Linear Algebra, EE 10810/EECS 205004

Note 2.3

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan.

Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw

(Dated: Fall, 2020)

- 1st Exam on Oct. 30th, (10:10AM 1:00 PM, Friday), covering Chap. 1 and Chap. 2.
- Assignment: for the Quiz on Oct. 28th
 - 1. Let \mathcal{V} be a vector space, and let $\hat{\mathcal{T}}: \mathcal{V} \to \mathcal{V}$ be linear. A subspace \mathcal{W} of \mathcal{V} is said to be **T-invariant** if $\hat{\mathcal{T}}(X) \in \mathcal{W}$ for every $x \in \mathcal{W}$, that is $\hat{\mathcal{T}}(\mathcal{W}) \subseteq \mathcal{W}$. Now, \mathcal{V} is a *n*-dimensional vector space, and \mathcal{W} has dimension k. Show that there is a basis β for \mathcal{V} such that $[\hat{\mathcal{T}}]_{\beta}$ has the form

$$\begin{pmatrix}
\overline{\overline{A}} & \overline{\overline{B}} \\
\overline{\overline{O}} & \overline{\overline{C}}
\end{pmatrix}$$
(1)

where $\overline{\overline{A}}$ is a $k \times k$ matrix and $\overline{\overline{O}}$ is the $(n-k) \times k$ zero matrix.

- 2. Let \mathcal{V} and \mathcal{W} are vector space, and let S be a subset of \mathcal{V} . Define $S^0 = \{\hat{\mathcal{T}} \in \mathcal{L}(\mathcal{V}, \mathcal{W}); \hat{\mathcal{T}}(x) = 0 \text{ for all } x \in S\}$. Prove that S^0 is a subspace of $\mathcal{L}(\mathcal{V}, \mathcal{W})$.
- 3. Leg g(x) = 3 + x. Let $\hat{\mathcal{T}}: P_2(\mathcal{R}) \to P_2(\mathcal{R})$ and $\hat{\mathcal{U}}: P_2(\mathcal{R}) \to \mathcal{R}^3$ be the linear transformations respectively defined by

$$\hat{\mathcal{T}}(f(x)) = f'(x)g(x) + 2f(x),\tag{2}$$

$$\hat{\mathcal{U}}(a + bx + cx^2) = (a + b, c, a - b). \tag{3}$$

Let β and γ be the standard ordered bases of $P_2(\mathcal{R})$ and \mathcal{R}^3 , respectively.

- (a) Comput $\left[\hat{\mathcal{U}}\right]_{\beta}^{\gamma}$, $\left[\hat{\mathcal{T}}\right]_{\beta}$, and $\left[\hat{\mathcal{U}}\hat{\mathcal{T}}\right]_{\beta}^{\gamma}$.
- (b) Let $h(x) = 3 2x + x^2$. Compute $[h(x)]_{\beta}$ and $[\hat{\mathcal{U}}(h(x))]_{\gamma}$.
- 4. Let $\overline{\overline{A}}$ and $\overline{\overline{B}}$ be $n \times n$ matrices. Recall the trace of $\overline{\overline{A}}$ is defined by

$$\operatorname{tr}(\overline{\overline{A}}) = \sum_{i=1}^{n} A_{ii}.$$
 (4)

Prove that $\operatorname{tr}(\overline{\overline{AB}}) = \operatorname{tr}(\overline{\overline{BA}})$ and $\operatorname{tr}(\overline{\overline{A}}) = \operatorname{tr}(\overline{\overline{\overline{A}^t}})$.

From Scratch!!

• Definition: A function $\hat{\mathcal{T}}: \mathcal{V} \to \mathcal{W}$ is called *Linear Transformation* from \mathcal{V} to \mathcal{W} if, for all $\vec{x}, \vec{y} \in \mathcal{V}$ and $c \in F$, we have

$$\hat{\mathcal{T}}(c\vec{x} + \vec{y}) = c\hat{\mathcal{T}}(\vec{x}) + \hat{\mathcal{T}}(\vec{y}). \tag{5}$$

• Theorem 2.3 (Dimension Theorem):

$$\operatorname{nullity}(\hat{\mathcal{T}}) + \operatorname{rank}(\hat{\mathcal{T}}) = \dim(\mathcal{V})$$
 (6)

- Definition: ordered basis, standard ordered basis, coordinate vectors
- $\bullet \ \vec{x} = \sum_{i=1}^n a_i, \vec{v}_i,$

$$[\vec{x}]_{\beta} = |x\rangle_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 (7)

