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Quantum phase transition of nonlinear light
in the finite size Dicke Hamiltonian
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We study the quantum phase transition of an N two-level system ensemble interacting with an optical degen-
erate parametric process, which can be described by the finite size Dicke Hamiltonian plus counter-rotating
and quadratic field terms. Analytical closed forms of the critical coupling value and their corresponding sepa-
rable ground states are derived in the weak and strong coupling regimes. The existence of bipartite entangle-
ment between the two-level system ensemble and photon field as well as between ensemble components for
moderate coupling is shown through numerical analysis. Given a finite size, our results also indicate the co-
existence of squeezed fields and squeezed atomic ensembles. © 2010 Optical Society of America
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. INTRODUCTION
he study of light–matter interaction has been the cen-
ral topic of quantum optics; it has laid the foundation for
aser theory, quantum state engineering, fundamental
esting of quantum mechanics, and implementation of
uantum information processing [1]. Among the various
ystems involving the interaction of photons and atoms,
he simplest and the most important building block to il-
ustrate interesting quantum phenomena involves just
he one two-level atom (TLA) [2]. As the number of TLAs
ncrease, collective effects give rise to intriguing many-
ody phenomena; e.g. the existence of a coherent super-
adiant phase at zero temperature [3].

The Hamiltonian describing the coupling of a non-
nteracting atomic ensemble with a single quantized elec-
romagnetic field mode is equivalent, via a Power–Zineau
ransformation, to the Hamiltonian of a free particle un-
er a field related potential [1]. The ground state energy
f such a system is bounded from below by the atomic
round state and the vacuum field, ergo a super-radiant
hase transition of the ground state in a charge only sys-
em coupled to a single field mode is not possible [4,5].
ithin the standard minimal coupling, long wavelength,

nd rotating wave approximation—and discarding qua-
ratic terms—the interaction of a photon field with an en-
emble of TLAs is described by the Dicke Hamiltonian,

ĤDicke = ��pâ†â + ��aĴz + �
�

�N
�âĴ+ + â†Ĵ−�, �1�

here the transition energy for each one of the N TLAs
nd the radiation field frequency are �a and �p, in that
rder. The atomic ensemble operators are defined in
erms of the Pauli matrices for the jth TLA as Ĵz

�1/2��j=1
N �z

�j� and Ĵ±=�j=1
N �±

�j�. The coupling strength for
he photon–atom interaction is denoted by �. The impos-
ibility for a quantum phase transition (QPT) in the
0740-3224/10/112443-8/$15.00 © 2
ource model translates into a violation of the Thomas–
eiche–Kuhn (TRK) sum rule for an atom, if the relation
etween coupling strength and quadratic parameter for a
hase transition in the Dicke model were to occur [6]. In
rder to observe the effect of the radiation–matter cou-
ling known as super-radiant phase transition in charge
nly systems, more realistic models, such as spin mag-
etic moment, statistics, or infinitely many electromag-
etic field modes, should be taken into account [7].
Despite the fact that a QPT is forbidden in the physical

ystem that originated the Dicke model, the phenomenon
s interesting by itself. First, the existence of a QPT in the
icke Hamiltonian was reported as a series of instabili-

ies of the ground state for a finite size ensemble of two-
evel systems [8]. Then, the existence of a super-radiant
hermodynamic phase transition was proved for an infi-
itely large ensemble interacting with a coherent boson
eld at a given temperature [9–11]. Also, in the classical

