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Optical bistability5 [2–6] has been found to be important, both 
for providing a useful tool to design all-optical switches, and 
for its potential applications in ultracompact optical storage 
and memory components. Optical bistability, which uses an 
absorber inside a Fabry–Perot cavity (or optical ring cav-
ity), has been the subject of intense theoretical and experi-
mental studies for atomic and semiconductor quantum well 
system [3–8]. Importantly, bistability can occur in a distrib-
uted feedback structure without a Fabry–Perot-type device 
[9]. Recently, it has been shown that opposite directionality 
of the phase velocity and the Poynting vector can offer effec-
tive feedback mechanism for bistability in a nonlinear optical 
coupling with a negative index channel [10].

Parity-time PT( ) symmetry has attracted considerable 
attention in different physical systems because such a class 
of non-Hermitian Hamiltonians exhibit entirely real and posi-
tive eigenvalue spectra [11, 12]. It should be noted that non-
Hermitian Hamiltonians without PT  symmetry may also have 

real eigenvalues. The Hamiltonian of a PT  symmetric system 
requires a necessary (but not sufficient) condition for which 
the potential V(x) must satisfy V(x) = V*(−x). It was suggested 
that complex PT -symmetric potentials can be realized in an 
optical system. In optics, PT  symmetry requires that the real 
part and imaginary part of the refractive index should be even 
and odd functions of position, respectively, so the complex 
refractive index obeys the condition n(x) = n*(−x). An experi-
mental scheme of PT  Hamiltonians has been proposed in a 
planar slab waveguide with a complex refractive index [13]. 
A PT  symmetric optical system possesses several unique 
features, which include nonreciprocal propagation of light 
[14], spontaneous PT  symmetry breaking and power oscil-
lation [15, 16], left–right symmetric oscillation [17], Bloch 
oscillation in complex crystal with PT -symmetry [18], and 
many kinds of solitary-wave-like solutions [19–24] in dual-
core optical systems with Kerr nonlinearity and PT -balanced 
gain and loss.

An interesting characteristic of the PT -symmetric system is 
the existence of spontaneous PT  symmetry-breaking threshold 
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[12, 25], which is related to an abrupt phase transition. The 
result of the transition corresponds to a completely real spec-
trum changing to a non-strictly real spectrum. Above this criti-
cal threshold, some of the eigenvalues become complex, which 
is related to PT -symmetry breaking. Passive PT -symmetry 
breaking has recently been experimentally achieved in the 
realm of optics with non-Hermitian optical potentials [26]. The 
result of this abrupt phase transition leads to a loss-induced 
optical transparency. Power oscillations violating left–right 
symmetry and PT -symmetry breaking have been observed in 
a PT  optical coupled system with a complex index potential 
[27]. In addition, the unidirectional invisibility and unconven-
tional reflection have been achieved in PT -synthetic photonic 
lattices around the exceptional point [28], and the non-reci-
procity of the transmission has been examined in a ladder sys-
tem with the PT -balanced combination of gain and loss [29].

A lot of interesting physical phenomena have been found in 
periodic structures in optics [30–36]. Slow Bragg solitons [30], 
for which carrier frequencies are closed to Bragg resonance 
and power spectra fall within frequency band gap, can exist 
in nonlinear periodic structure. The nonstationary soliton-like 
solutions in a periodic Kerr medium were obtained by Aceves 
and Wabnitz [31] and, employing the averaged Lagrangian 
variational technique, the stability of the Bragg soliton was 
first investigated by Malomed and Tasgal [32]. The applica-
tions [33] of periodic structures in optics include not only 
frequency filtering, but also all optical switches which are 
produced through nonlinear effects by applying optical sig-
nals to periodic structure. Due to the striking features of com-
plex periodic structure, reflection and transmission spectra in 
a complex nonreciprocal Bragg grating were analyzed and 
a strong amplification was found to occur at the resonance 
wavelength [35]. Recently, the interplay of Bragg scattering 
and PT  symmetry in periodic structure with a PT -symmetric 
potential has been studied, and unidirectional invisibility has 
been shown to occur around the Bragg point with a broad range 
of frequencies [36]. The linear and nonlinear PT -symmetric 
Bragg gratings have been studied by Sewell et al [37, 38].  
They found that there is a different response when the sig-
nal incident from the left and right sides of the grating is in 
a linear PT -symmetric Bragg grating. For a nonlinear PT - 
symmetric Bragg grating, the bistability will occur for high 
gain/loss saturation intensity. In addition, a new family of 
slow Bragg soliton solutions has been obtained in nonlinear 
PT -symmetric periodic structures [39]. Analysis implies that 
the grating band structure and effective linear coupling can 
be modified by the PT -symmetric component of the periodic 
optical refractive index. Following the physical model in [39], 
we discuss the steady-state solutions and the behavior of the 
steady-state solutions in nonconservative environments, espe-
cially in the presence of linear gain or loss.

