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We propose and analyze an efficient way to detect the terahertz (THz) signal in a magnetized graphene system via
electromagnetically induced transparency. Such a scheme for THz signal detection mainly relies on the measure-
ment of probe transmission spectra, in which the behaviors of a weak-probe transmission spectra can be con-
trolled by switching on/off the THz signal radiation. Taking into account the tunable optical transition frequency
between the Landau levels in graphene, our analytical results demonstrate that a broad frequency bandwidth of
the THz signal radiation, ranging from 0.36 to 11.4 THz, can be inspected and modulated by means of an external
magnetic field. As a consequence, the proposed magnetized graphene system performs a striking potential to
utilize quantum interference in the design of optical solid-state devices. © 2016 Optical Society of America

OCIS codes: (270.1670) Coherent optical effects; (040.2235) Far infrared or terahertz.

http://dx.doi.org/10.1364/JOSAB.33.000279

1. INTRODUCTION

Graphene, consisting of a series of carbon atoms in the two-
dimensional hexagonal lattice, has attracted considerable scien-
tific interest in its fascinating electronic and optical properties
during the past few years. These electronic properties originat-
ing from linear, massless dispersion of electrons near the Dirac
point and the chiral character of electron states have motivated
a number of recent theoretical investigations in graphene [1–3].
The magneto-optical properties and thin graphite layers give
rise to multiple absorption peaks and particular selection rules
between Landau levels (LLs) [4–7]. Subsequently, due to its
unusual band structure and selection rules for the optical tran-
sitions, an intriguing optical nonlinearity in the infrared (IR)
and terahertz (THz) region [5,6,8–13] has been exploited in
the wide applications. For example, Yao et al. have calculated
the THz radiation power generated by the four-wave mixing
and stimulated Raman scattering processes in graphene [10].
In addition, several quantum theories about the frequency mix-
ing effects and infrared solitons in graphene have been devel-
oped [14–17]. From the viewpoint of practical applications,
graphene may provide a better access to the characterization
and manipulation of optical properties in the THz region.

On the other hand, quantum interference in the form
of electromagnetically induced transparency (EIT) has led to
many significant research activities on optical communications

and quantum information processing in both cold atom media
and semiconductors [18–22]. This concept of quantum inter-
ference has also been extended to a variety of studies, such as
controlling the group velocity of light pulses [23,24], optical
solitons [25,26], multiwave mixing process [27–29], optical
bistability [30], and THz signal detection strategy [31–35]. In
particular, the THz science is expected to have a wide range of
applications in diverse fields, including biological imaging,
long-distance detection of hazardous materials, and nonde-
structive testing [36–38]. Inspired by the linear and nonlinear
optical response of graphene in the IR and THz regions, we
suggest a scheme for detecting and measuring the THz signal
radiation by using EIT in graphene, which may open up an
avenue to explore new availability for creating a compact and
inexpensive THz detector.

In this paper, we study a novel optical method to detect the
THz signal based on EIT in a quantized three-level graphene
system under a strong magnetic field. Different from the most
common THz technique using nonlinear multiplication or up-
conversion of lower-frequency oscillators [39,40], our scheme
based on quantum interference associating with one weak mid-
infrared probe light is analyzed for achieving the THz signal
detection. Under suitable conditions, a strong absorption char-
acteristic of the probe field appears in the absence of the THz
signal, while the optical absorption of the probe field can be
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absolutely suppressed with the THz signal switched on. The
different response depends, respectively, on whether quantum
destructive interference is quenched or well developed so that
we can examine the existence of the EIT transparency window
and THz signal field. In addition, a time-dependent analysis
performs the probe pulse propagating with an ultraslow group
velocity (i.e., V g ≃ 10−3 ∼ 10−4c) at a low-intensity domain.
Motivated by establishing a practical and effective approach,
the transmission spectra of the probe field is finally simulated
by employing the incident Gaussian-shaped probe pulse in our
scheme of THz signal detection.