imit, studies indicated that this quantum critical phe-
omenon is associated with quantum chaos and
nsemble–field entanglement [12–14]. Non-trivial scaling
xponents at the critical point have been discussed on the
arge ensemble size regime [15]. Bipartite intra-ensemble
ntanglement resulting from finite size effects, was dem-
nstrated for the Dicke Hamiltonian [16]. This theoretical
nderstanding has motivated proposals for the realiza-
ion of the Dicke model in systems that might allow a
uper-radiant phase transition; e.g., open dynamical sys-
ems involving semiconductor quantum wells or quantum
ots [17,18], open dynamical cavity-QED systems with
eutral atoms [19] and ions [20], and superconducting
uantum devices [21,22], just to mention a few. Recently,
t has been shown that a standing-wave laser driven
ose-Einstein condensate (BEC) coupled to a high finesse
ptical cavity accounting for the center of mass motion re-
lizes the Dicke model, and that the super-radiant phase
orresponds to a periodical self-organized phase of the at-
ms [23,24].
010 Optical Society of America
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Currently, there is great interest in pursuing quantum
hase transitions of light, since photons interacting with
toms should be much easier to study and probe than
lectrons in condensed matter systems [25,26]. Schemes
o realize composite Dicke models have been proposed,
.g., by combining photon hopping between identical cavi-
ies in the photon-blockade regime. Mott-insulator to su-
erfluid QPT has been demonstrated in the Dicke–Bose–
ubbard model for an arbitrary number of two-level
toms [27]. More exotic QPTs of light have been predicted
n a Heisenberg spin 1/2 Hamiltonian [28], two species of
ose–Hubbard model [29], arrays of coupled cavities

30,31], and dual-species optical-lattice cavities [32].
hese studies have brought the possibility of analyzing
ritical quantum phenomena in conventional condensed
atter systems by manipulating the interaction between

hotons and atoms.
As nonlinear optics plays an important role in quantum

ptics, especially in the generation of quantum noise
queezed states [33,34], a natural question one may ask is
ow to associate nonlinear quantum processes with the
henomenon of QPT. Sub-Poissonian photon statistics of
he field state and momentum squeezing of the atomic
tate have been predicted for the Dicke model [14]. It also
as been proposed that squeezing of the photon field car-
ies signatures of the associated quantum critical phe-
omena in the size-consistent Dicke model [35].
In this work, we study the quantum critical phenomena

f N two-level systems embedded within a nonlinear op-
ical medium, with N finite. An optical degenerate para-
etric down conversion (PDC) process, where the nonlin-

ar medium is pumped by a classical field of frequency
�f and that field is converted into pairs of identical pho-
ons of frequency �f each, is considered. The correspond-
ng nonlinear interaction Hamiltonian is given by

ĤPDC = ���â2 + â†2�, �2�

here the nonlinear parameter �=��2�� is defined by the
econd-order nonlinearity coefficient ��2� and the classical
mplitude of the pumping field �. By plugging the degen-
rate PDC Hamiltonian, Eq. (2), into the Dicke model, Eq.
1), and restoring the counter-rotating terms we obtain
he following Hamiltonian:

Ĥ = ��fâ
†â + ��aĴz + �

�

�N
�â + â†�Ĵx + ���â + â†�2, �3�

here we have rescaled the system energy by �−��� and
edefined the photon frequency as �f=�p−2�. In the lit-
rature, the Hamiltonian in Eq. (3) is that of a non-
nteracting TLAs ensemble driven by an electromagnetic
eld with the standard minimal coupling in the long
avelength limit. Of course, such a QPT does not exist for

harge-only systems interacting with a finite number of
lectromagnetic radiation modes [4–7], but the proposed
onlinear optics PDC process may provide a strong non-

inearity for the field, which might be coupled to a feasible
ealization of the Dicke model [17–24,36–38]. The theo-
etical quantum phase transition of the proposed model,
q. (3), has been shown in the thermodynamic limit, i.e.,
oth ensemble size and volume are considered infinitely
arge, and N and V→�[39]. To the knowledge of the au-
hors, the finite size effect on the QPT of this Hamiltonian
emains unanswered.

The purpose of this work is twofold. First, we show ana-
ytically that a pair of unitary transformations effect a ro-
ating wave approximation equivalence on the Hamil-
onian in the weak coupling regime; thus the exact critical
oupling strength can be calculated [16]. In the strong
oupling regime, we show how the critical coupling
trength can be calculated under just a semi-classical
eld approximation. In both cases, the critical coupling
alue of the finite-size N Dicke Hamiltonian plus counter-
otating and quadratic field terms is independent of the
tomic number and agrees with results derived from the
lassical limit, N and V→�. Second, treated as a degen-
rate parametric process, we numerically demonstrate
he existence of squeezed fields and squeezed atomic en-
embles as well as bipartite entanglement between the
wo-level system ensemble and photon field and among
nsemble components themselves.

