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Abstract
Through the η-inner product, we investigate PT -symmetric quantum 
mechanics from the viewpoint of superposition and coherence theory. It is 
argued that PT -symmetric quantum systems are endowed with stationary 
superposition or superposition-free properties. A physical interpretation of 
η-inner product in 2 is given through the Stokes parameters, showing the 
difference between broken and unbroken PT -symmetric quantum systems.
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1. Introduction

It is known that both coherence and superposition are distinctive features in quantum phys-
ics, which make quantum theory depart from classical physics. In different fields of physics, 
quantum coherence and superposition play an important role. The investigation of coherence 
has a long history and recently attracts increasing interests in the resource theory [1–8]. A 
recent notable progress is the generalization of coherence resource theory to superposition 
resource theory. Now, we know that superposition can be converted to entanglement, with the 
analogues of free states and free operations in coherence theory [9–11].

Instead of conventional quantum mechanics with Hermitian Hamiltonians, non-Hermitian 
parity-time (PT ) symmetry was initially introduced to generalize quantum mechanics, which 
was first established by Bender and his colleagues in 1998 [12]. Here, P  is parity opera-
tor and T  is time-reversal operator. Since then, lots of work have been done to investigate 
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PT -symmetric quantum systems. An important theoretic notion is the metric operator and the 
η-inner product introduced by Mostafazadeh [13–16]. In addition, although special attention 
should be paid to local PT -symmetric operations on a quantum composite system [17], many 
useful applications can be found in different branches of physics through the new degree of 
freedom by PT -symmetry [18–23].

Compared with conventional quantum mechanics, PT -symmetry quantum theory has 
some distinct features. For example, to discuss the evolution of a PT -symmetric system, we 
need to choose a preferred basis, which inspires us the scenarios in coherence and superposi-
tion theories. In this note, we will discuss the PT -symmetry theory from the perspective of 
coherence and superposition, revealing some internal connections through the η-inner prod-
uct. As an example, in 2, a physical interpretation of this η-inner product is given through the 
analogues in optical polarizations.

2. Preliminaries

2.1. Some basic notions of coherence and superposition

We first introduce some notions which will be used. In the resource theory of coherence, given 
a preferred orthonormal basis |i〉d

i=1, a state ρ is incoherent if ρ =
∑d

i=1 pi|i〉〈i|, where pi is the 
probability distribution. The set of all the incoherent states is usually denoted by I .

A Kraus operator Kn is said to be incoherent if for all ρ ∈ I , KnρK†
n

Tr[KnρK†
n ]

∈ I . An incoherent 

operation is a completely positive trace preserving (CPTP) map having an incoherent Kraus 
decomposition.

Similarly, there are concepts of free states and operations in the theory of superposition 
[11]. Let {|ci〉d

i=1} be a normalized, linearly independent and not necessarily orthogonal basis 
of the Hilbert space d. A state ρ is superposition-free if ρ =

∑d
i=1 pi|ci〉〈ci|, where pi is the 

probability distribution. The set of all the superposition-free states is usually denote by F .

A Kraus operator Kn is said to be superposition-free if for all ρ ∈ F , KnρK†
n

Tr[KnρK†
n ]

∈ F . A 

superposition-free operation is a CPTP map having a superposition-free Kraus decomposition.
As was proved in [11], for a set of superposition-free Kraus operators Km such 

that 
∑

K†
mKm � I , there always exist superposition-free Kraus operators Fn such that ∑

K†
mKm +

∑
F†

nFn = I . Hence the trace-decreasing operations admitting superposition-free 
Kraus decompositions are also called superposition-free.

2.2. Introduction to PT -symmetry quantum theory

PT -symmetry quantum theory explores the properties of quantum systems, which are gov-
erned by a PT -symmetric Hamiltonian H.

A parity operator P  is a linear operator such that P2 = Id , where Id  is the identity opera-
tor on d.

A time reversal operator T  is an anti-linear operator such that T 2 = Id . Moreover, it is 
demanded that PT = T P .