2. THEORETICAL MODEL AND BASIC
EQUATIONS

In this section, we propose a 2D graphene crystal structure with
three energy levels in the presence of a strong magnetic field, as
shown in Figs. 1(a)–1(c). Because of the special selection rules
in present graphene, the selected transitions are dipole allowed
between the appointed energy levels, i.e., Δjnj � �1 (n is the
energy quantum number). Specially, the right-hand circularly
(RHC) polarized photons could be homogeneously applied
to the condition of Δjnj � −1, and the left-hand circularly
(LHC) polarized photons are simultaneously applied to the case

of Δjnj � �1 [5]. The application of the external magnetic
field results in the formation of discrete LLs, as shown in
Fig. 1(b). It should be noted that the carrier frequencies of op-
tical transition between adjacent LLs turn out to be in the IR or
THz region for a magnetic field in the range of 0.01–10 T:
ℏωc ≃ 36

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B�Tesla�

p
meV [6,10,41] (see Appendix A). We

consider the electric field vector of the system that can be ex-
pressed as E⃗ p � e⃗−E−

p exp�−iωpt � ik⃗p · r⃗� � c:c: and E⃗TH �
e⃗−E−

TH exp�−iωTH t � ik⃗TH · r⃗� � c:c:, where e⃗−�e⃗�� corre-
sponds to the unit vector of the LHC (RHC) polarized basis,
which can be noted as e⃗− � �x̂ − iŷ�∕ ffiffiffi

2
p �e⃗� � �x̂ � iŷ�∕ ffiffiffi

2
p �.

In detail, the optical field of the LHC polarized component E−
p

�E−
TH � with the carrier frequency ωp �ωTH � constructs the op-

tical transition j1i↔j2i �j2i↔j3i�, respectively.
When the magnetic field is perpendicularly applied in a

single-layer graphene (in the x − y plane), the optical transitions
driven by the probe pulse and THz signal field generate the
quantum interference and quantum coherence effects. In the
interaction picture, with the rotating wave approximation and
the electric dipole approximation (see Appendix A), the total
Hamiltonian of this system can be written as

Ĥ I
int � Δpj3ih3j � �Δp − ΔTH �j2ih2j

− �Ωpj3ih1j � ΩTH j3ih2j � h:c:�; (1)

where the corresponding frequency detunings are given by
Δp � �εn�2 − εn�−1�∕ℏ − ωp and ΔTH � �εn�2 − εn�1�∕
ℏ − ωTH . The energy of the LLs for electrons near the Dirac
point is denoted as εn � sgn�n�ℏωc

ffiffiffiffiffiffi
jnj

p
�n � 0;�1;�2�

with ωc �
ffiffiffi
2

p
υF∕l c and l c �

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc∕eB

p
representing the mag-

netic length. The corresponding Rabi frequencies for the rel-
evant laser-driven intersubband transitions are represented as
Ωp � �μ⃗31 · e⃗−�E−

p∕ℏ and ΩTH � �μ⃗32 · e⃗−�E−
TH∕ℏ, in which

μ⃗mn � hmjμ⃗jni � e · hmjr⃗jni � iℏe
εn−εm

hmjυF σ⃗jni denotes the
dipole moments for the transition between states jmi↔jni.

In the present analysis, to obtain the absorption-dispersion
properties of the graphene system, we first adopt Liouville’s
equation ∂ρ̂

∂t � − i
ℏ �Ĥ I

int; ρ̂� − R̂�ρ̂�. Here, R̂�ρ̂� � 1
2 fΓ̂; ρ̂g �

1
2 fΓ̂ ρ̂�ρ̂ Γ̂g indicates incoherent relaxation, which may stem
from disorder, interaction with phonons and carrier–carrier
interactions. Moreover, the decay rate of the graphene is com-
bined into the evolution equation by a relaxation matrix Γ̂,
which can be defined by hnjΓ̂jmi � γnδnm. Subsequently, a
standard time-evolution equation for the density matrix of
Dirac electrons in graphene coupled to the infrared laser fields
can be calculated as follows,
_ρ11 � iΩ	

pρ31 − iΩpρ13;

_ρ22 � −γ2ρ22 � iΩTHρ32 − iΩ	
THρ23;

_ρ33 � −γ3ρ33 � iΩpρ13 − iΩ	
pρ31 � iΩ	

THρ23 − iΩTHρ32;

_ρ31 � −
�γ3
2
� iΔp

�
ρ31 � iΩp�ρ11 − ρ33� � iΩTHρ21;

_ρ21 � −
�γ2
2
� i�Δp − ΔTH �

�
ρ21 � iΩ	

THρ31 − iΩpρ23;