In this paper, the interplay between forward and backward 
waves in periodic structure with a complex PT  potential is 
investigated. Starting from the nonlinear coupling wave equa-
tion, the property of dispersion is analyzed and the solutions 
for the linear coupling case are obtained. Then, a generalized 
analytical solution for forward and backward waves with non-
linear coupling is obtained. Furthermore, the effect of PT - 

symmetric component of the periodic optical refractive index 
on the optical bistability (or multistability) is also discussed. 
A concluding remark is given in the last section.

We consider an N-period PT  Bragg grating which is 
embedded in a background material with a refractive index 
n0. The total length of the N-period PT  Bragg grating is 
L = NΛ, where Λ is the spatial period of the grating, and N 
is the total number of periods. The real part of the refractive 
index is an even function of propagation z for a single period, 
but the imaginary part of the refractive index is an odd func-
tion of propagation z. So the linear refractive index variation 
can be expressed as

 β β= + +Λ Λ( ) ( )n n n z n zcos 2 i sin 2R I0 1 1 (1)

where βΛ = π/Λ, n1R and n1I are small, e.g. n0 > > n1R, I, the 
second term in equation  (1) stands for the periodic index 
variations inside the grating, and the third term accounts for 
the superimposed complex PT  potential. Furthermore, this 
includes an intensity-dependent refractive index term which 
can be described by the nonlinear polarization PNL = n0n2∣E∣2 

E/4π (n2 is the nonlinear nonlinear Kerr coefficient of the 
material, and E is the electric field). Electric field E can be 
described by

 ⎡⎣ ⎤⎦β β ω= + −( ) ( )E z t E z z E z z t( , ) ( ) exp i ( ) exp i exp (i )F 0 B 0 0
(2)

where EF(z) and EB(z) are the envelopes of forward and 
backward waves in the material, respectively. β0  =  n0ω0/c, 
ω0 = 2 π c/λ0 with the free space wavelength of electric field 
λ0. Under slowly varying envelope approximation and in the 
steady state case (∂/∂t  =  0), which corresponds to optical 
beam propagation. We can obtain the following two coupling  
equations as [39]

 κ γ− ∂
∂

= + + ∣ ∣ +∣ ∣δ−E
z

g E E E Ei ( ) e (2 )zF 2i
B B

2
F

2
F

(3a)

 κ γ∂
∂

= − + ∣ ∣ + ∣ ∣δE
z

g E E E Ei ( ) e ( 2 )zB 2i
F B

2
F

2
B (3b)

where δ = β0 − βΛ is the mismatch between the propagation 
constant, κ  =  n1Rπ/λ0, and g  =  n1Iπ/Λ is the linear coupling 
coefficient, κ comes from the real part of the linear refractive 
index, and g arises from the complex PT  term. γ = π n2/λ0 is 
the nonlinear coupling coefficient. Assuming the solutions of 
equation (3) are of the forms EF,B = E1,2exp[i q z]exp[∓i δz], in 
the linear regime, one can obtain the q − δ relation

 δ κ κ= − + −q g g( ) ( ) .2 2 (4)

When g = 0, the PT -symmetric periodical structure returns 
to the ordinary periodical structure and equation (4) reduces 
[40–42] q2 = δ2 − κ2. The changes of the dispersion relations, 
which are caused by the imaginary part of the PT -symmetric 
potential, is shown in equation  (4). One also can obtain the 
nonlinear dispersion relations with the forms

 
κ γ= + + − + −

+
q

g f g f
f

f
f

a
( )

2
( 1)

2 (1 )

2 2

2
2 (5a)
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 δ κ κ γ= − + + − −f g g
f

a
( )

2
3
2

.
2

2 (5b)

In deriving equation (5), we have introduced the relations 
= +a E E2

1
2

2
2 and f  =  E2/E1, which are related to the total 

power and the ratio of the backward to forward propagating 
wave’s amplitude, respectively.

