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Abstract

The estimation of some parameters with super-Heisenberg (SH) sensitivity, i.e. beyond Heisenberg
limit, is one of the principal problems for current quantum metrology. We propose to use Bose—
Einstein condensate quantum bright solitons for this purpose. We have shown that solitons, as
quantum nonlinear structured field objects, allow SH phase estimation even with coherent probes in
the framework of a nonlinear metrology approach. To achieve ultimate scaling in nonlinear phase
estimation, whichis 1/ N, we examine soliton phase shift occurring due to interaction of weakly
coupled 1D solitons. We have shown that steady states of coupled solitons can be used for the
formation of maximally path-entangled NOON-state providing minimal propagation error of solitons’
relative distance, momentum, and atom—atom scattering length parameter.

1. Introduction

Over the past decade, rapidly growing experimental facilities in quantum technologies have led to an increasing
interest in quantum metrology and sensing [ 1, 2]. Many important applications, such as gravitational waves
detection interferometers [3], frequency standards and atomic clocks [4, 5], magnetometers [6], quantum
gyroscopes [7], thermometry of living cells [8], or high resolution imaging in biology [9] require to achieve
ultimate sensitivity for some vital parameters, defined by quantum limitations of measurement accuracy. The
measuring schemes, which should be highly phase-sensitive, propose an estimation of the phase shift containing
all the information about the required parameter, see [10, 11].

In quantum optics, measurements for metrological purposes typically base on Mach—Zehnder
interferometers operating with few photons (discrete variables) or with bright light beams containing a large
average number of photons (so-called continuous variables [9]). In atomic optics domain, matter-wave
interferometers commonly explore two internal state operations corresponding to a two-mode optical
interferometer design [1].

Previously it was shown (see e.g. [12]) that two weakly coupled Bose—Einstein condensates (BEC) represent a
versatile platform for metrological purposes in the framework of linear phase-sensitive measurements. In
particular, Josephson and Fock regimes of interacting condensates allow to enhance accuracy of phase
measurement beyond standard quantum limit (SQL), 1/+/N, where N'is an average number of particles
involved in a measurement scheme. Moreover, it was shown that so-called Heisenberg limit, N ', might be
saturated with maximally entangled N-particle NOON-state in the framework of two-mode model approach
[13, 14]. In this sense, NOON-state produced with a moderate number of particles represents a vital problem for
current metrology and sensing. Some proposals are realized with a few number of particles [15-18]. The
formation of robust NOON-states with atomic condensates is discussed in [19-21] where authors proposed to use
two-site Bose~Hubbard model that is valid under some physical conditions for interacting condensates [22].

In [23] we examined weakly coupled one dimensional matter-wave bright solitons operating in a non-
moving regime. We have shown that soliton superposition, NOON-state, is formed in the limit of Schrodinger-
cat state only under certain requirements on parameters of the system. The sensitivity beyond Heisenberg limit
was predicted.

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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In this sense it is important to answer the question: can we obtain any benefits for metrological purposes
with interacting condensates considered beyond two-mode approximation? In other words, what is the
fundamental limit for the phase estimation and measurement if we use quantum field structures like solitons?

Before we answer these questions in the paper, some important features of solitons in quantum domain are
worth mentioning. In particular, quantum field theory predicts that the average value of quantum soliton field
amplitude represents superposition of classical solitons having different phase velocities [24]. Physically, it
means that nonlinear phase contribution to quantum soliton behavior is non-trivial: the phase self-modulation
compensates dispersion only on average, see [24]. The squeezing effect of quantum fluctuations and
entanglement manifest this behavior, see [25, 26].

Strictly speaking, considering quantum solitons we deal with nonlinear quantum metrology approach based
on many-body interactions [27, 28]. The nonlinear phase shift is the subject of measurement and estimation in
this case [29, 30]. It is shown that super-Heisenberg (SH) scaling, which is beyond Heisenberg limit, might be
attained even with coherent (semiclassical) probes [31].

The material of the paper is arranged as follows. In section 2 we consider ultimate scaling for nonlinear phase
estimation accessible with quantum matter-wave soliton which we map onto single-mode (Goldstone)
Hamiltonian. In section 3 we represent quantum field theory of moving solitons suitable for metrological
purposes. We analyse various dynamical regimes for that. In section 4 the conditions and prerequisites of NOON-
state formation with matter-wave solitons are established. Soliton coordinate and momentum represent new
additional variables in this case which introduce some new important peculiarities in the measurement
procedure of phase characteristics in the framework of quantum metrology. The sensitivity of coupled solitons’
parameters estimation is discussed in section 5. In section 6 we summarize the results obtained.

