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Instead of an infinite number of atoms in the thermodynamic limit, we study the ground states of a finite number of
three-level atoms in electromagnetically induced transparency media. With the help of a classical control field, criti-
cal coupling strengths are derived analytically for the existence of quantum phase transitions in the ground states of
this extended Dicke model. Compared to the classical limit, evolution of a finite-sized excitation during the storage
and retrieval process is also illustrated, as well as atom–field entanglement. The results derived in this work provide
the connection not only to the Dicke model, but also to the Lipkin–Meshkov–Glick model. © 2020 Optical Society

of America
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1. INTRODUCTION

As the number of two-level atoms increases, collective effects
due to the interactions of atoms among themselves, give rise to
intriguing many-body phenomena, known as superradiance
phase transition [1–3]. By embedding a single photon stored in
a large cloud of atoms, single photon superradiance supported
in the Dicke model also provides the directionality of sponta-
neously emitted photons [4,5]. Instead of studying the ground
state phase transition in the thermodynamic limit, N→∞
with N denoting the number of atoms, the existences of a first-
order quantum phase transition (QPT) and a second-order
superradiant phase transition in the Dicke model are found
with a finite-sized ensemble of atoms [6,7]. Instead of non-zero
temperatures, QPTs are singularities that occur only at zero
temperature. QPTs have provided a platform for understand-
ing dynamic and thermodynamic properties, in particular at
temperatures such that hωT � kB T, where ωT is the typical
frequency at which the degrees of freedom fluctuate [8,9].
The QPTs in the ground state of the finite Dicke model have
been associated with entanglement between the ensemble and
quantum field [10,11] and with bipartite entanglement among
qubits due to the effects of finite size [12–15].

With the help of a control field, quantum interference hap-
pens for three-level atoms in a 3-type configuration, known
as electromagnetically induced transparency (EIT) [16]. As a

promising ingredient for the development of quantum tech-
nologies, EIT media have provided a platform to implement
quantum memory [17,18], through the experimental realiza-
tion of storage and retrieval of light both with single photons
[19,20] and squeezed states [21,22]. To explore the quantum
properties of EIT media, we reveal the condition to preserve
quantum entanglement [23], the distortion of quantum noise
beyond the adiabatic approximation [24], and the generation of
quantum noise squeezing, as well as entanglement [25,26].

As a natural consequence of the quantum optics with three-
level atoms, in this paper, we study the ground states of a finite
number of three-level atoms in EIT media. Instead of an infinite
number of atoms in the thermodynamic limit [27], critical cou-
pling strengths are derived analytically for the existence of QPT
in the ground states of this system with the help of a classical
control field. Our results for a finite-sized system can be reduced
to the known results in the thermodynamic limit for three-level
atoms, or to the same scenarios in two-level atoms when the
control field is set to zero. As the quantum critical phenomenon
has been associated with atom–field entanglement and bipartite
atomic entanglement due to the effects of finite size, with the
dark state polariton for EIT media, our dynamical results also
explore the regions beyond the thermodynamics limit. The
main advantage of going beyond the thermodynamic limit is
that only with a finite number of atoms does one have the pos-
sibility to access a more compact system (in terms of the number
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of elements), e.g., to consider a single (or artificial) atom passing
through an optical cavity.

2. MODEL

Here, we consider an ensemble of EIT media, which consists of
a finite number, N, of three-level atoms in the3-type configu-
ration (see Fig. 1). EIT media interact with two electromagnetic
fields: one is a strong control field, denoted by its Rabi frequency
�, and the other a quantum probe field, with its frequency
ω f corresponding to a quantized cavity mode. To derive ana-
lytically the critical coupling strengths for QPT, instead of
introducing collective momentum operators, we take advan-
tage of Schwinger representation to write the corresponding
light–atom Hamiltonian in the following, up to a constant:

H = ~ω f â †
f â f + ~εb

(
â †

b âb − N
)
+ ~εa â †

a âa + ~εc â †
c âc

+
[
~g â f â †

a âb + ~�(t)e−iνt â †
a âc + h.c

]
, (1)

where â †
f and â f are the usual creation and annihilation oper-

ators for the probe field, respectively, and h.c represents a
Hermitian conjugate. For atomic parts, εi (i = a , b, c ) denotes
the corresponding energy, while â †

i and âi are the corresponding
operators for Schwinger bosons in each atomic level denoted by∑N

i=1 σ̂
i
ην = â †

ηâν . The coupling strength between the probe
field and atomic transition |b〉↔ |a〉 is defined by g , while
the transition |a〉↔ |c 〉 is driven by a time-dependent Rabi
frequency �(t) at the angular frequency ν. The convenience
of this representation is that the commutation relations of the
collective momentum operators are automatically satisfied.

