Linear Algebra, EE 10810/EECS 205004

Quiz 5.1 - 5.3

Integrity: There is NO space to cross the Red Line!!

1. Use Cramer's rule with ratios $det(\overline{\overline{B}}_i)/det(\overline{\overline{A}})$ to solve $\overline{\overline{A}}\,\vec{x} = \vec{b}$. Also find the inverse matrix $(\overline{\overline{A}})^{-1} = \overline{\overline{C}}^t/det(\overline{\overline{A}})$.

$$\overline{\overline{A}}\vec{x} = \vec{b} \quad \text{is} \quad \begin{pmatrix} 2 & 6 & 2 \\ 1 & 4 & 2 \\ 5 & 9 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \tag{1}$$

2. Prove Theorem 5.5: Let \hat{T} be. a linear operator on a vector space \mathcal{V} , and let $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$ be distinct eigenvalues of \hat{T} . If $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ are the corresponding eigenvectors of \hat{T} , then $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ is linearly independent.

- 3. For the following linear operators \hat{T} on a vector space \mathcal{V} , test \hat{T} for diagonalizability, and if \hat{T} is diagonalizable, find a basis β for \mathcal{V} such that $[\hat{T}]_{\beta}$ is a diagonal matrix:
 - (a) $\mathcal{V} = P_3(\mathcal{R})$ and \hat{T} is defined by $\hat{T}(f(x)) = f'(x) + f''(x)$, respectively.
 - (b) $\mathcal{V} = \mathcal{R}^3$ and \hat{T} is defined by

$$\hat{T} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_2 \\ -a_2 \\ 2a_3 \end{pmatrix} \tag{2}$$