_ρ32 � −
�γ3 � γ2

2
� iΔTH

�
ρ32 � iΩTH �ρ22 − ρ33� � iΩpρ12;

(2)

Fig. 1. (a) Landau levels (LLs) near the Dirac point superimposed
on the linear electron dispersion without the magnetic field E �
�υF jpj. The magnetic field condenses the original states in the Dirac
cone into discrete energies. (b) Energy level diagram and optical tran-
sitions in graphene interacting with a weak probe pulse (with carrier
frequency ωp) and a THz signal field (with carrier frequency ωTH ).
The states j1i, j2i, and j3i correspond to the LLs with energy quan-
tum numbers n � −1; 1; 2, respectively. (c) Geometry of the system.
The probe pulse and THz signal field are perpendicularly incident on
the single-layer graphene (the monolayer graphene is regarded as a per-
fect two-dimensional (2D) crystal structure in the x − y plane) placed
in a magnetic field B, in which both two optical fields and magnetic
field are along the z-axis. (d) Schematic of the two dressed states jai
and jbi produced by states j2i and j3i coupled with state j1i in the
presence of the THz signal.
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where γi�i � 2; 3� corresponds to the decay rate of states jii.
And the steady-state solutions for Eq. (2) can be derived as

ρ21 �
−ΩpΩTH

Ω2
TH � d 21d 31

; ρ31 �
−id 21Ωp

Ω2
TH � d 21d 31

; (3)

with d 21 � −�γ22 � i�Δp − ΔTH ��, d 31 � −�γ32 � iΔp�.
Under an appropriate frame, we can substitute straightfor-

wardly results of Eq. (3) into the slowly varying parts of the
polarization of the weak probe pulse, i.e., P � ε0χ�ωp�Ep �
N �μ31ρ31 � c:c:�, with N being the electron concentration.
The expression for the susceptibility χ�ωp� can therefore be
written as

χ�ωp� �
Nμ231
ε0ℏ

·
ρ31
Ωp

� β
−id 21

d 21d 31 �Ω2
TH

; (4)

where the parameter β is noted as β � Nμ231∕ε0ℏ. The real and
imaginary parts of susceptibility χ�ωp� are still linear with re-
spect to dispersion and absorption of the graphene system, re-
spectively. Further, the absorption coefficient for the probe field
coupled to j1i↔j3i is directly proportional to the imaginary
part of Im�ρ31�, while the transmission coefficient of the probe
field is spontaneously proportional to the imaginary part of sus-
ceptibility. For the propagation effect of the probe field, the
electronic equations of motion must be simultaneously solved
with Maxwell’s equation in a self-consistent manner. Under the
condition of slowly varying envelope approximation, Rabi fre-
quency Ωp of the probe field is governed by the following
Maxwell’s equation,

∂Ωp

∂z
� 1

υF

∂Ωp

∂t
� iαpγ3ρ31; (5)

where the parameter αp � Nωpjμ31j2
4ℏεrυF γ3

is the propagation constant
of the probe field. When Ωin

p is assumed as the initial probe
field at the entrance z � 0, we arrive at the linearized results
for propagation dynamics of the probe field at the output
z � L:

Ωout
p � Ωin

p e
−αpLγ3 Im

�
ρ31
Ωp

�
: (6)

Based on Eqs. (4)–(6), the normalized transmission coeffi-
cient of the probe field has the form T ≡Ωout

p ∕Ωin
p .

It should be pointed out that the carrier frequencies of
relevant LLs can be estimated by an amount of the transi-
tion frequencies ω31 � �εn�2 − εn�−1�∕ℏ � � ffiffiffi

2
p � 1�ωc and

ω32 � �εn�2 − εn�1�∕ℏ � � ffiffiffi
2

p
− 1�ωc , and the carrier fre-

quency ωc is determined by the magnetic field B. For the
magnetic field up to 3 T, transition frequency ωc is of the
order of ωc ≃ 1014 s−1. In this scenario, ν31 ≃ 38.4 THz (i.e.,
ω31 ≃ 2.41 × 1014 s−1) is located within the mid-infrared re-
gion, while the ν32 ≃ 6.59 THz (i.e., ω32 ≃ 4.14 × 1013 s−1)
belongs to the THz region. According to the numerical esti-
mate based on [6,41], the decay rates can be estimated to be
γ3 � 3 × 1013 s−1 and γ2 � 0.05γ3. For the present graphene
system, the dipole moment between the transition j1i↔j3i has
a magnitude of the order of jμ⃗31j ∼ ℏeυF∕�εn�2 − εn�−1� ∝
1∕

ffiffiffi
B

p
. The electron concentration can be estimated to be

N ≃ 5 × 1012 cm−2 and the substrate dielectric constant turns
out to be εr ≃ 4.5 [42–44]. These parameter values rely

on the sample quality and the substrate used in the experi-
ment [6,9,10,45,46].