A linear operator H on d is said to be PT -symmetric if HPT = PT H.
In finite dimensional case, a linear operator corresponds uniquely to a matrix and an anti-

linear operator corresponds to the composition of a matrix and a complex conjugation [24]. 
Let A be a matrix. Denote A  the complex conjugation of A and A† the transpose of A . Let P, 
T and H be the matrices of P , T  and H, respectively. Then the definition conditions of P , T , 
H are P2 = TT = I , PT = TP  and HPT = PTH.
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In conventional quantum mechanics, the Hamiltonians are Hermitian and thus are unitarily 
similar to a real diagonal matrix. Analogously, PT -symmetric Hamiltonians have a canonical 
form.

Lemma 1 ([25]). A finite dimensional operator H is PT -symmetric if and only if there 
exists a matrix Ψ such that Ψ−1HΨ = J ,

J =




Jn1(λ1,λ1)

. . .

Jnp(λp,λp)

Jnq(λq)

. . .

Jnr(λr)




, (1)

where Jnk(λnk ,λnk) =

(
Jnk(λnk) 0

0 Jnk(λnk)

)
, Jnj(λnj) is the Jordan block, λn1 , · · · ,λnp are 

complex (and not real) numbers and λnq , · · · ,λnr are real numbers. Moreover, PTΨ = ΨK ,

K =




S2 ⊗ In1

. . .

S2 ⊗ Inp

Inq

. . .

Inr




, (2)

where S2 =

(
0 1
1 0

)
, and Inj  is an identity matrix with the same order as Jnj(λnj).

In fact, it is an important result in matrix analysis that any matrix, which is similar to a real 
matrix, has the Jordan form (1). On the other hand, it can be verified that a PT -symmetric 
matrix is similar to a real matrix, thus having the Jordan form (1). As for the canonical form 
of PT in (2) and the details of the proof, see [25].

In equation (1), if all the blocks Jnk(λnk ,λnk) vanish and all the blocks Jnj(λnj) are of order 
one, then J reduces to a real diagonal matrix. The Hamiltonians similar to real diagonal matri-
ces are referred to as unbroken PT -symmetric. The others are said to be broken.

In the context of PT -symmetry theory, the evolution of a state ρ is given by

ρ(t) = U(t)ρU†(t),

where U(t) = e−itH. According to the probability interpretation of inner product, U(t) should 
be inner product preserving. However, it is not true when H is PT -symmetric since U(t) is 
not unitary.

To settle the problem, introduce a Hermitian operator η and redefine an η−inner product 
by 〈φ1,φ2〉η = 〈φ1, ηφ2〉, where φ1 and φ2 are two states. The evolution U(t) preserves the η−
inner product if and only if H†η = ηH [13–16, 26–28]. An operator η satisfying this condition 
is said to be a metric operator of H. Moreover, the following lemma gives the canonical form 
of a metric operator.

M Huang et alJ. Phys. A: Math. Theor. 51 (2018) 414004
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Lemma 2 ([29]). For each PT -symmetric operator H, there exists invertible Hermitian 
matrix η such that H†η = ηH . Moreover, there exists a matrix Ψ such that Ψ−1HΨ = J  in 
equation (1) and

Ψ†ηΨ = S =




S2n1

. . .

S2np

εnq Snq

. . .

εnr Snr




, (3)

where ni are the orders of the Jordan blocks in equation  (1), Sk =




1

. .
.

1




k×k

 and 

εni = ±1 are uniquely determined by η.

Lemma 2 actually gives a standard way to construct metric operators. Note that Sk is posi-
tive definite only if k  =  1. Utilizing this, one can verify that η is positive definite if and only if 
H is unbroken. Hence when H is broken, the η-inner product of a state can be negative.

2.3. An example in 2

In 2, lemmas 1 and 2 will give relatively simple properties of a PT -symmetry quantum 
system.

By lemma 1, there are three cases of the canonical form J = Ψ−1HΨ and PTΨ .

 (i)  J is diagonal and has two real eigenvalues λ1 = a1 and λ2 = a2. Let |ψ1〉 and |ψ2〉 be the 
two column vectors of Ψ, then we have,

H|ψi〉 = ai|ψi〉,

PT |ψi〉 = |ψi〉(PT|ψi〉 = |ψi〉).
 

(4)

 (ii)  J has two equal real eigenvalues λ1 = λ2 = a and is not diagonal.

H|ψ1〉 = a|ψ1〉,
H|ψ2〉 = a|ψ2〉+ |ψ1〉,

PT |ψi〉 = |ψi〉.
 

(5)

 (iii)  J is diagonal and has two complex conjugate eigenvalues λ1 = λ2 = a + ib.