As the number of excitations is conserved in this three-level
system, i.e.,3≡ 〈3̂〉 = 〈â †

f â f + â †
a âa + â †

c âc 〉, one can divide
the Hilbert space into subspaces with a defined value of3. For
3< N, the dimension of each subspace is dim= (3+1)(3+2)

2 .
The subspace with no excitation is |0〉 f |0〉a |0〉c |N〉b , and
this state has zero energy. The first non-trivial subspace has an
equivalent Hamiltonian in the following form:

Fig. 1. Schematic of the EIT system considered in a 3-type con-
figuration, where the allowable transitions |b〉↔ |a〉 and |a〉↔ |c 〉
are driven by a quantized probe field, denoted by its frequency ω f

and a classical control field denoted by its Rabi frequency � with the
frequency detunings with respect to the ground state |b〉marked by δa

and δc , respectively.

H(1) = ~

 ω f g
√

N 0
g
√

N δa e iνt�

0 e−iνt� δc

 , (2)

where δa ≡ εa − εb and δc ≡ εc − εb are the energy differences
of levels |a〉 and |c 〉 with respect to level |b〉, respectively. The
Hamiltonian given in Eq. (2) acts on the states 1

0
0

= |1〉 f |0〉a |0〉c |N〉b; (3)

 0
1
0

= |0〉 f |1〉a |0〉c |N − 1〉b; (4)

0
0
1

= |0〉 f |0〉a |1〉c |N − 1〉b . (5)

The eigenvalues for Hamiltonian H(1) can be solved ana-
lytically, as it implies finding the roots of a cubic equation. The
resulting eigenvalues can have negative values, which means that
the critical value exists when the energies of the two subspaces
are equal. This transition is referred as QPT. By equating the
eigenvalues of two subspaces, the critical coupling coefficient, g ,
has the solution

g =

√
ω f δaδc −�2ω f
√

Nδc
. (6)

Since the eigenvalue for the unexcited state is zero, this
expression, Eq. (6), can be found by setting the independent
coefficient of the characteristic equation of H(1) equal to zero.
For small coupling strengths, the ground state is the normal
phase, with 3= 0, while for larger coupling strengths, the
ground state is in the so called superradiant phases, with3> 0.

When the Rabi frequency of the control field � or the cou-
pling strength g increases, a series of QPTs occurs, as shown in
Fig. 2. Numerical solutions for the number of photons, number
of atoms in states |a〉 and |c 〉, and number of excitations in the
ground state are shown in Figs. 2(a)–2(d), respectively. Here, the
number of photons is obtained by calculating 〈â †

f â f 〉 and the

number of atoms by 〈â †
i âi 〉, with i = a , c for the correspond-

ing atomic state. As one can see, each phase corresponds to an
integer number of excitation. In the same plot, we also depict
our analytical formula given in Eq. (6), which perfectly describes
the first critical value for QPT (white curve). Explicitly, we have
the ground state in the normal phase if the coupling coefficient
g is smaller than the critical value when �<

√
δaδc , while the

superradiant phase is always supported when �>
√
δaδc . In

addition to QPT in ground states, in Fig. 2, borders for QPT
in excited states can also be clearly recognized in our numerical
solutions. It is worth further studying the analytical formula for
these QPTs in excited states.

To gain insight into the series of QPTs, a study of particu-
lar regimes is required. Specifically, regimes with one of the
coupling coefficients equal to zero can give us the number
of transitions on the borders of Fig. 2. On one hand, in the
limit �= 0, our result can be reduced to the known critical
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Fig. 2. Numerical solutions for (a) number of photons, (b) number
of atoms in state |a〉, (c) number of atoms in state |c 〉, and (d) number
of excitations3 in the ground state as a function of the Rabi frequency
� and coupling strength g . A series of QPTs is revealed in which each
phase corresponds to an integer number of excitation. The white
curve is our analytical formula given in Eq. (6), which exactly matches
the first QPT. Here, the other parameters used are ω f = 1, δa = 1,
δc = 0.2, t = 0, and N = 5.

strength for QPT in the Dicke model [6,7]. Furthermore,
since the |c 〉 state does not appear in this limit, we expect that
there will be zero population on such a state. The resulting
Hamiltonian is equivalent to a Tavis–Cummings Hamiltonian
[2], i.e., an ensemble of effective two-level atoms interacting
with a quantum field. Now, the conservation of the number of
excitations is still valid, and the eigenstates will exist in a sub-
space with defined3. Therefore, a series of N QPTs is expected,
as observed on the vertical axes in Fig. 2. For larger g , the ground
state will tend to have more excitations up to 3≤ N. For this
reason, in the limit�= 0, we observe N phase transitions.