3. NUMERICAL RESULTS AND DISCUSSION

It is well known that the frequencies involved in the optical
transitions between adjacent LLs fall into the IR and THz re-
gion in the magnetized graphene and have a sensitive depen-
dent on the strength of the magnetic field via the relation
ℏωc ≃ 36

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B�Tesla�

p
. Within the above practical parameter

set, we plot the transmission spectra of the probe field as a func-
tion of the probe frequency and the magnetic field without and
with including the THz signal field, as shown in Fig. 2. For the
two cases, we investigate the transmission spectra of the probe
field in the external magnetic field ranging from 0.01 to 10 T.
When the THz signal radiation is off (i.e., jΩTH j � 0) in
Fig. 2(a), one can see that the only high absorption line appears
in the center of the probe transmission spectra. And the center
frequency of the probe absorption peak has a shift in the mid-
infrared region with the increase of the magnetic field. When
the THz signal opens in Fig. 2(b), the original high absorption
line becomes an obvious transparency window between two
high absorption lines. Thus, the THz signal radiation can be
regarded as a switch to manipulate the probe transmission spec-
tra with absorption or transparency.

In order to simplify the above physical picture, in Fig. 3(a)
we show the transmission spectra of the probe fields versus the
probe frequency, while keeping the external magnetic field fixed
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Fig. 2. Contour maps of transmission spectra of the probe field
as a function of the probe frequency and the magnetic field.
(a) Without including THz signal, jΩTH j � 0; (b) with including
THz signal, jΩTH j � γ. Other parameters are ΔTH � 0, γ �
3 × 1013 s−1, γ3 � γ, γ2 � 0.05γ3, jΩpj � 0.05γ, L � 0.4 nm, and
αp � 200 μm−1.

20 30 40 50
0.85

0.9

0.95

1

ν
p
 (THz)

tr
an

sm
is

si
on

 c
oe

ffi
ci

en
t

(a)

|Ω
TH

|=0

|Ω
TH

|=γ

20 30 40 50
0.85

0.9

0.95

1

ν
p
 (THz)

tr
an

sm
is

si
on

 c
oe

ffi
ci

en
t

(b)

γ
3
=0.1γ

γ
3
=0.5γ

γ
3
=5γ

γ
3
=10γ

Fig. 3. (a) Transmission spectra of the probe field versus probe
frequency for different THz signals with γ3 � γ. (b) Transmission
spectra of the probe field versus probe frequency for different losses
of graphene with jΩTH j � γ. Other parameters are B � 3T , ΔTH �
0, γ � 3 × 1013 s−1, γ2 � 0.05γ3, jΩpj � 0.05γ, L � 0.4 nm, and
αp � 200 μm−1.
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(i.e., B � 3T ). In the probe transmission spectra of the mag-
netized graphene system, a low transmission valley or high
absorption peak appears around the resonant probe frequency
(i.e., νp � ω31∕2π � 38.42 THz) when the THz signal field
switches off (i.e., jΩTH j � 0). Contrarily, the narrow EIT
transparency window can be observed by switching on the
THz signal radiation (i.e., jΩTH j � γ). In fact, these different
optical responses depend significantly on whether quantum de-
structive interference is quenched or well developed [19,47,48]
by modifying the strength of THz signal radiation. To inves-
tigate the influence of losses in graphene, we plot the probe
transmission spectra versus probe frequency for different losses
of graphene; see Fig. 3(b). The influence of losses in graphene is
mainly embodied in the transparency extent of the EIT win-
dow, while keeping the optical laser fields fixed. That is, with
the loss decreasing, the transparency window is more obvious,
which strongly supports our THz detection scheme. However,
the large loss of graphene leads to an intensive disturbance for
the EIT transparency window. As a result, a high-quality gra-
phene with a weak loss may provide a practical help to create
the perfect transparency window. Furthermore, the above
physical phenomenon can be also explained by dressed states
theory. Here, to achieve better EIT phenomenon, we assume
that the probe pulse and THz signal field satisfy the resonance
condition (i.e., Δp � 0 and ΔTH � 0) and the relation
jΩTH j ≫ jΩpj. Simultaneously, the excited subband j3i is
coupled by the probe pulse to the ground state with μ31, while
it is intensively coupled by the THz signal field to the subband
j2i with μ32. There are two dress states jai and jbi, as shown in
Fig. 1(d). The corresponding dress states under the one-photon
resonance condition can be expressed as