H|ψi〉 = λi|ψi〉,
PT |ψ1〉 = |ψ2〉,
PT |ψ2〉 = |ψ1〉.
 

(6)

One can use lemma 2 to construct corresponding metric operators,

 (i)  η = (Ψ−1)†Ψ−1. Then we have

〈ψi|ψj〉η = δij. (7)

M Huang et alJ. Phys. A: Math. Theor. 51 (2018) 414004
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 (ii)  η = (Ψ−1)†S2Ψ
−1,

〈ψ1|ψ2〉η = 〈ψ2|ψ1〉η = 1,
〈ψ1|ψ1〉η = 〈ψ2|ψ2〉η = 0.
 (8)

 (iii)  η = (Ψ−1)†S2Ψ
−1, the η-inner product of ψi is the same as that in (8).

Similar to the role of standard inner product in conventional quantum physics, the η-inner 
product determine the mechanism of a quantum system in PT -symmetry quantum mechan-
ics. In conventional quantum physics, the inner product of a state is interpreted as the prob-
ability. However, the η-inner product of a state can be negative, which obscures the physical 
interpretation of it. In spite of this, an understanding from the perspective of superposition and 
coherence may be a candidate of such an interpretation.

3. Metric operator and its relation with superposition and coherence

In this part, we will show that the η-inner product depicts some superposition property for 
broken PT -symmetric systems or some superposition-free property for unbroken PT -sym-
metric systems. To illustrate this, it is sufficient to discuss the PT -symmetric systems in 2.

3.1. The broken PT -symmetry

Let H be a broken PT -symmetric Hamiltonian and ρ =
∑

ρij|ψi〉〈ψj| be a state.
If H has two complex eigenvalues λ and λ, it follows from (6) that
U(t)|ψ1〉 = e−itλ|ψ1〉,
U(t)|ψ2〉 = e−itλ|ψ2〉.
Let ρ(t) = U(t)ρU†(t) =

∑
ρij(t)|ψi〉〈ψj|. Direct calculations show that ρ12(t) = ρ12, 

ρ21(t) = ρ21. Since the superposition only concerns the coefficients of |ψi〉〈ψj|(i �= j), the super-
position can be considered to be stationary during the evolution.

If H cannot be diagonalized, it follows from (5) that

H = Ψ

(
a 1
0 a

)
Ψ−1 = aI2 +Ψ

(
0 1
0 0

)
Ψ−1,

U(t) = e−itH = e−ita(I − itΨ
(

0 1
0 0

)
Ψ−1),

e−itH|ψ1〉 = e−ita|ψ1〉,
e−itH|ψ2〉 = e−ita|ψ2〉 − ite−ita|ψ1〉.
Direct calculations show that ρ12(t) �= ρ12 and ρ21(t) �= ρ21. However, ρ12(t)+ 

ρ21(t) = ρ12 + ρ21. Although the superposition is not stationary, the ‘sum of superposition’ is 
preserved.

That is, in some sense, the superposition of a state are preserved by the action of PT - 
symmetric evolution. Furthermore, let |ξ〉 = b1|ψ1〉+ b2|ψ2〉 be a state. (8) shows that 
〈ξ, ξ〉η = b1b2 + b2b1 = ρ12 + ρ21. Note that 〈ξ, ξ〉η = 〈ξ, ηξ〉 = Tr(η|ξ〉〈ξ|). Similarly, for a 
general state ρ, Tr(ηρ) = ρ12 + ρ21. Hence, η-inner product is actually the ‘the sum of super-
position’. In addition, for two states |ξ1〉 and |ξ2〉, 〈ξ1, ξ2〉η is the ‘sum of superposition’ of 
|ξ2〉〈ξ1|.

Thus, the η-inner product is not the probability in the usual sense but some description of 
the superposition. This also gives another way to understand why the η-inner product can be 
negative for broken PT -symmetric systems. Although the positivity of probability is natural, 
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the positivity of a quantity concerning superposition is unnatural and not necessary, since 
superposition is a phenomenon in quantum theory, which does not have a sign itself.

Intuitively, a process conserving the superposition for any state may not exist in the frame-
work of conventional quantum mechanics, inferring the impossibility of simulating a bro-
ken PT -symmetric Hamiltonian in the usual sense. In fact, it can be rigorously showed that 
one cannot simulate a broken PT -symmetric Hamiltonian by utilizing a large Hermitian 
Hamiltonian [25].

