been proposed that squeezing of the photon field car-
ries signatures of the associated quantum critical phe-
nomena in the size-consistent Dicke model [35].

In this work, we study the quantum critical phenomena
of N two-level systems embedded within a nonlinear op-
tical medium, with N finite. An optical degenerate para-
metric down conversion (PDC) process, where the nonlin-
ear medium is pumped by a classical field of frequency
2wr and that field is converted into pairs of identical pho-
tons of frequency w; each, is considered. The correspond-
ing nonlinear interaction Hamiltonian is given by

Hppo=fin(@®+a'), (2)

where the nonlinear parameter «=y'?'3 is defined by the
second-order nonlinearity coefficient y? and the classical
amplitude of the pumping field 8. By plugging the degen-
erate PDC Hamiltonian, Eq. (2), into the Dicke model, Eq.
(1), and restoring the counter-rotating terms we obtain
the following Hamiltonian:

N . A . ,
H=hod'a+hod, + hTT](d +aNJ, +hic@+a"h?, (3)
v

where we have rescaled the system energy by (-Ak) and
redefined the photon frequency as ws=w,-2«. In the lit-
erature, the Hamiltonian in Eq. (3) is that of a non-
interacting TLAs ensemble driven by an electromagnetic
field with the standard minimal coupling in the long
wavelength limit. Of course, such a QPT does not exist for
charge-only systems interacting with a finite number of
electromagnetic radiation modes [4-7], but the proposed
nonlinear optics PDC process may provide a strong non-
linearity for the field, which might be coupled to a feasible
realization of the Dicke model [17-24,36—38]. The theo-
retical quantum phase transition of the proposed model,
Eq. (3), has been shown in the thermodynamic limit, i.e.,
both ensemble size and volume are considered infinitely
large, and N and V—=[39]. To the knowledge of the au-
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thors, the finite size effect on the QPT of this Hamiltonian
remains unanswered.

The purpose of this work is twofold. First, we show ana-
lytically that a pair of unitary transformations effect a ro-
tating wave approximation equivalence on the Hamil-
tonian in the weak coupling regime; thus the exact critical
coupling strength can be calculated [16]. In the strong
coupling regime, we show how the critical coupling
strength can be calculated under just a semi-classical
field approximation. In both cases, the critical coupling
value of the finite-size N Dicke Hamiltonian plus counter-
rotating and quadratic field terms is independent of the
atomic number and agrees with results derived from the
classical limit, N and V—~. Second, treated as a degen-
erate parametric process, we numerically demonstrate
the existence of squeezed fields and squeezed atomic en-
sembles as well as bipartite entanglement between the
two-level system ensemble and photon field and among
ensemble components themselves.

2. WEAK COUPLING REGIME, A< w,

In order to derive a set of critical coupling values for the
quantum phase transition, we first consider the weak cou-
pling regime, i.e., N\<w,. In analogy to the unitary
squeezed operator for a degenerate PDC, we define the
following unitary transformation and associated param-
eter:

T=em®a™ = f[2(wp+ 26)]. (4)
Under the restriction <1, the Hamiltonian in Eq. (3) is
reduced to

H=T"HT,
hodTh 4 ﬁg G +aYT, + ki 5
~hod'a + EZ+ VT/T/'(a+a)x+ K. (5)

Thus, the original Hamiltonian, Eq. (3), is approximated
by the well-known Dicke Hamiltonian plus the counter
rotating terms with a modified field frequency @y, a modi-
fied coupling constant g, and a constant energy shift %k,
defined as

wp+ 4k wp+ K on
a)fz _— wf’ §= —_— )\, ~l€= K.
wp+ 2K wp+ 2K wp+ 2K

(6)

As the total excitation number, N=d"g+d. ., does not com-
mute with this Hamiltonian, Eq. (5), in order to further
simplify our problem, a second unitary transformation is
used:

=@y =gl N, + )], ()

where the newly defined parameter fulfills £<1 due to the
weak coupling regime requirement A <w,. Neglecting all
but linear powers of the parameter £ the Hamiltonian in
Eq. (3) is written