jai � 1ffiffiffi
2

p �j3i � j2i�; jbi � 1ffiffiffi
2

p �j3i − j2i�; (7)

with the energy eigenvalues of the two dressed states
λa;b � �ΩTH . When the frequency detuning of the probe
field is tuned at Δp � λa and Δp � λb, two resonant excita-
tions happen through the channels in the dressed state basis
j1i → jai and j1i → jbi, which correspond to the two absorp-
tion peaks. At the position of probe resonance Δp � 0, the
superposition of two absorption paths creates the EIT transpar-
ency window.

According to the above result, we have verified that the
different optical response of the graphene occurs at the trans-
parency window, so that we can detect the THz signal by meas-
uring the strength of the probe transmission spectra. In the
following discussion, we mainly investigate the optical proper-
ties of the probe and THz signal fields in the magnetized gra-
phene. First of all, we display transmission spectra of the probe
field versus the THz signal intensity in Fig. 4(a). It can be seen
that the transmission ratio increases monotonically with the in-
crease of THz signal intensity until the appearance of the per-
fect EIT window. In comparison with the different losses of
graphene, the smaller the loss of graphene is, the less THz signal
intensity the perfect EIT system needs. For example, to achieve
the perfect EIT window, the THz signal intensity needs to
reach at least 105 W∕cm2 ∼ 6.25 × 1023 photons∕s per cm2

with the loss of graphene γ3 � γ, while the THz signal inten-
sity is 103 W∕cm2 ∼ 6.25 × 1021 photons∕s per cm2 with the

loss γ3 � 0.1γ. That is to say, we can get a further reduced THz
signal intensity to achieve the perfect EIT transparency window
and the THz detection scheme by decreasing the losses of the
magnetized graphene system. Second, we plot the group veloc-
ity as a function of THz signal amplitude jΩTH j. The group
velocity of the probe field exhibits a ultraslow propagation re-
gime and its order of magnitude reaches at 10−3–10−4 c for the
different losses of graphene. As a matter of fact, quantum de-
structive interference driven by the THz signal field modifies
the dispersive property of graphene, leading to the slow group
velocity. In view of a controllable normal dispersion property in
the narrow EIT window [24], a further reduced group velocity
can be obtained by choosing the related parameter values
appropriately.

For a direct insight into the effect of the THz signal fre-
quency on the probe transmission spectra, we plot the contour
maps of the probe transmission spectra as a function of the THz
signal frequency and the magnetic field in Fig. 5. Here, we first
assume that the probe field detuning is always zero. When the
THz signal frequency approaches to resonant transition fre-
quency (i.e., νTH � ν32 � ω32∕2π), the EIT window is ex-
pected to appear, so that the probe field safely passes through
the graphene system. On the other hand, as the magnetic field
is varying from 0.01 to 10 T, the carrier frequency ν32 falls into
the THz region ranging from 0.36 to 11.4 THz. According to
that, Fig. 5 implies that a broad bandwidth of the THz signal
frequency can be accurately inspected by controlling the exter-
nal magnetic field. Interestingly enough, direct comparison of
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Fig. 4. (a) Transmission spectra of the probe field versus the THz
signal intensity for different losses of graphene on a log–log scale.
(b) Group velocity of probe light as a function of amplitude jΩTH j
of THz signal field on a log–log scale. Other parameters are
B � 3T , Δp � 0, ΔTH � 0, γ � 3 × 1013 s−1, γ2 � 0.05γ3, jΩpj �
0.05γ, L � 0.4 nm, and αp � 200 μm−1.
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Fig. 5. Contour maps of transmission spectra of the probe field as
a function of the THz signal frequency and the magnetic field.
(a) jΩTH j � γ∕3; (b) jΩTH j � γ. Other parameters are Δp � 0,
γ � 3 × 1013 s−1, γ3 � γ, γ2 � 0.05γ3, jΩpj � 0.05γ, L � 0.4 nm,
and αp � 200 μm−1.
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the results of Figs. 5(a) and 5(b) illustrates that the transparency
window can be obviously enlarged with the amplitude jΩTH j
increasing.

