Linear Algebra, EE 10810/EECS 205004

Note 2.4 - 2.5

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

- 1st Exam on Oct. 30th, (10:10AM 1:00 PM, Friday), covering Chap. 1 and Chap. 2.
- Assignment: for the Quiz on Oct. 28th
 - 1. Let \mathcal{V} be a finite-dimensional vector space, and let $\hat{\mathcal{T}}: \mathcal{V} \to \mathcal{V}$ be linear.
 - (a) If $\operatorname{rank}(\hat{\mathcal{T}}) = \operatorname{rank}(\hat{\mathcal{T}}^2)$, prove that $R(\hat{\mathcal{T}}) \cap N(\hat{\mathcal{T}}) = \{\vec{0}\}.$
 - (b) Deduce that $\mathcal{V} = R(\hat{\mathcal{T}}) \oplus N(\hat{\mathcal{T}})$.
 - (c) Prove that $\mathcal{V} = R(\hat{\mathcal{T}}^k) \oplus N(\hat{\mathcal{T}}^k)$ for some positive integer k.
 - 2. Let $\overline{\overline{A}}$ and $\overline{\overline{B}}$ be $n \times n$ invertible matrices. Prove that
 - (a) $\overline{\overline{AB}}$ is invertible.
 - (b) $(\overline{\overline{AB}})^{-1} = \overline{\overline{B^{-1}A^{-1}}}$.
 - 3. Let

$$\mathcal{V} = \left\{ \begin{pmatrix} a & a+b \\ 0 & c \end{pmatrix} : a, b, c \in F \right\} \tag{1}$$

Construct an **isomorphism** from \mathcal{V} to F^3 .

4. For each matrix $\overline{\overline{A}}$ and ordered basis β , find $[\hat{L}_A]_{\beta}$ and an invertible matrix $\overline{\overline{Q}}$ such that $[\hat{L}_A]_{\beta} = \overline{\overline{Q^{-1}AQ}}$.

(a)

$$\overline{\overline{A}} = \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix}, \quad \text{and} \quad \beta = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$
 (2)

(b)

$$\overline{\overline{A}} = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad \text{and} \quad \beta = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \right\}$$
 (3)

From Scratch!!

• The **product** of $\overline{\overline{A}}_{m \times n}$ and $\overline{\overline{B}}_{n \times p}$, denoted as $\overline{\overline{AB}}_{m \times p}$, s.t.

$$(\overline{\overline{AB}})_{ij} = \sum_{k=1}^{n} A_{jk} B_{kj}, \quad \text{for} \quad 1 \le i \le m, \quad 1 \le j \le p.$$

$$(4)$$

- Theorem 2.11: $\left[\hat{\mathcal{U}}\hat{\mathcal{T}}\right]_{\alpha}^{\gamma} = \left[\hat{\mathcal{U}}\right]_{\beta}^{\gamma} \left[\hat{\mathcal{T}}\right]_{\alpha}^{\beta}$
- Theorem 2.12:

1.
$$\overline{\overline{A}}(\overline{\overline{B}} + \overline{\overline{C}}) = \overline{\overline{AB}} + \overline{\overline{AC}}$$

2.
$$a(\overline{\overline{AB}}) = (a\overline{\overline{A}})\overline{\overline{B}} = \overline{\overline{A}}(a\overline{\overline{B}})$$

3.
$$\overline{\overline{I}}_m \overline{\overline{A}}_{m \times n} = \overline{\overline{A}}_{m \times n} = \overline{\overline{A}}_{m \times n} \overline{\overline{I}}_n$$

• Theorem 2.13: Column Vectors

$$\vec{u}_{j} = \begin{pmatrix} (\overline{\overline{AB}})_{1j} \\ (\overline{\overline{AB}})_{2j} \\ \vdots \\ (\overline{\overline{AB}})_{mj} \end{pmatrix} = \overline{\overline{A}} \begin{pmatrix} (\overline{\overline{B}})_{1j} \\ (\overline{\overline{B}})_{2j} \\ \vdots \\ \vdots \\ (\overline{\overline{B}})_{mj} \end{pmatrix} = \overline{\overline{A}} \vec{v}_{j}$$

$$(5)$$

• Theorem 2.14: For each $\vec{u} \in \mathcal{V}$,

$$[\hat{\mathcal{T}}(\vec{u})]_{\gamma} = [\hat{\mathcal{T}}]_{\beta}^{\gamma} [\vec{u}]_{\beta} \tag{6}$$