. WEAK COUPLING REGIME, �™�a

n order to derive a set of critical coupling values for the
uantum phase transition, we first consider the weak cou-
ling regime, i.e., �	�a. In analogy to the unitary
queezed operator for a degenerate PDC, we define the
ollowing unitary transformation and associated param-
ter:

T̂ = e
�â2−â†2�, 
 = �/�2��f + 2���. �4�

nder the restriction 
	1, the Hamiltonian in Eq. (3) is
educed to

H̃ = T̂−1ĤT̂,

���̃fâ
†â + �

�a

2
Ĵz + �

g̃

�N
�â + â†�Ĵx + ��̃. �5�

hus, the original Hamiltonian, Eq. (3), is approximated
y the well-known Dicke Hamiltonian plus the counter
otating terms with a modified field frequency �̃f, a modi-
ed coupling constant g̃, and a constant energy shift ��̃,
efined as

�̃f = ��f + 4�

�f + 2�
	�f, g̃ = � �f + �

�f + 2�
	�, �̃ = � �f

�f + 2�
	�.

�6�

s the total excitation number, N̂= â†â+ Ĵz, does not com-
ute with this Hamiltonian, Eq. (5), in order to further

implify our problem, a second unitary transformation is
sed:

Û = e−ı��â+â†�Ĵy, � = g̃/��N��a + �̃f��, �7�

here the newly defined parameter fulfills �	1 due to the
eak coupling regime requirement �	�a. Neglecting all
ut linear powers of the parameter �, the Hamiltonian in
q. (3) is written

Ĥ = Û−1T̂−1ĤT̂Û,
W
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���̃fâ
†â + ���a + �̃a�â + â†�2�Ĵz + �

�̃

�N
�âĴ+ + â†Ĵ−�,

�8�

ith the extra frequency �a˜ and the modified coupling �̃
iven by the expressions

�̃a =
2g̃2

N��a + �̃f�
, �̃ =

2�̃fg̃

��a + �̃f�
. �9�

he weak regime assumption makes it possible to neglect
he extra frequency �̃a. Thus the weak limit Hamiltonian,
q. (8), is further reduced to the well-known finite size
icke model in Eq. (1), of which the ground state can be

ound exactly and undergoes a phase transition at the
ritical value �̃=��a�̃f [16,40]. In our case, the critical
oupling value in the weak coupling regime can be explic-
tly expressed as

�W �
�f��a + �f� + 2���a + 2�f�

2��f + ��
��a��f + 2��

�f��f + 4��
. �10�

or coupling values fulfilling the condition �	�W, we can
rite the ground state and the corresponding energy of
ur system as


GW� = T̂
0� �
j=1

N


g�j �

0� − 

2�

�
2 + 1
�
j=1

N


g�j,

EGW
= ���̃ −

N�a

2 	 , �11�

here 
g�j denotes the ground state for the jth TLAs. The
round state is a pure separable state and independent of
he size of the atomic ensemble. Unlike the Dicke model,
ere the field is in a superposition of vacuum |0� and two-
hoton |2� states as a result of the degenerate parametric
rocess.

. STRONG COUPLING REGIME, �š�a

n the weak coupling regime, the ground state is well de-
cribed by a finite superposition of Fock states times the
wo-level system ground state, while in the strong cou-
ling regime, it is possible to consider the field in a coher-
nt state and try to find the corresponding ensemble
tate. By substituting the photon creation and annihila-
ion operators by their expectation values, the Hamil-
onian in Eq. (3) becomes

ĤS = ��f
�
2 + ���R
2 + ��aĴz +

2��

�N
�RĴx, �12�

here the complex coherent state parameter is defined as
=�R+ ı�I. It is possible to arrange this semi-classical
amiltonian in Eq. (12) as a nested array of tensor prod-
cts of the form
ĤS = ���f
�
2��R
2 �I2N + ��� . . . � � I2 + I2N−2 � Ĥ2� � I2 + I2N−1