Hy=U"'T"'ATU,
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\rW

~haa' 6 + hlwg + dy(a +aH2, + h—=(ad, +a'J),

(8

with the extra frequency @, and the modified coupling X
given by the expressions

252 _ 208
A= G .
(wa + a)f)

wa = >
N(wa + (I)f)

)

The weak regime assumption makes it possible to neglect
the extra frequency @,. Thus the weak limit Hamiltonian,
Eq. (8), is further reduced to the well-known finite size
Dicke model in Eq. (1), of which the ground state can be
found exactly and undergoes a phase transition at the
critical value X:y’TE)}c [16,40]. In our case, the critical
coupling value in the weak coupling regime can be explic-
itly expressed as

wlw, + 0p) + 2k(w + 20p) [0, (wp+ 2K)
2(wp+ K) ol wp+ 4K)
For coupling values fulfilling the condition A <\y, we can

write the ground state and the corresponding energy of
our system as

G =110)8 gy = 22 8 gy
W j=1gj Vr’,72+1j=1gj’
_ No,
EGW=h K- 2 5 (11)

where |g)j denotes the ground state for the jth TLAs. The
ground state is a pure separable state and independent of
the size of the atomic ensemble. Unlike the Dicke model,
here the field is in a superposition of vacuum |0) and two-
photon |2) states as a result of the degenerate parametric
process.

3. STRONG COUPLING REGIME, A>w,

In the weak coupling regime, the ground state is well de-
scribed by a finite superposition of Fock states times the
two-level system ground state, while in the strong cou-
pling regime, it is possible to consider the field in a coher-
ent state and try to find the corresponding ensemble
state. By substituting the photon creation and annihila-
tion operators by their expectation values, the Hamil-
tonian in Eq. (3) becomes

) . 2hN
Hsztha|2+ﬁKa%3+ﬁwan+—WOZRJQC, (12)
v

where the complex coherent state parameter is defined as
a=agp+tay. It is possible to arrange this semi-classical
Hamiltonian in Eq. (12) as a nested array of tensor prod-
ucts of the form
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}AIS = ﬁ(wf|a\2Ka}23)]12N + {[( ces ) ® ]IZ + ][2N—2 ® Ijlz] ® ]12 + ][2N—1

® H,}, (13)

where the symbol 1; represents the unit matrix of dimen-
sion d, and the auxiliary matrix of dimension two is

. w,  2Nag
Hy=1 EO'Z+V—W0'x . (14)

Thus, the ground state energy is found as
N ———r
Eg =1 ofal* + kaj - vag +1602a%/N . (15)

In order to calculate the critical coupling value, we opti-
mize this ground state energy for the real and imaginary
parts of the coherent state parameter, «, and find the fol-
lowing self-consistency equations:

N[16)\* - w2(wp+ 4K)%]
4)\2(wf+ 4k)?

ap =

’

a;=0. (16)

The phase transition in the strong coupling regime occurs
at the critical value given by the expression

|
)\Sz QV"wa(wf+ 4K) (17)

Although a finite size has been assumed for the atomic
ensemble, this critical coupling value found in the strong
coupling regime, Eq. (17), is in accord with that derived
from the free energy by using the thermodynamic limit
method for an infinitely large two-level system ensemble
[6,10,11] for the reason that in both cases the field is as-
sumed to be in a coherent state.

The mean-field constrain set, Eq. (16), approximates, in
the strong coupling regime A>\g, the following ground
state and ground state energy:

N
|Gs) = |a)® |v);,
=1

AN[16M* + Wl (wp+ 4K)?]