From equation (3), we note that the effect of the PT  term 
comes from g and the spontaneous PT -symmetry point is 
κ = g [36]. In the next section, we only consider the case g < κ 
which ensures that all eigenvalues of the non-Hermitian sys-
tem, and which is described by equation  (3), are completely 
real. Figure 1 [40–42] demonstrates linear (a) and nonlinear 
dispersion curves (b)–(d) for the same nonlinear coupling coef-
ficient γ. For the linear case in figure 1(a), the shape of the band 
structure is similar to the ordinary periodical structure, with the 
difference that the band gap reduces. The effect of the PT  term 
on nonlinear dispersion curves is illustrated in figures 1(b)–(d). 
Figure  1(b) shows that the higher branch of the dispersion 
relation’s curve forms a loop. Figure 1(b) also shows that for 
g/κ = 2/3, the band gap reduces and the shape of loop becomes 
irregular. At the PT -symmetry breaking point in figure 1(d), 
the band gap is closed. This implies that there are more choices 
of design freedom in the case with PT -symmetric potential in 
comparison with the traditional periodical structures.

Assuming the propagation of light between 0 and L, in the 
linear case (γ = 0), the solutions of equation (3) with boundary 
conditions EF(0) = 1 and EB(L) = 0 are

 
Δ

δ
δ

= −
−

+ −
−

δ

δ

−

−

E z
F F z L

F FL FL
F z L

F FL FL

( )
cosh ( ( ) )

cosh ( ) i sinh ( )
e

i sinh ( ( ) )
cosh ( ) i sinh ( )

e

z

z

F
i

i
(6a)

 
κ

δ
= − −

−
ΔE z

g F z L
F FL FL

( )
( ) sinh ( ( ) )

i cosh ( ) sinh ( )
e z

B
i (6b)

where κ δ= − −F g2 2 2. The ratio of the power in the back-
ward to the power in forward is the definition of reflectivity 

value (R = ∣EB(0)∣2/∣EF(0)∣2). Under the phase-matched condi-
tions (δ = 0), the reflectivity as a function of linear coupling 
coefficient is found from equation (6) to be

 
κ
κ

κ= −
+

−R
g
g

g Ltanh (( ) ).2 2 2
(7)

For the nonlinear case (γ ≠ 0), the analytical solutions of 
equation (3) are complicated. Taking the methods in [43], and 
assuming EF = Af exp(iϕF) and EB = Abexp(iϕB), where Af, Ab, 
ϕF and ϕB are real functions of z, one can obtain the following 
equation

 κ Φ
∂
∂

= +A

z
g A( ) sin ( )f

b (8a)

 κ Φ∂
∂

= −A
z

g A( ) sin ( )b
f (8b)

 
Φ κ κ Φ∂

∂
= + + −

⎡
⎣⎢

⎤
⎦⎥z

g
A
A

g
A

A
( ) ( ) cos ( ) .b

f

f

g
(8c)

In deriving equation  (8), we have used the relation 
Φ = ϕF − ϕB + 2 δz. After introducing the two new param-
eters = =P A P A,f f b b

2 2, we obtain two constraint equations for 
equation (8) as

 κ κ
=

+
−

−
C

P

g
P

g
f b

(9a)
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κ

γ Δ
κ

= +
+

+ +
−

P P
P

g

P P

g
cos ( )

3

4 ( )

3 4

4 ( )
f b

f b b
2 2

(9b)

where C is the effective transmitted flux in the periodical 
structure with the PT -symmetric potential. By introducing a 
‘critical intensity’ Pc = 4λ0/3π n2L and adopting the following 
normalized variables PB  =  Pb/Pc, and PT  =  C/Pc, the equa-
tion for backward power in the structure can be written as

 
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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g
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2 T

B

B 1

1 1

2

(10)

where P′B stands for dB/dξ with ξ = Lz, and κ1 = κL, g1 = gL 
and ℜ  =  2PT(L)(κ1  +  g1)(κ1  −  g1)−1  +  δL. At the input of 
the structure, we assume that PF(0)  =  I0 and PB(0)  =  0, 

κ= + − −P L P L g P( ) ( ) ( ) cT F
1 1, where I0 has been normal-

ized to Pc. Combining equations  (8)–(10) and applying the 
Weierstrass elliptic function’s properties, the analytical solu-
tions for PB(ξ) and PF(ξ) are found in terms of the Weierstrass 
elliptic function ℘(ξ, g2, g3):
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ξ
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Figure 1. Linear and nonlinear dispersion of a PT -symmetric 
periodic grating for different ratios of g/κ. (a) γ = 0 and g/κ = 0.8, 
which corresponds to the linear case. (b) κ = 5, γ a2 = 25, g/κ = 0; 
(c) κ = 3, γ a2 = 25, g/κ = 2/3; (d) κ = 2.5, γ a2 = 25, g/κ = 1. There is 
nonlinear dispersion in (b)–(d).