� Ĥ2
, �13�

here the symbol Id represents the unit matrix of dimen-
ion d, and the auxiliary matrix of dimension two is

Ĥ2 = ���a

2
�̂z +

2��R

�N
�̂x	 . �14�

hus, the ground state energy is found as

EGS
= ���f
�
2 + ��R

2 −
N

2
��a

2 + 16�2�R
2 /N� . �15�

n order to calculate the critical coupling value, we opti-
ize this ground state energy for the real and imaginary

arts of the coherent state parameter, �, and find the fol-
owing self-consistency equations:

�R
2 =

N�16�4 − �a
2��f + 4��2�

4�2��f + 4��2 ,

�I = 0. �16�

he phase transition in the strong coupling regime occurs
t the critical value given by the expression

�S =
1

2
��a��f + 4��. �17�

lthough a finite size has been assumed for the atomic
nsemble, this critical coupling value found in the strong
oupling regime, Eq. (17), is in accord with that derived
rom the free energy by using the thermodynamic limit
ethod for an infinitely large two-level system ensemble

6,10,11] for the reason that in both cases the field is as-
umed to be in a coherent state.

The mean-field constrain set, Eq. (16), approximates, in
he strong coupling regime �
�S, the following ground
tate and ground state energy:


GS� = 
�� �
j=1

N


v�j,

EGS
= −

�N�16�4 + �a
2��f + 4��2�

16�2��f + 4��
, �18�

here the auxiliary two-level state is defined as


v� =
1

��2 + 1
�
g� + �
e��,

� =
�a��f + 4�� − 4�2

�16�4 − �a
2��f + 4��2

. �19�

gain, as expected, the ground state is a pure separable
tate; here the difference is that each component of the
nsemble is in a superposition of the ground, 
g�, and ex-
ited states, 
e�. Furthermore, for a coupling parameter
arger than the nonlinear parameter, �
�, the auxiliary
tate is the balanced superposition 
v�= �
g�− 
e�� /�2 with
ull population difference, ��̂ �=0.
z
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. MODERATE COUPLING REGIME
esides the weak and strong coupling regimes, where the
round states are both separable states, we apply a direct
umerical calculation to find the ground state in the mod-
rate coupling regime. In the simulation, each and every
ingle two-level system is taken to be indistinguishable
rom each other, and the angular momentum eigenstates
asis is used:

Ĵz
N/2,m� = m
N/2,m�,

Ĵ±
N/2,m� =�N

2 �N

2
+ 1	 − m�m ± 1�
N/2,m ± 1�, �20�

here the Dicke state 
N /2 ,m� is the superposition of all
ossible ensemble states with N /2+m two-level systems
n the excited state and the rest, N /2−m, in the ground
tate, such that m=−N /2 ,−N /2+1, . . . ,N /2−1,N /2. In
he Fock and Dicke basis, for the field and the ensemble
n that order, the matrix for the Hamiltonian is given
y—in units of �−

ĤnMax
� �fn̂ � Ia + �aIf � Ĵz +

�

�N
�â + â†� � Ĵx + ��â + â†�2

� Ia, �21�

here the matrix elements for the involved operators are

�i
n̂
j� = j�i,j, �i
â
j� = �j�i,j−1, �i
â†
j� = �j + 1�i,j+1,

�22�

or i , j=0,1, . . . ,nMax and

�p
Ĵz
q� = q�p,q, �p
Ĵ±
q� =�N

2 �N

2
+ 1	 − m�m ± 1��p,q±1,

�23�

ith �p
Ĵx
q�= 1
2 �p
Ĵ++ Ĵ−
q� for p ,q=−N /2 ,−N /2

1, . . . ,N /2−1,N /2. The symbols If and Ia stand for the
nitary matrices of size nMax+1 and N+1 corresponding
o the field and ensemble subspaces, in that order. The no-
ation ·�· is used for the tensor or Kronecker product.