3.2. The unbroken PT -symmetry

When H is unbroken, ρ(t) = U(t)ρU†(t) =
∑

ρijeit(λj−λi)|ψi〉〈ψj|. Since λ1 �= λ2 in general,  
it is apparent that ρ12(t) �= ρ12, ρ21(t) �= ρ21 and ρ12(t) + ρ21(t) �= ρ12 + ρ21. However, in  
this case, ρ11(t) = ρ11 and ρ22(t) = ρ22. Moreover, Tr(ηρ) = ρ11 + ρ22 = Tr(ηρ(t)) = 
ρ11(t) + ρ22(t). In particular, for a pure state |ξ〉 = b1|ψ1〉+ b2|ψ2〉, then 
〈ξ, ξ〉η = Tr(η|ξ〉〈ξ|) = |b1|2 + |b2|2 = ρ11 + ρ22. Compared with the broken case, η-inner 
product now characterizes the superposition-free properties of a state.

It is also convenient to discuss the effect of the metric operator η when H is unbroken. 
Note that ψ1 and ψ2 are not orthogonal in the standard inner product. However, 〈ψi|ψj〉η = δij, 
which shows the orthogonality. Thus, the metric operator η mathematically transforms the 
superposition to coherence. If we do not consider the normalization, a superposition-free state 
ρ =

∑
pi|ψi〉〈ψi| in the usual sense is incoherent with respect to the η-inner product. Such a 

change of inner product is not unitary, if it can be realized in the framework of conventional 
quantum mechanics, the process can only be probabilistically.

In fact, it is possible to simulate the transformation ρ �→ U(t)ρU†(t) in a subsystem of a large 

Hermitian system. To see this, note that U(t) = e−itH = Ψe−itΛΨ−1, where Λ =

(
λ1 0
0 λ2

)
. 

Thus ‖U(t)‖ = ‖Ψe−itΛΨ−1‖ � ‖Ψ‖‖Ψ−1‖. Hence U(t) forms a set of uniformly bounded 
operators and it is possible to find some constant c such that c2U†(t)U(t) � I . In fact, using 

the Naimark Dilation method one can always realize a transformation ρ �→ U(t)ρU†(t)
Tr[U(t)ρU†(t)]. For 

concrete discussions, see [25, 30].
Furthermore, note that cU(t) = cΨe−itΛΨ−1 =

∑
ce−itλi |ψi〉〈ψ⊥

i |. Define the free states 

to be ρ =
∑

pi|ψi〉〈ψi|. It is apparent that for any free state ρ, the state U(t)ρU†(t)
Tr[U(t)ρU†(t)] is also free. 

Hence cU(t) will gives a free operation. Such a result is no coincidence. As was mentioned, 

η-inner product is an invariant superposition-free quantity, which reflects the stationary super-
position-free property of the Hamiltonian H. The free property of cU(t) is just another mani-
festation. This conclusion is also true in any other finite dimensional space.

The different superposition properties of η-inner product and PT -symmetric Hamiltonian 
H itself, essentially arises from the PT -symmetry. Intuitively, for an anti-linear operator PT  
and the basis vectors {|ψi〉}, the condition PT |ψi〉 = |ψi〉 in (4) reflects the interrelation of 
a basis vector with itself under the action of PT . Through the condition [H,PT ] = 0, such 
interrelations are respected and manifested by the property of unbroken PT -symmetric sys-
tem. However, PT |ψ1〉 = |ψ2〉, PT |ψ2〉 = |ψ1〉 in (6) is also possible. This can be viewed 
as the interrelation of a basis vector with other basis vector under the action of PT , just 
like the coherence or superposition. Similarly, the interrelations are also preserved in the 
broken PT -symmetric system, in a form of superposition. (5) actually gives a intermedi-
ate case between (4) and (6), in which under the action of H, |ψ1〉 interrelates with itself 
while |ψ2〉 interrelates with both |ψi〉. A support of this viewpoint is Bender’s model, in which 
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H =

(
reiθ s

s re−iθ

)
 is the PT -symmetric Hamiltonian, where r, s, θ are real parameters [31]. 