• Definition: Left-multiplication transformation, $\hat{L}_A: F^n \to F^m,$

$$\hat{L}_A(\vec{x}) = \overline{\overline{A}}\,\vec{x} \tag{7}$$

- \bullet Theorem 2.15:
 - 1. $[\hat{L}_A]^{\gamma}_{\beta} = \overline{\overline{A}}$.
 - 2. $\hat{L}_A = \hat{L}_B$ iff $\overline{\overline{A}} = \overline{\overline{B}}$.
 - 3. $\hat{L}_{A+B} = \hat{L}_A + \hat{L}_B$ and $\hat{L}_{aA} = a\hat{L}_A$ for all $a \in F$.
 - 4. If $\hat{\mathcal{T}}: F^n \to F^m$ is linear, $\exists !$ an $m \times n$ matrix $\overline{\overline{C}}$ s.t. $\hat{\mathcal{T}} = \hat{L}_C$. In fact $\overline{\overline{C}} = [\hat{\mathcal{T}}]_{\beta}^{\gamma}$.
 - 5. If $\overline{\overline{E}}$ is an $n \times p$ matrix, then $\hat{L}_{AE} = \hat{L}_A \hat{L}_E$.
 - 6. If m = n, then $\hat{L}_{I_n} = \overline{\overline{I}}_{F^n}$.
- Theorem 2.16: matrix multiplication is associative, $\overline{\overline{A}}(\overline{\overline{BC}}) = (\overline{\overline{AB}})\overline{\overline{C}}$
- Definition: A function $\hat{U}: \mathcal{W} \to \mathcal{V}$ is said to be an **inverse** of $\hat{T}: \mathcal{V} \to \mathcal{W}$ if

$$\hat{T}\hat{U} = \hat{I}_{\mathcal{W}} \quad \text{and} \quad \hat{U}\hat{T} = \hat{I}_{\mathcal{V}}$$
 (8)

- Definition: If \hat{T} has an inverse, then \hat{T} is invertible.
- Theorem 2.17: $\hat{T}^{-1}: \mathcal{W} \to \mathcal{V}$ is linear.
- Definition: $\overline{\overline{A}}_{n \times n}$ is invertible $\exists \overline{\overline{B}}_{n \times n}$ s.t. $\overline{\overline{AB}} = \overline{\overline{BA}} = \overline{\overline{I}}$.
- Theorem 2.18: \hat{T} is invertible iff $[\hat{T}]^{\gamma}_{\beta}$ is invertible, $[\hat{T}^{-1}]^{\beta}_{\gamma} = ([\hat{T}]^{\gamma}_{\beta})^{-1}$.
- Definition: \mathcal{V} is **isomorphic** to \mathcal{W} if there exists a linear transformation $\hat{T}: \mathcal{V} \to \mathcal{W}$ that is invertible.
- Theorem 2.19: V is isomorphic to W iff dim(V) = dim(W).
- Theorem 2.20: The function $\Phi: \mathcal{L}(\mathcal{V}, \mathcal{W}) \to \overline{\overline{M}}_{m \times n}(F)$, defined by $\Phi(\hat{T}) = [\hat{T}]_{\beta}^{\gamma}$ for $\hat{T} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ is an isomorphism.
- Definition: standard representation of \mathcal{V} with respect to β is the function $\phi_{\beta}: \mathcal{V} \to F^n$, defined by $\phi_{\beta}(\vec{x}) = [\vec{x}]_{\beta}$ for each $\vec{x} \in \mathcal{V}$.
- Theorem 2.21: For any finite-dimensional vector space \mathcal{V} with ordered basis β , ϕ_{β} is an isomorphism.
- Theorem 2.22: $\overline{\overline{Q}} = [I_{\mathcal{V}}]_{\beta'}^{\beta}$ is invertible, for any $\vec{v} \in \mathcal{V}$, $[\vec{v}]_{\beta} = \overline{\overline{Q}}[\vec{v}]_{\beta'}$, i.e., compared to the bases: $\vec{x}_j' = \sum_{i=1}^n Q_{ij}\vec{x}_i$.
- Theorem 2.23: linear operator $[\hat{T}]_{\beta'} = \overline{\overline{Q}}^{-1} [\hat{T}]_{\beta} \overline{\overline{Q}}$
- Definition: $\overline{\overline{B}}_{n \times n}$ is **similar** to $\overline{\overline{A}}_{n \times n}$ if \exists an invertible matrix $\overline{\overline{Q}}$ s.t. $\overline{\overline{B}} = \overline{\overline{Q}}^{-1} \overline{\overline{AQ}}$.