As an eigenstate of the truncated version of the studied
amiltonian, Eq. (21), can be easily verified to be, or not,
n eigenstate for the exact full Hamiltonian, Eq. (3), the
umerical approach taken here consists of assessing a
aximum number of allowed excitations for the field, n,

et to deliver at most a maximum error parameter, �


E1− �Ĥ�j
 / 
�Ĥ�j
, for a wide range of the phase space set
y the coupling and nonlinear parameters, �� ,�� in that
rder. The set ��Ej , 
�j��
 are the numerical eigenvalues
nd eigenstates, respectively, of the truncated Hamil-
onian sorted in ascending order, Ej�Ej+1 for j
1, . . . , �N+1��n+1�, and the notation � · �j���j 
 · 
�j� is
sed. In addition, a degeneracy parameter �d= 
En
E1
 / 
E1
 is established to discriminate between non-
egenerate and degenerate ground states. In the latter
ase, the proper ground state is constructed as the nor-
alized direct sum of the degenerate eigenstates.
In the following numerical analysis, the error and de-
eneracy parameters are set to the values ��10−10 and
d�10−10. Numerical results for the on-resonance, �f
�a, and off-resonance, �f� �0.85,1��a, case are per-

ormed for an assorted collection of parameters, N
�2,6�, � /�N� �0,5��a, �� �0,5��a. By fixing the cou-

ling parameter at the largest value to be sampled and
robing a few weak values of the nonlinear parameter, a
aximum of two hundred excitations for the field, nMax
200, is found to fulfill the required error and degeneracy
arameters. Along the sampling of the phase space, both
he error and degeneracy parameters are found to be in
he required range. For the sake of brevity, only those re-
ults pertaining to a bipartite and a pentapartite en-
emble are shown in Fig. 1 and in Fig. 2, respectively.

The mean value of the z-component of the angular mo-
entum, �Ĵz�, which will be called population difference

rom now on, is shown in Fig. 1(a). Simulation results re-
eal that, as derived in the weak coupling regime, �	�a,
he population difference is minimal, �Ĵz�=−N /2, i.e.,
ach and every two-level system is in its ground state and
ndependent of the nonlinear parameter �. Also, for a suf-
ciently large coupling, �
�a, along with an adequate
onlinear parameter �	 �4�2−�a�f� /4�a such that �
�,
he population difference is null, �Ĵz�=0, which relates to
he ground state derived in the strong coupling regime,
q. (19), under the aforementioned restrictions. Figure
(b) shows that the numerical mean photon number for
he field, �n̂�, is in agreement with the general behavior
ound in the analytical results; i.e., the field is in the
acuum field state, with a small two-photon component
epending on the strength of the nonlinear parameter, for
he weak coupling regime and in a coherent state, with
ean photon number 
�
2, for the strong coupling regime.
In order to demonstrate the existence of entanglement

or the studied Hamiltonian in a moderate coupling re-
ime, we calculate the maximum shared bipartite concur-
ence following the entangled web approach [41], Fig.
(c), and the field-ensemble entanglement probed through
on Neumann entropy of the reduced two-level ensemble,
lso known as entropy of entanglement [42], Fig. 1(d).
on-zero regions for both the bipartite concurrence and

he entropy of entanglement are found between the sepa-
able states corresponding to the weak and strong cou-
ling regimes, approximately delimited by the black
urves in Figs. 1(c) and 1(d). It is possible to see that the
aximum shared bipartite concurrence locates in the up-

er diagonal region, Fig. 1(c), indicating that the en-
anglement shared between the ensemble components oc-
urs because of an approximately equal balance between
he linear atom–photon and nonlinear photon–photon in-
eractions. Instead, the entropy, which has its maximum
alue below the diagonal region, Fig. 1(d), shows a maxi-
um entanglement between the two-level system en-

emble and the photon field as the result of a larger
tom–photon interaction strength.
A shortcoming of the numerical approach shows up at