E; =-
Gs 16)\2(wf+ 4 k)

, (18)

where the auxiliary two-level state is defined as
)= ——— (i) + o)
v)y=——=(lg) + Ble)),
Pl g) + B

wo(wp+ 4K) — 4\?
B= P 2 2 (19)
16\ - wy (0 + 4k)

Again, as expected, the ground state is a pure separable
state; here the difference is that each component of the
ensemble is in a superposition of the ground, |g), and ex-
cited states, |e). Furthermore, for a coupling parameter
larger than the nonlinear parameter, A > k, the auxiliary
state is the balanced superposition |v)=(|g)~|e}))/ V2 with
null population difference, (7,)=0.
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4. MODERATE COUPLING REGIME

Besides the weak and strong coupling regimes, where the
ground states are both separable states, we apply a direct
numerical calculation to find the ground state in the mod-
erate coupling regime. In the simulation, each and every
single two-level system is taken to be indistinguishable
from each other, and the angular momentum eigenstates
basis is used:

JN/2,m) = m|N/2,m),

. N[N
J.IN/2,m) = \/E(E + 1) -m(m = 1)|N/2,m £1), (20)
where the Dicke state [N/2,m) is the superposition of all
possible ensemble states with N/2+m two-level systems
in the excited state and the rest, N/2-m, in the ground
state, such that m=-N/2,-N/2+1,...,N/2-1,N/2. In
the Fock and Dicke basis, for the field and the ensemble
in that order, the matrix for the Hamiltonian is given
by—in units of 72—

R A .
H, =ofcl+oled + TT/'(d +a) o d, +«@+ah?

\
® Iy, (21)

where the matrix elements for the involved operators are

(Al =jo,, Glaly=\Gd ., @a’l)=\j+16,.,
(22)

for i,j=0,1,...,n,, and

R R NN
<P|Jz‘Q>=q5p,q, <p|J¢|q>= 5 E"'l _m(mil)gp,qil’

(23)

with (@I lg)=3plJ,+J_|q) for p,q=-N/2,-N/2
+1,...,N/2-1,N/2. The symbols I and I, stand for the
unitary matrices of size njy,+1 and N+1 corresponding
to the field and ensemble subspaces, in that order. The no-
tation -®- is used for the tensor or Kronecker product.
As an eigenstate of the truncated version of the studied
Hamiltonian, Eq. (21), can be easily verified to be, or not,
an eigenstate for the exact full Hamiltonian, Eq. (3), the
numerical approach taken here consists of assessing a
maximum number of allowed excitations for the field, n,
set to deliver at most a maximum error parameter, &
=|E1—(I:I>j|/|<I:I)j\, for a wide range of the phase space set
by the coupling and nonlinear parameters, (\,«) in that
order. The set {(E;,|¢;)} are the numerical eigenvalues
and eigenstates, respectively, of the truncated Hamil-
tonian sorted in ascending order, E;<E;, for j
=1,...,(N+1)(n+1), and the notation (-);=(g;|-[¢;) is
used. In addition, a degeneracy parameter e;=|E,
-E,|/|[E,| is established to discriminate between non-
degenerate and degenerate ground states. In the latter
case, the proper ground state is constructed as the nor-
malized direct sum of the degenerate eigenstates.
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In the following numerical analysis, the error and de-
generacy parameters are set to the values e<10710 and
e4=<1071% Numerical results for the on-resonance, wy
=w,, and off-resonance, w;c[0.85,1)w,, case are per-
formed for an assorted collection of parameters, N
€[2,6], )\/\f'ZTfe[O,5]a)a, ke€[0,5]w,. By fixing the cou-
pling parameter at the largest value to be sampled and
probing a few weak values of the nonlinear parameter, a
maximum of two hundred excitations for the field, ny,,
=200, is found to fulfill the required error and degeneracy
parameters. Along the sampling of the phase space, both
the error and degeneracy parameters are found to be in
the required range. For the sake of brevity, only those re-
sults pertaining to a bipartite and a pentapartite en-
semble are shown in Fig. 1 and in Fig. 2, respectively.

The mean value of the z-component of the angular mo-

mentum, (J,), which will be called population difference
from now on, is shown in Fig. 1(a). Simulation results re-
veal that, as derived in the weak coupling regime, \ < w,,

the population difference is minimal, (:] )=—-N/2, ie.,
each and every two-level system is in its ground state and
independent of the nonlinear parameter «. Also, for a suf-
ficiently large coupling, \> w,, along with an adequate
nonlinear parameter x< (4)\2—wawf)/ 4w, such that A>k,

the population difference is null, <JZ>=O, which relates to
the ground state derived in the strong coupling regime,
Eq. (19), under the aforementioned restrictions. Figure
1(b) shows that the numerical mean photon number for
the field, (i), is in agreement with the general behavior
found in the analytical results; i.e., the field is in the
vacuum field state, with a small two-photon component
depending on the strength of the nonlinear parameter, for
the weak coupling regime and in a coherent state, with
mean photon number |a|?, for the strong coupling regime.

