Linear Algebra, EE 10810/EECS 205004

Note 1.4 - 1.5

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-57<u>42439</u>; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• Office Hours:

- 1. RK: Every Wednesday, 1:00-5:00 PM at R 911, Delta Hall, or by appointment.
- 2. Raul Robles-Robles (last year PhD student); email: raulamauryrobles@hotmail.com.
- 3. TA time, Every Wednesday, 6:30-8:30 PM at Delta 217, or by appointment.
- Integrity: Next Quiz on September 30th, Wednesday, 10:10 AM 10:30 AM.
- Assignment: for the Quiz on Sep. 30th
 - 1. Solve the system of linear equations by Gaussian elimination method,

$$\begin{cases}
2x_1 & -2x_2 & -3x_3 & = -2 \\
3x_1 & -3x_2 & -2x_3 & +5x_4 & = 7 \\
x_1 & -x_2 & -2x_3 & -x_4 & = -3
\end{cases}$$
(1)

2. Show that if

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{and} \quad M_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$
 (2)

then the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2×2 matrices.

- 3. Show that a subset W of a vector space \mathcal{V} is a subspace of \mathcal{V} if and only if $\operatorname{span}(W) = \mathcal{W}$.
- 4. Show that if S_1 and S_2 are subsets of a vector space \mathcal{V} such that $S_1 \subseteq S_2$, then $\mathrm{span}(S_1) \subseteq \mathrm{span}(S_2)$.

From Scratch!!

• Show that if S_1 and S_2 are arbitrary subsets of a vector space \mathcal{V} , then $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$.

- Definition: A subset W of a vector space V over a field F is called **subspace** of V if W is a vector space over F under the operation of addition and scalar multiplication defined on V.
- Theorem 1.3: Subspace W:
 - 1. $\vec{0} \in \mathcal{W}$.
 - 2. $\vec{x} + \vec{y} \in \mathcal{W}$ whenever $\vec{x} \in \mathcal{W}$ and $\vec{y} \in \mathcal{W}$.
 - 3. $a \vec{x} \in \mathcal{W}$ whenever $a \in \mathcal{F}$ and $\vec{x} \in \mathcal{W}$.
- Theorem 1.4: Any intersection of subspaces of a vector space $\mathcal V$ is a subspace of $\mathcal V$.
- Question: Is the Union of subspaces of a vector space \mathcal{V} also a subspace of \mathcal{V} ?
- Systems of Linear Equations:

• Alternative: Geometric interpretation of Systems of Linear Equations: 2D lines intersecting at a point, 3D (intersecting at a plane)

$$\begin{array}{rcl}
x & -2y & = & 1, \\
3x & +2y & = & 11.
\end{array} \tag{4}$$

- Rules for systems of linear equations: $\overline{\overline{P}} \, \overline{\overline{D}} \, \overline{\overline{E}}$
 - 1. Scalar Multiplication, Diagonalized Matrix, ex, $\overline{\overline{D}} = \begin{bmatrix} a & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,
 - 2. Elimination, Elimination Matrix, ex, $\overline{\overline{E}}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ -l & 0 & 1 \end{bmatrix}$
 - 3. Row Exchange, Permutation Matrix, ex, $\overline{\overline{P}}=\begin{bmatrix}1&0&0\\0&0&1\\0&1&0\end{bmatrix}$
- Gauss Elimination
- \bullet Pivot
- $\bullet \ \text{Augmented Matrix}, \, \overline{\overline{M}} \vec{a} = \vec{b} \quad \Rightarrow \quad \Big[\overline{\overline{M}} \, | \, \vec{b} \Big].$
- Breakdown of Elimination
- Inverse Matrix, $\overline{\overline{M}}^{-1}$
- Span: $\operatorname{span}(S)$
- Linearly Dependent and Linearly Independent
- Basis