Alternatively, if g = 0, the ground state has no photons, as
they no longer interact with the rest of the system. Additionally
there is no interaction from the |b〉 state, so this state has to be
completely populated or completely depleted in order to have
a minimal energy state. In this limit, the system is equivalent
to a Lipkin–Meshkov–Glick (LMG) Hamiltonian [28–30]
because only the atomic part contributes to the energy. It can
be shown that the state with the least energy of all the subspaces
crosses zero at the critical point �=

√
δaδc . In this limit, the

ground state energies of all subspaces cross the zero-energy at
the same point; therefore, a singular QPT can be observed on
the horizontal axes in Fig. 2. Now, the atoms in the ground state
|b〉 do not interact explicitly but the population in |b〉will affect
the populations in |a〉 and |c 〉. The minimum energy states in
this limit must have all atoms in |b〉 with 3= 0 or none with
3= N. So, for g = 0, only two phases exist. On the other hand,
in the thermodynamical limit, our result is also consistent with
the one known for a large number of atoms [27].

3. DARK STATE POLARITON

In addition to a constant coupling field, a time-dependent
Rabi frequency �(t) also supports the dark state polaritons
[17]. In the thermodynamic limit, this dark state polariton has
eigenstates with zero population in the unstable excited atomic
level, which evolves coherently between the probe field and
ground state excitation as a key ingredient for quantum state
transfer. However, for an arbitrary number of atoms in EIT
media, the validation for such a coherent transfer based on dark
state polaritons is questionable.

To go beyond the thermodynamic approximation, for a finite
number of atoms, one can look for the dark state solution as an
eigenstate for the number of excitations 3, i.e., the conserved
quantity in our system. That is,

3̂|9
(3)
D 〉I =3|9

(3)
D 〉I , (7)

with a non-negative integer3. Here, the dark state is denoted as
|9

(3)
D 〉I , with the subindex (I ) standing for the interaction pic-

ture. The corresponding eigenenergy in the interaction picture
equals zero, i.e.,

HI |9
(3)
D 〉I = 0. (8)

Here, the interaction Hamiltonian is derived by means of a
unitary transformation. The interaction Hamiltonian is

HI = ~[
g e−i(ω f +εb−εa )t â f â †

a âb +�(t)e−i(ν−εa+εc )t â †
a âc + h.c

]
.
(9)

In order to remove the time dependence in the interaction
Hamiltonian, apart from�(t), the Raman resonance condition
must be satisfied on the two branches of our 3-type configu-
ration, i.e., ω f = εa − εb and ν = εa − εc , as can be deduced
from Eq. (9). Even though this Raman condition is not ful-
filled, we can still search for the eigenstates at any time instance.
Furthermore, as the dark states have no population in level |a〉,
one can write the solution in the following form:

|9
(3)
D 〉I =

3∑
k=0

c k |k〉 f |0〉a |3− k〉c |N −3+ k〉b . (10)

By substituting the ansatz given in Eq. (10) into Eq. (8), one
can obtain the corresponding coefficient:

c k =

(
�e i(δ2−δ1)t

g

)k
√

3!(N −3)!
k!(3− k)!(N −3+ k)!

c 0, (11)

with the short-handed notations δ1 ≡−ω f − εb + εa and
δ2 ≡−ν − εc + εa , which reflect the detuning between the
transition energies and the corresponding fields, respectively.
If δ1 = δ2, the time dependence can be eliminated. This result
is comparable to the one in [31], where the atomic ensemble is
used to generate deterministic Fock states, being the number
of photons equal to the number of atoms. This is achieved with
the atomic system initially in the ground state; afterwards, the
pump power is increased, effectively transferring the atoms to
the |c 〉 state and generating N photons in the cavity. However,
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the storage and retrieval process is in a sense opposite, since one
wants to transfer quantum photon states into the atomic system.
For this reason, it is important to highlight that expressions
given in Eqs. (10) and (11) also allow for excitation numbers
smaller than the number of atoms; this fact implies that any
state in the field can be transferred to the atomic system and vice
versa, with a limitation on the Hilbert space of the field equal to
or smaller than the number of atoms.