Up to now, we have demonstrated that the THz signal de-
tection scheme can be achieved in the present graphene under
the external magnetic field based on quantum interference
theory. Since the probe and THz signal fields are in the form
of optics pulses, we also consider how to simulate a practical
approach. Thus, we assume that a weak Gaussian-shaped probe
light (i.e., Ωin

p � e−t2∕τ2 ) with the pulse width τ � 1 ps passes
through the magnetized graphene structure. Now, the transmit-

ted probe field can be rewritten as Ωout
p � e−t2∕τ2e−αpLγ3 Im�

ρ31
Ωp �.

In Fig. 6, we show the results from numerical simulations with
the different cases. For one case, in Fig. 6(a), it can be clearly
seen that the transmissivity of the probe field significantly de-
creases with the amplitude of the THz signal field increasing
until the appearance of a perfect EIT transparency window,
which has been introduced in Fig. 4(a). For the other case,
Fig. 6(b) describes that probe transmission spectra as a function
of the dimensionless time t∕τ and the THz signal frequency.
When the magnetic field remains fixed, the transparency win-
dow can be opened under the resonance condition of the signal
field (i.e., the THz signal frequency equals the transition fre-
quency between states j2i and j3i). These observations are in-
deed similar to the previous research and prove the feasibility of
this scheme. Specifically, similar to our Λ-type model, the
V- and cascade-type schemes based on the three-state EIT can
be suggested for detecting THz signal in a graphene system.

4. CONCLUSION

In conclusion, we have performed a scheme to realize THz sig-
nal detection under an external magnetic field due to the strong
optical response of a graphene system in the IR and THz re-
gion. With the aid of the EIT and quantum destructive inter-
ference, the behaviors of the probe transmission spectra are
determined by switching on/off THz signal radiation. Taking
this theory and solving the coupled Schrödinger–Maxwell for-
mula, we demonstrate that the magnetized graphene provides
the EIT transparency window in the presence of the THz signal
field, in which the probe pulse propagates with an extremely
slow group velocity. Furthermore, the behavior of the probe

transmission spectra can be controlled by means of the optical
absorption property of the graphene system so that a broad
THz signal frequency bandwidth can be accurately inspected.
As a result, the above excellent performances demonstrate that
the graphene has a admirable potential to utilize its optical
property in the design of optical detectors.

APPENDIX A

When the magnetic field is perpendicularly applied in a
single-layer graphene (in the z − y plane), the effective-mass
Hamiltonian [49–51] without external optical field can be
written as

Ĥ 0 � υF

0
BB@

0 π̂x − iπ̂y 0 0
π̂x � iπ̂y 0 0 0

0 0 0 π̂x � iπ̂y
0 0 π̂x − iπ̂y 0

1
CCA;

(A1)

where Fermi velocity υF � 3γ0∕2ℏa ≈ 106 m∕s is a band
parameter with the nearest-neighbor hopping energy γ0 ∼
2.8 eV and C-C spacing a � 1.42A°, ˆπ⃗ � ˆp⃗� eA⃗∕c represents
the generalized momentum operator, ˆp⃗ is the electron momen-
tum operator, e is the electron charge, and A⃗ is the vector po-
tential, which is equal to �0; Bx� for a uniform magnetic field.
In general, one can obtain the eigenenergies of discrete LLs for
the magnetized graphene by solving the effective mass Schrödinger
equations, i.e., Ĥ 0Ψ � εΨ. In fact, the Hamiltonian near the K
point can be expressed as Ĥ 0 � υF ˆσ⃗ · ˆπ⃗, where ˆσ⃗ � �σ̂x ; σ̂y� is a
vector of Pauli matrices. Then, the eigenfunction is specified by
two quantum numbers n�n � 0;�1;�2;…� and the electron
wave vector ky along the y direction [6,10,49],