In order to demonstrate the existence of entanglement
for the studied Hamiltonian in a moderate coupling re-
gime, we calculate the maximum shared bipartite concur-
rence following the entangled web approach [41], Fig.
1(c), and the field-ensemble entanglement probed through
von Neumann entropy of the reduced two-level ensemble,
also known as entropy of entanglement [42], Fig. 1(d).
Non-zero regions for both the bipartite concurrence and
the entropy of entanglement are found between the sepa-
rable states corresponding to the weak and strong cou-
pling regimes, approximately delimited by the black
curves in Figs. 1(c) and 1(d). It is possible to see that the
maximum shared bipartite concurrence locates in the up-
per diagonal region, Fig. 1(c), indicating that the en-
tanglement shared between the ensemble components oc-
curs because of an approximately equal balance between
the linear atom—photon and nonlinear photon—photon in-
teractions. Instead, the entropy, which has its maximum
value below the diagonal region, Fig. 1(d), shows a maxi-
mum entanglement between the two-level system en-
semble and the photon field as the result of a larger
atom—photon interaction strength.

A shortcoming of the numerical approach shows up at
this point. The area of zero entropy below the entangled
phase is inversely proportional to the value of the degen-
eracy parameter, g4, mentioned above. Also, the error pa-
rameter, ¢, increases as the nonlinear parameter « goes to
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Fig. 1.

(Color online) Phase diagram of our finite-size Dicke Hamiltonian in the parameter space of the linear photon—atom coupling

strength, \, and the nonlinear photon—photon interaction strength, «. (a) Mean value for the atomic z-component, (J,). (b) Average photon

number for the field, (A). (c) Bipartite concurrence and (d) entropy of entanglement, (S), are calculated for the case of N=2. The corre-
sponding minima and maxima values for the color legend are shown below. The field photon number and atomic angular momentum
probability distributions along the solid curve in (c) are shown in (e-h) and (i-1), ordered according to the markers A—D, respectively.

zero. These shortcomings appear because of the trunca-
tion of the Hilbert space for solving the eigenvalue prob-
lem. When the counter-rotating and diamagnetic like
terms are neglected, the system is confined to certain fi-
nite subspaces and the numerical approach does not
present this problem [16]. Numerical results might be im-
proved by allowing a larger value for the maximum exci-
tation of the field, optimizing the code, or effecting a cus-
tomized analytical progressive diagonalization scheme
based on those presented in [43,44].

Nevertheless, the current approach allows the calcula-
tion of the states for the field and atomic ensemble up to
the desired precision. In the second row of Fig. 1, we show
the photon number probability distributions, P(n)
=|(n| )%, related to the four markers, labeled from A to
D, along a constant coupling parameter, A =3.323, repre-
sented by the solid curve in Fig. 1(c). In the absence of
nonlinear coupling, k=0, a Poissonian photon number dis-
tribution is discovered in Fig. 1(e). By calculating the field

quadrature variances (AXZ) and (AW), with the field

quadratures defined as X=4"+4 and Y=1(4"-4), the field
squeezing is probed. In this case, k=0, the field is in a co-
herent state, as expected; i.e., the field quadratures’ mean
values and their uncertainty relation all have a value of
one. With a small value of the nonlinear coupling
strength, k=0.3, the statistics for the photon number dis-
tribution becomes sub-Poissonian, shown in Fig. 1(f). The
field is in a squeezed coherent state as the uncertainty re-
lation for the field quadratures remains minimal, but the

variance (AX2) increases as (AY?) decreases. By increas-
ing the nonlinear coupling, k=2.4, an oscillating photon
number distribution is found in Fig. 1(g). Now, the
quadrature squeezing seems to be reversed and the vari-
ance (AW) is smaller than (AX2> and close to a value of
one. Also, as the value for the quadratures’ uncertainty
relation is more than one, the field is no longer in a coher-
ent state. For further increase of the nonlinear coupling,
k=4.8, the oscillating photon number distribution re-

mains, Fig. 1(h), the variance (AW} is further squeezed,
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Fig. 2. (Color online) Same

and the field is not a coherent state but shows a tendency
to become the superposition of the vacuum and two-
photon state.