his point. The area of zero entropy below the entangled
hase is inversely proportional to the value of the degen-
racy parameter, �d, mentioned above. Also, the error pa-
ameter, �, increases as the nonlinear parameter � goes to
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ero. These shortcomings appear because of the trunca-
ion of the Hilbert space for solving the eigenvalue prob-
em. When the counter-rotating and diamagnetic like
erms are neglected, the system is confined to certain fi-
ite subspaces and the numerical approach does not
resent this problem [16]. Numerical results might be im-
roved by allowing a larger value for the maximum exci-
ation of the field, optimizing the code, or effecting a cus-
omized analytical progressive diagonalization scheme
ased on those presented in [43,44].
Nevertheless, the current approach allows the calcula-

ion of the states for the field and atomic ensemble up to
he desired precision. In the second row of Fig. 1, we show
he photon number probability distributions, P�n�

�n 
�g�
2, related to the four markers, labeled from A to
, along a constant coupling parameter, �=3.323, repre-

ented by the solid curve in Fig. 1(c). In the absence of
onlinear coupling, �=0, a Poissonian photon number dis-
ribution is discovered in Fig. 1(e). By calculating the field
uadrature variances ��X̂2� and ��Ŷ2�, with the field

ig. 1. (Color online) Phase diagram of our finite-size Dicke Ha
trength, �, and the nonlinear photon–photon interaction strength
umber for the field, �n̂�. (c) Bipartite concurrence and (d) entrop
ponding minima and maxima values for the color legend are sh
robability distributions along the solid curve in (c) are shown in
uadratures defined as X̂= â†+ â and Ŷ= ı�â†− â�, the field
queezing is probed. In this case, �=0, the field is in a co-
erent state, as expected; i.e., the field quadratures’ mean
alues and their uncertainty relation all have a value of
ne. With a small value of the nonlinear coupling
trength, �=0.3, the statistics for the photon number dis-
ribution becomes sub-Poissonian, shown in Fig. 1(f). The
eld is in a squeezed coherent state as the uncertainty re-

ation for the field quadratures remains minimal, but the
ariance ��X̂2� increases as ��Ŷ2� decreases. By increas-
ng the nonlinear coupling, �=2.4, an oscillating photon
umber distribution is found in Fig. 1(g). Now, the
uadrature squeezing seems to be reversed and the vari-
nce ��Ŷ2� is smaller than ��X̂2� and close to a value of
ne. Also, as the value for the quadratures’ uncertainty
elation is more than one, the field is no longer in a coher-
nt state. For further increase of the nonlinear coupling,
=4.8, the oscillating photon number distribution re-
ains, Fig. 1(h), the variance ��Ŷ2� is further squeezed,

ian in the parameter space of the linear photon–atom coupling
) Mean value for the atomic z-component, �Ĵz�. (b) Average photon
ntanglement, �Ŝ�, are calculated for the case of N=2. The corre-
elow. The field photon number and atomic angular momentum
and (i–l), ordered according to the markers A−D, respectively.
milton
, �. (a
y of e
own b
(e–h)
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nd the field is not a coherent state but shows a tendency
o become the superposition of the vacuum and two-
hoton state.
Besides the photon number probability distributions,

he corresponding z-component angular momentum prob-
bility distributions, P�m�= 
�m 
�g�
2, are shown in the
hird row of Fig. 1, in the same order related to the four
oints A to D along the solid curve in Fig. 1(c). We calcu-
ate the mean values and variances for the three momen-
um operators, �Ĵi� and ��Ĵi

2� for i=x ,y ,z, as well as the
ncertainty relation between the population difference
nd the dipole phase, 4��Ĵz

2����̂2��1, where ���̂2�
��Ĵy

2� / �Ĵx�2. Again, by increasing the nonlinear coupling
trength, Figs. 1(i)–1(l), the atomic state changes from a
oherent atomic state in the absence of the nonlinear pa-
ameter to a squeezed coherent atomic state for a small
onlinear parameter. For a larger nonlinear coupling
trength, the squeezed atomic state becomes a state
here the minimal Dicke state, 
N ,−N /2�, predominates.
ur simulation results indicate the co-existence of

queezed fields and squeezed atomic ensembles in the
oderate coupling regime. The field and atomic statistics

or the points discussed above, approximated to three
ecimal points for the sake of space, are shown in Table 1.