Ψn;ky �r� �
Cnffiffiffi
L

p e�−ikyy�
�
sgn�n�ijnj−1φjnj−1

ijnjφjnj

�
; (A2)

with

Cn �
	
1�n � 0�
1ffiffi
2

p �n ≠ 0� ; (A3)

and

φjnj �
H jnj��x − l 2c ky�∕l c�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jnjjnj! ffiffiffi
π

p
l c

p e

h
−12

�
x−l2c ky

l c

�
2
i
; (A4)

where l c �
ffiffiffiffiffiffiffiffiffiffiffiffi
cℏ∕eB

p
is magnetic length and Hn�x� is the

Hermite polynomial. The eigenenergy can be calculated as εn �
sgn�n�ℏωc

ffiffiffiffiffiffi
jnj

p
with ωc �

ffiffiffi
2

p
υF∕l c . In comparison with LLs

of a conventional 2D electron/hole system with a parabolic
dispersion, LLs in graphene are unequally spaced and their
transition energies are proportional to

ffiffiffi
B

p
[6,9,10,45,46].

Combining the eigenenergy of the graphene system with the se-
lected three energy levels in Fig. 1(b), we can simplify the system
Hamiltonian without optical fields as

Ĥ 0 � ℏε3j3ih3j � ℏε2j2ih2j � ℏε1j1ih1j: (A5)

Considering the light–matter interaction in the graphene sys-
tem, the vector potential of the optical field A⃗opt � icE⃗∕ω
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Fig. 6. (a) Surface plot of probe transmission spectra as a function
of the dimensionless time t∕τ and amplitude jΩTH j with ΔTH � 0.
(b) Surface plot of probe transmission spectra as a function of the
dimensionless time t∕τ and the THz signal frequency with
jΩTH j � γ. Other parameters are B � 3T , τ � 1 ps, Δp � 0,
γ � 3 × 1013 s−1, γ3 � γ, γ2 � 0.05γ, jΩpj � 0.05γ, L � 0.4 nm,
and αp � 200 μm−1.
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�E⃗ � E⃗ p � E⃗TH � is employed in the vector potential of the
magnetic field in the generalized momentum operator π⃗ in
the Hamiltonian. The generated interaction Hamiltonian con-
tained magnetized graphene and incident optical field can
be obtained in the following form:

Ĥ int � υF σ⃗ ·
e
c
A⃗opt: (A6)

From the above equation, the interaction Hamiltonian does
not include the momentum operator, and it is only determined
by the Pauli matrix vector and proportional to vector potential
A⃗opt. In addition, we insert the complete set of states fj3i;
j2i; j1ig in the generated interaction Hamiltonian. Hence
we obtain

Ĥ int � I · υF σ⃗ ·
e
c
A⃗opt · I

� −μ31E−
pe−iωpt j3ih1j − μ32E−

TH e
−iωTH t j3ih2j � h:c:

� −ℏΩpe−iωpt j3ih1j − ℏΩTH e−iωTH t j3ih2j � h:c:; (A7)

where the complete set of states is I � Σ
i
jiihij (i � 1; 2; 3) and

μ⃗mn � hmjμ⃗jni � e · hmjr⃗jni � iℏe
εn−εm

hmjυF σ⃗jni denotes the
dipole moments for the transition between states jmi↔jni.
The corresponding Rabi frequencies for the relevant laser-driven
intersubband transitions are represented as Ωp � �μ⃗31 · e⃗−�
E−
p∕ℏ and ΩTH � �μ⃗32 · e⃗−�E−

TH∕ℏ.
Then we can get the total Hamiltonian of the graphene

system, i.e., Ĥ � Ĥ 0 � Ĥ int. To simplify this formula, we as-
sume that the state j1i is the zero potential reference. In the
interaction picture, with the rotating wave approximation
and the electric dipole approximation, the total Hamiltonian
can be expressed as (ℏ � 1)

Ĥ I
int � Δpj3ih3j � �Δp − ΔTH �j2ih2j

− �Ωpj3ih1j �ΩTH j3ih2j � h:c:�; (A8)

with the corresponding frequency detunings Δp � �εn�2−
εn�−1�∕ℏ − ωp and ΔTH � �εn�2 − εn�1�∕ℏ − ωTH .
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