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e Next Quiz on Nov. 25th, Wednesday.

e Assignment:

1. Compute the determinants of the following matrix in ﬁ4x4(R):
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2. Use row operations to simplify and compute these determinants.
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3. A matrix Q € M,xn(R) is called orthogonal if Q Q = I. Prove that if @ is orthogonal, then det(Q) = +1.

4. Find the determinant of the symmetric Pascal matrices
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From Scratch !!

e Properties of Determinant

— The determinant changes sign when two rows (or two columns) are exchanged.

— det(AB) = det(A) - det(B)
~ det(A) = det(A)

—det(T) =1
— The determinants equal Volumes.

— If two rows of A are equal, then det(A) = 0.
— Subtracting a multiple of one row from another row leaves det(i) unchanged.
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— A matrix with a row of zeros has det(i) =0.

~IfAis singular then det(A) = 0.

e Section 4.2: Determinants of Order n

1. Pivot formula: multiplication of n pivots (times 1 or —1)
2. Big formula: add up n! terms (times 1 or —1)

3. Cofactor formula: combine n smaller determinants (times 1 or —1)

e Theorem 4.4: cofactor expansion
det(i) = Z(—l)i+jjij -det(Aij),
j=1

for any integer 1 <1i < n.

e Theorem 4.3: n-linear function
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e Theorem 4.5: B is obtained by interchanging any row of A, then det(?) = —det(i).

e Theorem 4.6: B is obtained by adding a multiple of one row of 74 to another row of j, then det(

e Section 4.3-4.4: Properties and Summary of Determinants
e Cramer’s Rule:

e n-dimensional volume:

B) = det(

A).