Besides the photon number probability distributions,
the corresponding z-component angular momentum prob-
ability distributions, P(m)=[(m|y;)|?, are shown in the
third row of Fig. 1, in the same order related to the four
points A to D along the solid curve in Fig. 1(c). We calcu-
late the mean values and variances for the three momen-

tum operators, (Ji) and (AJ?} for i=x,y,z, as well as the
uncertainty relation between the population difference
and the dipole phase, 4(AJ2(A®2)=1, where (A®2)
=(AJ§)/ . 2. Again, by increasing the nonlinear coupling
strength, Figs. 1(1)-1(1), the atomic state changes from a
coherent atomic state in the absence of the nonlinear pa-
rameter to a squeezed coherent atomic state for a small
nonlinear parameter. For a larger nonlinear coupling
strength, the squeezed atomic state becomes a state
where the minimal Dicke state, |N,-N/2), predominates.
Our simulation results indicate the co-existence of
squeezed fields and squeezed atomic ensembles in the
moderate coupling regime. The field and atomic statistics
for the points discussed above, approximated to three
decimal points for the sake of space, are shown in Table 1.

as Fig. 1, but for the case of N=5.

As the number of two-evel systems increase, e.g., N=5
in Fig. 2, the maximum bipartite entanglement shared
between ensemble components seems to be inversely pro-
portional to the ensemble size, and the region of entangle-
ment decreases. In the second and third rows of Fig. 2,
similar photon and atomic statistics, from Poissonian and
sub-Poissonian to oscillating photon number distributions
for the field, and from the coherent to squeezed atomic en-
sembles, respectively, are demonstrated along a constant
coupling parameter, A=3.019.

5. CONCLUSION

Two phase transitions for the ground state were found for
a finite size Dicke Hamiltonian plus counter-rotating and
quadratic field terms, corresponding to the weak and
strong coupling regimes. The ground states before and af-
ter these transitions are analytically found to be pure
separable states (thus there exists no entanglement in
the system). The states are differentiated from each other
by both the state of the field and two-level system en-
semble; i.e., the superposition of the vacuum and two pho-
ton field states times all the components of the ensemble
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Table 1. Field and Atomic Statistics for the Markers A to D in Fig. 1(c) for N=2 and in Fig. 2(c) for N=5
Two-Level Systems”

2 TLS, Fig. 1(e)-1(1)

5 TLS, Fig. 2(e)-2(1)

N=3.323 A=3.019
A B C D A B C D
k=0 xk=0.3 k=24 k=4.8 k=0 k=0.3 k=24 k=4.8
(n) 22.078 4.590 0.502 0.678 45.528 9.417 0.731 0.707
(AR2) 22.084 3.155 1.011 2.135 45545  6.416 1.153 2.162
(AX2> 1.000 0.676 1.824 2.941 1.000 0.676 1.645 2.609
(Afﬂ) 1.000 1.481 0.869 0.355 1.000 1.480 1.087 0.426
(A}A(Z)(AI%) 1.000 1.000 1.586 1.045 1.000 1.000 1.789 1.112
<:]x> -1.000 0.000 0.000 0.000 -2.499 2.495 0.000 0.000
<A:]z> 0.000 -0.052 0.903 0.756 0.001 0.005 5.630 3.576
<jy> 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(A:]f) 0.5000 0.500 0.392 0.364 1.250 1.250 1.147 0.719
<jz> -0.023 -0.512 -0.466 -0.781 -0.068 -0.153 -0.861 -1.902
(A:]f) 0.500 0.5000 0.487 0.269 1.250 1.246 1.232 0.837
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