It is noted that in Eq. (11), we do not make any approxima-
tion regarding the number of atoms, so our solution itself is an
expression for the dark state polariton for any arbitrary number
of atoms. As an illustration, we give two notable situations to
simplify the coefficients. First, for one excitation,3= 1, we can
reduce Eq. (11) into two non-zero coefficients, c 0 and c 1:

c 0 =
1√(

�

g
√

N

)2
+ 1

, (12)

c 1 =
� exp[−i(δ2 − δ1)t]

g
√

N

√(
�

g
√

N

)2
+ 1

(13)

for any arbitrary number of atoms N. Second, for a large num-
ber of atoms N�3, we note that

(N −3)!
(N −3+ k)!

≈
1

Nk
,

and then the normalization condition arrives at

|c 0| ≈

[(
�

g
√

N

)2

+ 1

]−3/2
,

c k ≈

[(
�

g
√

N

)2

+ 1

]−3/2[
� exp{i(δ2 − δ1)t}

g
√

N

]k
√(

3

k

)
.

(14)

The last expression connects the two regimes that are already
explored: single excitation and the thermodynamic limit. Note
here that the thermodynamic approximation can be obtained by
cascading from a finite number of N.

To reveal the capacity to store photons in EIT media with a
finite number of atoms, we calculate the expectation values for
the number of photons and the population as a function of the
coupling Rabi frequency �(t):

〈â †
c âc 〉 ≈

3g 2 N
g 2 N +�2

, (15)

〈â †
f â f 〉 ≈

3�2

g 2 N +�2
. (16)

With a comparison to known results obtained by using the
thermodynamic limit, Eqs. (15) and (16) also give the same
relation proportional to the number of excitations in the system.
These two values are bounded between zero and3 for any Rabi
frequency, �> 0. Then, with an adiabatic change in the Rabi
frequency, �(t), one can drive the excitations in the quantum
field into the atoms.

In analogy to the storage and retrieval process for the dark
state polariton, in Fig. 3, we show the evolution of expectation
values in our Hamiltonian, Eq. (1), with N = 4 atoms, all
of them initially in the ground state along with two photons
(3= 2) as the initial state. Here, the adiabatic evolution is
calculated by applying a time-dependent Rabi frequency and
restoring it to its initial value, i.e.,

θ(t)= cos−1

[
�(t)/

√
g 2 N +�(t)2

]
. (17)

For dark state polaritons, as one can see from the time evolu-
tion of the number of photons and atoms in the atomic level |c 〉,
in Figs. 3(a) and 3(b), respectively, even with a finite number of
atoms, the excitation in the field, 〈â †

f â f 〉, is transferred to the
atomic system as that in the thermodynamical limit. In analogy,
for an initial state equal to the ground state but with different
excitation levels3= 1, 2, and 3, again, the corresponding time
evolution of the number of photons, as shown in Fig. 3(c), also
illustrates the storage and retrieval process. Nevertheless, the
number of atoms in atomic level |c 〉 increases as the number of
excitations increases, but never approaches the initial excitation
number (3= 2) [see Fig. 3(d)]. Moreover, due to the non-zero
value of θ and non-perfectly adiabatic change in�, some oscil-
lations occur, too. Note that the initial state applied here belongs
to the non-trivial phases in the phase diagram shown in Fig. 2 for
g = 0.45, 0.5, and 0.55, respectively, and �= 0.1722 for the
three cases given in the plot.

Fig. 3. (a), (b) Storage and retrieval process for the dark state
polariton with a finite number (N = 4) of atoms, by changing only
the control field adiabatically. (a) Evolution of the photon number and
(b) population in the atomic level |c 〉 are shown with an initial state
equal to two photons. (c), (d) In analogy, storage and retrieval process
for an initial state equal to the ground state at different parameter
values. (c) Time evolution of number of photons and (d) number of
atoms in the atomic level |c 〉 are shown by changing slowly the control
field �. Note that the initial state belongs to the non-trivial phases in
the phase diagram shown in Fig. 2, with the excitation levels 3= 1,
2, and 3 for g = 0.45, 0.5, and 0.55, respectively, and �= 0.1722
for the three cases given in the plot. Insets in (a) and (c) show the
corresponding θ(t), given by Eq. (17).
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Fig. 4. Entanglement entropy of dark state polaritons, calculated
based on Eq. (18), as a function of �/g

√
N for different excitation

numbers.

