Linear Algebra, EE 10810/EECS 205004

Note 6.1 - 6.2

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

- Next Quiz on Dec. 16th, Wednesday.
- 2nd-Exam, 10:10-13:10 on Dec. 18th, Friday.

• Assignment:

- 1. Provide the reasons why each of thee following is not an inner product on the given vector space.
 - (a) $\langle (a,b),(c,d)\rangle = ac bd$ on \mathbb{R}^2 .
 - (b) $\langle \overline{\overline{A}}, \overline{\overline{B}} \rangle = \operatorname{tr}(\overline{\overline{A}} + \overline{\overline{B}})$ on $\overline{\overline{M}}_{2 \times 2}(\mathcal{R})$.
- 2. Apply the Gram-Schmidt process to the given subset S of the inner product space \mathcal{V} to obtain an orthonormal basis for $\mathrm{span}(S)$
 - (a) $V = \mathbb{R}^3$, $S = \{(1, 0, 1), (0, 1, 1), (1, 3, 3)\}$
 - (b) $V = \overline{\overline{M}}_{2\times 2}(\mathcal{R}), S = \left\{ \begin{pmatrix} 3 & 5 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 9 \\ 5 & -1 \end{pmatrix}, \begin{pmatrix} 7 & -17 \\ 2 & -6 \end{pmatrix} \right\}$

3. Let \mathcal{V} be an inner product space, and let \mathcal{W} be a finite-dimensional subspace of \mathcal{V} . If $\vec{x} \notin \mathcal{W}$, prove that there exists $\vec{y} \in \mathcal{V}$ such that $\vec{y} \in \mathcal{W}^{\perp}$, but $\langle \vec{x}, \vec{y} \rangle \neq 0$.

From Scratch!!

- Section 5.4: Invariant Subspace and the Cayley-Hamilton Theorem
- Theorem 5.23 (Cayley-Hamilton theorem): Let $f(\lambda)$ be the characteristic polynomial of \hat{T} . Then $f(\hat{T}) = \hat{T}_0$, the zero transformation. That is, \hat{T} satisfies its characteristic equation.
- Corollary: Let $\overline{\overline{A}}$ be an $n \times n$ matrix and let $f(\lambda)$ bee the characteristic polynomial of $\overline{\overline{A}}$. Then $f(\overline{\overline{A}}) = \overline{\overline{O}}$, the $n \times n$ zero matrix.
- Section 6.1: Inner product space
- Definition: An inner product on \mathcal{V} is a function that assigns, to every ordered pair of vectors \vec{x} and \vec{y} in \mathcal{V} , a scalar in F, denoted $\langle \vec{x}, \vec{y} \rangle$, such that for all \vec{x} , \vec{y} , and \vec{z} in \mathcal{V} and all c in F, the following hold:
 - 1. $\langle \vec{x} + \vec{z}, \vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{z}, \vec{y} \rangle$.
 - 2. $\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$.
 - 3. $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$, where the bar denotes complex conjugation.
 - 4. $\langle \vec{x}, \vec{x} \rangle > 0$ if $\vec{x} \neq 0$.
- Definiton: Conjugate transpose or adjoint of $\overline{\overline{A}}$, i.e., $(A^*)_{ij} = \overline{A_{ji}}$.
- Frobenius inner product
- Definition: A vector space $\mathcal V$ on F endowed with a specific inner product is called an **inner product space**.
- Theorem 6.1: Inner product space
 - 1. $\langle \vec{x}, \vec{y} + \vec{z} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle$.
 - 2. $\langle \vec{x}, c \vec{y} \rangle = \overline{c} \langle \vec{x}, \vec{y} \rangle$.
 - 3. $\langle \vec{x}, \vec{0} \rangle = \langle \vec{0}, \vec{x} \rangle = 0$.
 - 4. $\langle \vec{x}, \vec{x} \rangle = 0$ iff $\vec{x} = \vec{0}$.
 - 5. $\langle \vec{x}, \vec{y} \rangle = \langle \vec{x}, \vec{z} \rangle$ for all $\vec{x} \in \mathcal{V}$, then $\vec{y} = \vec{z}$.
- Definition: norm or length of \vec{x} , denoted as $\|\vec{x}\| \equiv \sqrt{\langle \vec{x}, \vec{x} \rangle}$
- Theorem 6.2:
 - 1. $||c\vec{x}|| = |c| \cdot ||\vec{x}||$.
 - 2. $\|\vec{x}\| = 0$ iff $\vec{x} = \vec{0}$.
 - 3. Cauchy-Schwarz Inequality: $|\langle \vec{x}, \vec{y} \rangle| \leq \|\vec{x}\| \cdot \|\vec{y}\|.$
 - 4. Triangle Inequality: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.
- Definition: orthogonal if $\langle \vec{x}, \vec{y} \rangle = 0$.
- Unite vector if $||\vec{x}|| = 1$.
- Definition: orthonormal
- Normalizing:
- Section 6.2: Gram-Schmidt orthogonalization process
- Definition: orthonormal basis
- Theorem 6.3 (Gram-Schmidt process): Let $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ be an orthogonal subset of \mathcal{V} . If $\vec{y} \in \text{span}(S)$, then

$$\vec{y} = \sum_{i=1}^{k} \frac{\langle \vec{y}, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \vec{v}_i \tag{1}$$

• Theorem 6.4: Let $S = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n\}$ be a linearly independent subset of \mathcal{V} . Define $S' = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$, where $\vec{v}_1 = \vec{w}_1$ and

$$\vec{v}_k = \vec{w}_k - \sum_{j=1}^{k-1} \frac{\langle \vec{w}_k, \vec{v}_j \rangle}{\|\vec{v}_j\|^2} \vec{v}_j.$$
 (2)

Then S' is an orthogonal set oof nonzero vector such that $\operatorname{span}(S') = \operatorname{span}(S)$.

• Definition: orthogonal complement of S, i.e. $S^{\perp} = \{\vec{x} \in \mathcal{V} : \langle \vec{x}, \vec{y} \rangle = 0 \text{ for all } \vec{y} \in S\}.$