Fig. 2. (Color online) Same
As the number of two-evel systems increase, e.g., N=5
n Fig. 2, the maximum bipartite entanglement shared
etween ensemble components seems to be inversely pro-
ortional to the ensemble size, and the region of entangle-
ent decreases. In the second and third rows of Fig. 2,

imilar photon and atomic statistics, from Poissonian and
ub-Poissonian to oscillating photon number distributions
or the field, and from the coherent to squeezed atomic en-
embles, respectively, are demonstrated along a constant
oupling parameter, �=3.019.

. CONCLUSION
wo phase transitions for the ground state were found for
finite size Dicke Hamiltonian plus counter-rotating and

uadratic field terms, corresponding to the weak and
trong coupling regimes. The ground states before and af-
er these transitions are analytically found to be pure
eparable states (thus there exists no entanglement in
he system). The states are differentiated from each other
y both the state of the field and two-level system en-
emble; i.e., the superposition of the vacuum and two pho-
on field states times all the components of the ensemble

. 1, but for the case of N=5.
as Fig
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n the ground state for couplings less than the weak criti-
al coupling, and a non-vacuum coherent field state times
ll the components of the ensemble in a superposition of
round and excited states for couplings larger than the
trong critical coupling.

Between these extremes, the ground state presents
oth ensemble-field entanglement and bipartite entangle-
ent between the ensemble components. Results on en-

emble bipartite entanglement behave as expected; the
egree of maximum shared pairwise entanglement de-
reases as the number of entangled pairs in the two-level
nsemble increases; i.e., for a sufficiently large ensemble,
.g., the infinitely large ensemble considered in the ther-
odynamic limit, the maximum shared bipartite en-

anglement will tend to zero and there will be no interme-
iate region between the weak and strong regimes. Thus,
he phase space region for which the ground state of the
ystem is entangled is directly related to the finite size of
he system.
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2����̂2� 1.000 1.151�1047 7.515�1054

aSee the text for more details.
5. K. Rzažewski and K. Wodkiewicz, “Stability of matter inter-
acting with photons,” Phys. Rev. A 43, 593–594 (1991).

6. K. Rzažewski, K. Wódkiewicz, and W. Zakowicz, “Phase
transitions, two-level atoms, and the a2 term,” Phys. Rev.
Lett. 35, 432–434 (1975).

7. K. Gawedzki and K. Rzažewski, “No-go theorem for the su-
perradiant phase transition without dipole approximation,”
Phys. Rev. A 23, 2134–2137 (1981).

8. W. R. Mallory, “Solution of a multiatom radiation model us-
ing the bargmann realization of the radiation field,” Phys.
Rev. 188, 1976–1987 (1969).

9. K. Hepp and E. Lieb, “On the superradiant phase transition
for molecules in a quantized radiation field: the Dicke ma-
ser model,” Ann. Phys. 76, 360–404 (1973).

0. Y. K. Wang and F. T. Hioe, “Phase transition in the
Dicke model of superradiance,” Phys. Rev. A 7, 831–836
(1973).

1. K. Hepp and E. H. Lieb, “Equilibrium statistical mechanics
of matter interacting with the quantized radiation field,”
Phys. Rev. A 8, 2517–2525 (1973).

2. C. Emary and T. Brandes, “Quantum chaos triggered by
precursors of a quantum phase transition: The Dicke
model,” Phys. Rev. Lett. 90, 044101 (2003).

3. C. Emary and T. Brandes, “Phase transitions in generalized
spin-boson (Dicke) models,” Phys. Rev. A 69, 053804 (2004).

4. N. Lambert, C. Emary, and T. Brandes, “Entanglement and
the phase transition in single-mode superradiance,” Phys.
Rev. Lett. 92, 073602 (2004).

5. J. Vidal and S. Dusuel, “Finite-size scaling exponents in the
Dicke model,” Europhys. Lett. 74, 817–822 (2006).

6. V. Bužek, M. Orszag, and M. Roško, “Instability and en-
tanglement of the ground state of the Dicke model,” Phys.
Rev. Lett. 94, 163601 (2005).