When s2 − r2 sin2 θ > 0, H is unbroken, corresponding to (4). When s2 − r2 sin2 θ < 0, H 
has two complex conjugate eigenvalues, corresponding to (6). The intermediate condition 
s2 − r2 sin2 θ = 0 correspond to a case in which H cannot be diagonalized in general, namely, 
the case of (5).

4. Discussions

In this section, we aim to investigate our results from the perspective of optics. We will see a 
tight connection between the Stokes parameters and the η-inner product.

In 2, one can easily map the states as the two degree of freedoms in optical polarizations, 
i.e. |ψi〉 being the polarization in the vertical or horizontal direction, denoted as x and y coor-
dinates. For broken PT -symmetry, the η-inner product gives the quantity b1b2 + b2b1 , which 
is nothing but the Stokes parameters, S2 = ExEy + EyEx  [32]. Here, the polarization comp-
onents in the x and y directions are denoted by Ex and Ey, respectively. It is known that Stokes 
parameter, S2 measures the degree of polarization. However, for unbroken PT -symmetry, the 
η-inner product gives the quantity ρ11 + ρ22, which is an analogue to another Stokes param-
eter, S0 = |Ex|2 + |Ey|2, corresponding to the total intensity (here the probability) of the field.

Nevertheless, for the non-diagonalizable case, there is only one eigenstate, failing to fulfill 
the Stokes parameterization of its own. In this case, one more basis vector is needed, which 
corresponds to the non-diagonalizable Hamiltonian. Even though the Stokes parameters S0 
and S2 are essentially different, for such a non-diagonalizable case, one can transfer in differ-
ent Stokes parameters, from S0 to S2, or vice versa.

As an example, consider the PT -symmetric Hamiltonian H =

(
reiθ s

s re−iθ

)
. The 

two eigenstates of H are |Ẽ+(α)〉 = 1√
2

(
e

iα
2

e−
iα
2

)
 and |Ẽ−(α)〉 = 1√

2

(
ie−

iα
2

−ie
iα
2

)
, where 

sinα = r
s sin θ. Since 〈Ẽ±(α)|Ẽ±(α)〉η = cos θ, consider the two η-inner product normalised 

states, |E±(α)〉 = 1√
cosα

|Ẽ±(α)〉. For a state |ξ〉 =
(

x
y

)
= c1|E+(α)〉+ c2|E−(α)〉, we can 

obtain the coefficients ci,

c1 =
√

2 cosα
xei α2 + ye−i α2

eiα + e−iα ,

c2 = −i
√

2 cosα
xe−i α2 − yei α2

eiα + e−iα .

Moreover,

S0 = |c1|2 + |c2|2

=
1

cosα
(|x|2 + |y|2 + i(xȳ − yx̄) sinα).

 (9)

Note that the PT -symmetry breaking condition is s2 − r2 sin2 θ = 0. Hence α = π
2  is a critical 

point. As α → π
2 , S0 = |c1|2 + |c2|2 → ∞. To see what actually happens at the critical point 

of H, note that the two eigenstates |Ẽ±(
π
2 )〉 coincide. So the eigenstate only gives one direc-

tion, failing to fully realize the Stokes parameterization. This calls for one more basis vector, 
which is the generalized eigenstate given by (5), leading to a non-trivial non-diagonalizable 
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case. In addition, utilizing the new state and such a non-diagonalizable Hamiltonian makes us 
transfer from S0 to S2, which are essentially different Stokes parameters. And the discussion of 
S2 in the broken case is an analogy to the above.

Nevertheless, when we generalize the results to n, a simple optical interpretation becomes 
unclear. As the scenario for Stokes parameters, the optical interpretation for our η-inner prod-
uct shares the same problem of complications in higher dimensions.

5. Conclusion

In this note, we discuss PT -symmetry theory in the view of superposition and coherence. A 
more physical interpretation of η-inner product is given. This shows the physical difference 
between the broken and unbroken PT -symmetric systems. We also argue that the essence of 
such a interpretation comes from the PT -symmetry of a system, which is natural according 
to our physical intuitions. Though the discussions are restricted to 2, it is possible to general-
ize the idea by utilizing lemmas 1 and 2. In that case, for a state ρ =

∑
ρij|ψi〉〈ψj|, only part 

of the ρij(i �= j) will be involved. However, the interpretation of η-inner product as stationary 
superposition or superposition-free property is still valid.
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