Laser Phys. 25 (2015) 015102



J Liu et al

4

where B ⎡⎣ ⎤⎦L g( ) / 32
1
2

1
2Δ δ κ= + − + , and ∆  =  2(κ1  +  g1)

(κ1 + g1)−1PT(L), ℘(z;g2, g3) is the Weierstrass elliptic func-
tion and the invariants g2 and g3 are defined as

 Bg L g P L16 ( ) ( ) ( ) 122 1 1 1 T
2κ Δ δ κ= + + + (13a)

 
κ κ

κ κ Δ δ
= + +

− + +
g g P L

g P L L
16 ( ) ( ) 8B

16 ( ) ( ) ( )B.
T3 1

2
1 1

2 2 3

1 1 1 T
(13b)

Adopting the boundary condition, the output intensity 
PT(L) can be determined by solving the following equation

 
κ
κ

κ= +
−

+ −
℘ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

P
g

g
g

g g
P L(0) 1 ( )

1; , B
( ) .F

1 1

1 1

2 2

2 3
T (14)

Figure 2 shows a relation between input PF(0) and output 
intensities PF(L) for three values of the detuning δL  =  −  2 
(black solid line), δL = 0 (red dashed line), δL = 0.5 (green 
dotted line) and two fixed coupling coefficients κ L = 2 and 
gL = 0.25. From figure 2, we clearly see that the shape of the 
hysteresis loop and the bistable threshold depend on the detun-
ing δL. The effect of the detunings δL on the characteristic of 
bistability is very similar to those in ordinary periodical struc-
ture [9], which is not considered the PT  term. The threshold 
of bistability is bigger than that in [9]. The dependence of the 
properties for bistability (or multistability) on the imaginary 
parts of the complex potential are shown in  figure 3. The multi-
stability can also be formed in this periodical structure with 
a PT -symmetric potential in figure  3(a). From  figure  3(a), 
the threshold becomes bigger when the parameter gL change 
from 0 to 0.4. The reason may be that, with the increase of the 
imaginary part coefficient gL, the absorption for the forward 
field in the periodical structure with the PT -symmetric poten-
tial increases, which makes it harder for the forward field to 
reach saturation. From figures 3(a) and (b), as the values of gL 
change from 0.4 to 2.5, the multistability becomes bistability, 
which is caused by the absorption. As a result, one can achieve 
optimally the desired bistable curve via properly designing the 
imaginary part of the PT -symmetric potential and adjusting 
the phase matching parameter δL.

In conclusion, the interaction of forward and backward 
waves in a Kerr nonlinear PT -symmetric periodic structure 
was investigated. The linear and nonlinear dispersion rela-
tions and linear solutions for forward and backward waves 
were first discussed. Then, a generalized analytical solution 
was found in this nonlinear PT -symmetric periodic structure. 
Furthermore, the behavior of the bistability and multistabil-
ity has also been illustrated. The results showed that the PT - 
symmetric complex potential and the frequency detuning can dra-
matically affect the bistability (or multistability) behavior, which 
can be used to manipulate the bistable threshold intensity and the 
hysteresis loop. These results offer an alternative proposal for the 
optimal design of nonlinear periodic systems to achieve very fast 
all-optical switches, and the effective feedback mechanism of 
bistability (or multistability) comes essentially from the nonlinear 
coupling between forward and backward waves in the periodic 
structure which is related to the notion of Bragg solitons [39].
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Figure 2. Output versus input intensity of nonlinear distributed-
feedback structure for three different values of detuning δL = − 2, 
0, and 0.5 and the fixed linear coupling coefficients gL = 0.25, 
and κ L = 2.

Figure 3. Output intensity PF(L) as a function of input intensity 
PF(0) with a fixed δL = 0 and κ L = 4.0, and three values of gL, (a) 
gL = 0.4 (solid line) and gL = 0 (dotted line) (b) gL = 2.5. The inset 
figure in (b) shows a larger region for input and output intensity.
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