4. ATOM–FIELD ENTANGLEMENT

With the analytical solutions to a dark state polariton with a
finite size of atoms, we can also study the entanglement between
atomic ensemble and quantum field, by calculating the corre-
sponding von Neumann entropy of the reduced density matrix
of the quantum field [10–15], i.e., S =−Tr f [ρ f log2(ρ f )],
with ρ f =Tra ,b,c [|9

(3)
D 〉II〈|9

(3)
D |]. By using Eq. (10), we have

S =−
∑3

k=0 |c k |
2log2|c k |

2, which gives us the closed form in
the limit of a large number of atoms:

S =3 log2

{(
�

g
√

N

)2

+ 1

}
−

23
(

�

g
√

N

)2
log2

{
�

g
√

N

}
(

�

g
√

N

)2
+ 1

−

3−1∑
k=1

(
�

g
√

N

)2k
(
3

k

)
log2

{(
3

k

)}
[(

�

g
√

N

)2
+ 1

]3 . (18)

Based on Eq. (18), in Fig. 4 we plot the entanglement entropy
of dark state polaritons for different excitations. Here, the maxi-
mum value of von Neumann entropy occurs at �/g

√
N = 1;

at this point, equal populations in the photons and atomic
ensemble exist, or equivalently, θ = π/4 in Eq. (17). Also,
at �/g

√
N = 0, the entropy is zero due to the lack of entan-

glement, and at this point, the excitations are present only in
the atoms. In the case of large control field, �/g

√
N→∞,

the entropy vanishes. In this limit, the excitation lies only in
the field. Also, the entanglement entropy increases when 3
increases.

Before the conclusion, we want to remark that such a set of
finite numbers of three-level atoms has also been studied to
form a dark state polariton, in particular for the generation of
deterministic optical Fock states [31]. However, our proposed
application is in a totally opposite direction. We studied an
arbitrary quantum state in the field, which can be stored in the
finite atomic system when the Hilbert space of such a system is
smaller than or equal to the number of atoms. In contrast to only
a single number state generated, we not only derived the critical
value for QPT, but also used the time evolution for the storage
and retrieval of a number state. Moreover, our result shows that
quantum storage and retrieval do not require an infinite (very

large) number of atoms as long as the Hilbert space is smaller
than the number of atoms. A simple explanation for this simi-
larity between a finite and infinite number of atoms comes from
the dark state in such a3-type configuration.

Additionally, access to finite ensembles is nowadays available.
For example, schemes for probing dynamics of superradiant
QPT have been proposed in trapped ions [32–34]. Here, by
means of a single trapped ion that interacts with one of its vibra-
tional modes, one can probe the Rabi model and its dynamics
[32,33], as well as the realization of a finite-sized Jaynes–
Cummings lattice in trapped ions [34]. A general extension
of these results is to consider three-level systems. On the other
hand, recent experiments have demonstrated the observations
of EIT signatures in a superconducting quantum circuit [35],
or through the interaction with two microwave fields [36].
Definitely, the implementation with a single artificial atom is
naturally extended to an arbitrary number of atoms.

Physical systems will be limited by decoherence of the atomic
ensemble. For example, in circuit quantum electrodynamics sys-
tems, the reported coupling strengths have g /2π = 1.45 GHz
and �/2π = 62 kHz with field frequencies at resonance
conditions ω f /2π = 5.64 GHz [35]. As for the possible deco-
herence channels, the excited energy level, |a〉, has decay rates
γa ,b/2π = 0.35 MHz and γa ,c/2π = 0.47 MHz. As a com-
parison, these two parameters should not have great effects
on the efficiency of the quantum memory, as this state is not
populated in dark state polariton. The main limitation will
arise from the decay of the meta-stable state to the ground
state, i.e., γc ,b/2π = 2.74 KHz, which is much larger than
the characteristic frequencies of the system [35]. It is this small
decay rate that imposes the limitation in the storage time. As a
consequence, our studies on the implementation of quantum
memory using a small number of elements are feasible. Taking
advantage of QPT can be a tool to aid the preparation of states in
such devices with a finite number of atoms.

5. CONCLUSION

In conclusion, beyond the thermodynamical limit, we derive
the critical coupling strength for the first QPT occurring in the
ground state for a finite size of atoms by dividing the Hilbert
space for an EIT Hamiltonian. When the coupling strength
is larger than this critical value, non-trivial ground states are
supported. In addition to our analytical solution, we also
numerically reveal a series of QPTs for stronger interactions,
which possesses a defined excitation number. Moreover, we give
the analytic solutions for dark state polaritons in such a finite
number of atomic ensembles, which converge to the form found
in the thermodynamic limit and for small excitations. By means
of von Neumann entropy, a maximum entanglement between
the atoms and quantized field happens midway through the
storage and retrieval process. Our results pave the way to per-
form quantum memory protocols in a small number of atoms,
given that the number of atoms is larger than the quantum state
to be stored.
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