• Matrix representation of $\hat{\mathcal{T}}$ in the ordered bases β and γ :

$$\left[\hat{\mathcal{T}}\right]_{\beta}^{\gamma} \tag{8}$$

- Theorem 2.7: Let $\hat{\mathcal{T}}, \hat{\mathcal{U}}: \mathcal{V} \to \mathcal{W}$ be linear, then for all $a \in F$, $a\hat{\mathcal{T}} + \hat{\mathcal{U}}$ is linear.
- ullet Definition: $\mathcal{L}(\mathcal{V},\mathcal{W})$ denotes the vector space of all linear transformation from \mathcal{V} into \mathcal{W}
- Theorem 2.8: $\left[\hat{\mathcal{T}} + \hat{\mathcal{U}}\right]_{\beta}^{\gamma} = \left[\hat{\mathcal{T}}\right]_{\beta}^{\gamma} + \left[\hat{\mathcal{U}}\right]_{\beta}^{\gamma}$ and $\left[a\,\hat{\mathcal{T}}\right]_{\beta}^{\gamma} = a\,\left[\hat{\mathcal{T}}\right]_{\beta}^{\gamma}$
- Section 2.3: Composition of Linear Transformations and Matrix Multipplication
- Theorem 2.9: Let $\hat{\mathcal{T}}: \mathcal{V} \to \mathcal{W}$ and $\hat{\mathcal{U}}: \mathcal{W} \to \mathcal{Z}$ be linear, then for $\hat{\mathcal{U}}\hat{\mathcal{T}}: \mathcal{V} \to \mathcal{Z}$ is linear.
- Theorem 2.10: Let $\hat{\mathcal{T}}, \hat{\mathcal{U}}_1, \hat{\mathcal{U}}_2 \in \mathcal{L}(\mathcal{V})$, then
 - 1. $\hat{\mathcal{T}}(\hat{\mathcal{U}}_1 + \hat{\mathcal{U}}_2) = \hat{\mathcal{T}}\hat{\mathcal{U}}_1 + \hat{\mathcal{T}}\hat{\mathcal{U}}_2$.
 - 2. $\hat{\mathcal{T}}(\hat{\mathcal{U}}_1\hat{\mathcal{U}}_2) = (\hat{\mathcal{T}}\hat{\mathcal{U}}_1)\hat{\mathcal{U}}_2$.
 - 3. $\hat{T}\hat{I} = \hat{I}\hat{T} = \hat{T}$.
 - 4. $a(\hat{\mathcal{U}}_1\hat{\mathcal{U}}_2) = (a\hat{\mathcal{U}}_1)\hat{\mathcal{U}}_2 = \hat{\mathcal{U}}_1(a\hat{\mathcal{U}}_2).$
- Let $\overline{\overline{A}}$ be an $m \times n$ matrix and $\overline{\overline{B}}$ be an $n \times p$ matrix. The **product** of $\overline{\overline{A}}$ and $\overline{\overline{B}}$, denoted as $\overline{\overline{AB}}$, to be the $m \times p$ matrix such that

$$(\overline{\overline{AB}})_{ij} = \sum_{k=1}^{n} A_{jk} B_{kj}, \quad \text{for} \quad 1 \le i \le m, \quad 1 \le j \le p.$$

$$(9)$$

- Theorem 2.11: $\left[\hat{\mathcal{U}}\hat{\mathcal{T}}\right]_{\alpha}^{\gamma} = \left[\hat{\mathcal{U}}\right]_{\beta}^{\gamma} \left[\hat{\mathcal{T}}\right]_{\alpha}^{\beta}$
- \bullet Kronecker delta

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$
 (10)

- Identity matrix $\overline{\overline{I}}_n$, $(\overline{\overline{I}}_n)_{ij} = \delta_{ij}$.
- Theorem 2.12:
 - 1. $\overline{\overline{A}}(\overline{\overline{B}} + \overline{\overline{C}}) = \overline{\overline{AB}} + \overline{\overline{AC}}$
 - 2. $a(\overline{\overline{AB}}) = (a\overline{\overline{A}})\overline{\overline{B}} = \overline{\overline{A}}(a\overline{\overline{B}})$
 - 3. $\overline{\overline{I}}_m \overline{\overline{A}} = \overline{\overline{A}}_{m \times n} = \overline{\overline{AI}}_n$
- Theorem 2.13: Column Vectors

$$\vec{u}_{j} = \begin{pmatrix} (\overline{\overline{AB}})_{1j} \\ (\overline{\overline{AB}})_{2j} \\ \vdots \\ (\overline{\overline{AB}})_{mj} \end{pmatrix} = \overline{\overline{A}} \begin{pmatrix} (\overline{\overline{B}})_{1j} \\ (\overline{\overline{B}})_{2j} \\ \vdots \\ (\overline{\overline{B}})_{mj} \end{pmatrix} = \overline{\overline{A}} \vec{v}_{j}$$

$$(11)$$