7. T. Brandes, J. Inoue, and A. Shimizu, “Oscillatory behavior
of a superradiating system coupled to electron reservoirs,”
Phys. Rev. Lett. 80, 3952–3955 (1998).

8. T. Vorrath and T. Brandes, “Dicke effect in the tunnel cur-
rent through two double quantum dots,” Phys. Rev. B 68,
035309 (2003).

9. F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael,
“Proposed realization of the Dicke-model quantum phase
transition in an optical cavity qed system,” Phys. Rev. A 75,
013804 (2007).

0. K. Härkönen, F. Plastina, and S. Maniscalco, “Dicke model
and environment-induced entanglement in ion-cavity,”
Phys. Rev. A 80, 033841 (2009).

to D in Fig. 1(c) for N=2 and in Fig. 2(c) for N=5
stemsa

5 TLS, Fig. 2(e)–2(l)
�=3.019

.8
A

�=0
B

�=0.3
C

�=2.4
D

�=4.8

8 45.528 9.417 0.731 0.707
5 45.545 6.416 1.153 2.162
1 1.000 0.676 1.645 2.609

5 1.000 1.480 1.087 0.426

5 1.000 1.000 1.789 1.112

0 −2.499 2.495 0.000 0.000

6 0.001 0.005 5.630 3.576

0 0.000 0.000 0.000 0.000

4 1.250 1.250 1.147 0.719

81 −0.068 −0.153 −0.861 −1.902

9 1.250 1.246 1.232 0.837

1051 1.000 1.000 7.180�1038 1.682�1041
rs A
el Sy

D
�=4

0.67
2.13
2.94

0.35

1.04

0.00

0.75

0.00

0.36

−0.7

0.26

5.887�



2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

2450 J. Opt. Soc. Am. B/Vol. 27, No. 11 /November 2010 B. M. Rodríguez-Lara and R.-K. Lee
1. A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J.
Schoelkopf, “Cavity quantum electrodynamics for supercon-
ducting electrical circuits: An architecture for quantum
computation,” Phys. Rev. A 69, 062320 (2004).

2. G. Chen, Z. Chen, and J. Liang, “Simulation of the super-
radiant quantum phase transition in the superconducting
charge qubits inside a cavity,” Phys. Rev. A 76, 055803
(2007).

3. K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,
“Dicke quantum phase transition with a superfluid gas in
an optical cavity,” Nature (London) 464, 1301–1307 (2010).

4. D. Nagy, G. Konya, G. Szirmai, and P. Domokos, “Dicke-
model phase transition in the quantum motion of a Bose-
Einstein condensate in an optical cavity,” Phys. Rev. Lett.
104, 130401 (2010).

5. F. Illuminati, “Light does matter,” Nat. Phys. 2, 803–804
(2006).

6. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollen-
berg, “Quantum phase transitions of light,” Nat. Phys. 2,
856–861 (2006).

7. S.-C. Lei and R.-K. Lee, “Quantum phase transitions of
light in the Dicke-Bose-Hubbard model,” Phys. Rev. A 77,
033827 (2008).

8. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Ef-
fective spin systems in coupled microcavities,” Phys. Rev.
Lett. 99, 160501 (2007).

9. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “A
polaritonic two-component Bose-Hubbard model,” New J.
Phys. 10, 033011 (2008).

0. D. Rossini and R. Fazio, “Mott-insulating and glassy phases
of polaritons in 1d arrays of coupled cavities,” Phys. Rev.
Lett. 99, 186401 (2007).

1. D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-
blockade-induced Mott transitions and xy spin models in
coupled cavity arrays,” Phys. Rev. A 76, 031805 (2007).
2. S.-C. Lei, T.-K. Ng, and R.-K. Lee, “Photonic analogue of Jo-
sephson effect in a dual-species optical-lattice cavity,” Opt.
Express 18, 14586 (2010).

3. M. O. Scully and M. S. Zubairy, Quantum Optics (Cam-
bridge University Press, 1997).
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