2. Quantum solitons as a metrological tool

We start with the description of BEC given in Heisenberg representation. The dimensionless Hamiltonian
describing dilute 1D atomic condensate looks like

onMxﬂ+mmﬂwmm (1)

where fb (x, t) (12;r (x, t))is a quantum field annihilation (creation) operator obeying bosonic commutation
relations. We suppose that condensate is strongly trapped in the transverse yz plane that implies 2D harmonic
potential, and U, (x) is a trapping potential in the third x dimension that is of our interest. In equation (1)
u = 2m|ag|/ao characterizes Kerr-like atomic nonlinearity, a,. is an s-wave scattering length (in the paper we
focus on attractive particles with negative scattering length which is already accounted in (1)), ag = /%2 /muwy is
a characteristic trap size and wy is a harmonic trap frequency in a radial direction. All the variables in (1) are given
in dimensionless units. In particular, all space variables are normalized on ay: x, y, z — x/aq, y/a¢, z/ae,and
time is normalized on wy: t — wyt.

For a moderate number of particles 12) (x, t) admits factorization [19]

P(x, 1) = a()V(x), ()
where d(t) is a time dependent operator characterizing quantum properties of a single condensate mode, ¥(x) is
a C-number responsible for condensate spatial distribution, which is taken independent on N.

Notice that quantization of condensate field implies quantization of particle number operator defined as

A

N = a'a. 3
Substituting (2) into (1) and using (3) for effective (single quantum mode) Hamiltonian one can obtain:
A = iUN — 0LN7, )
where we defined
1 97
AVES fdxqf*(x)(—gw + Utr(x))‘lf(x), )]
_u 4
JURS f XU, ©)

Equations (4)—(6) reflect a commonly used approach to condensate dynamical description if spatial degree of
freedomis reduced [12, 19, 21, 22, 32]. The numerical values of condensate parameters in (5), (6) can be
obtained via Gaussian variational anzatz for W(x) wave-function.

Let us now examine bright (non-moving) soliton solution case. At first, it is instructive to examine the
problem in classical limit. Classical (C-number) description implies convenient Gross—Pitaevskii equation
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1 92 )
= —m)p — 7
w St u Py @)
obtained for condensate ‘wave-function’ w (x, t) — 1 (x, t)if condensate fluctuations are completely neglected
[32]. The bright (non-moving) soliton solution of equation (7) is (see (2))

Yx, t) = Nf sech[Nzux]eiN?'zf, (3

and obey normalization condition, f |)Pdx = N, where N = <1\7 ) is an average particle number. In the

framework of field theory it is possible to consider classical Hamilton function corresponding to equation (7)
with U, = 0, which looks like (see [33])

H= [den t)(—l% - Sl t>|2)w(x, 0. ©)

Substituting equation (8) into (9) we immediately obtain

H=-— N43fdx( hZ[ 2] h2[N;’x]) (10)

Performing integration in (10) weget H = — %. Then taking into account quantization condition (3) one can
represent corresponding Hamiltonian operator as
Ao = — LK, (11)
where
2
Qs =L (12)
24

Thus, equation (11) represents effective (single mode) Hamiltonian in quantum domain for bright soliton
solution, see (4)—(6). One can see that the nonlinear structure of soliton field provides much higher power in
respect to condensate quantum field (mode) operators @' and 4, see (4) and (11).

In the framework of quantum metrology we are interested in precise estimation of some parameter x
bounded by a quantum Cramer—Rao bound [34, 35]

1
U JFg
where /is anumber of experimental runs, F,is a quantum Fischer information. Without loss of generality, the

unknown value x = €2;mightbe inferred from the measurement procedure characterized by a unitary operator
U = exp[ixG], where G is a generator of state transformation. In the case of pure states, the Fisher 1nf0rmat10n

Ax > (13)

is characterized by dispersion of G [30]. As a result, one can show that for enough small y < 1and G = N*, the
X-parameter estimation scales as

Ax x % (14)

Thereafter we remove /v -factor for simplicity.

It follows from (14), that ultimate precision of measurement a condensate effective energy, x = 2o,
determined by (4) is

which clearly corresponds to familiar Heisenberg limit [35].
An accurate measurement of x = 2, ~ u—parameter according to its definition in (6) for nonlinear
(‘Kerr-like’) phase shift implies maximal scaling

1
Ax = N (16)
Itis important that one can surpass the Heisenberg limit (15) and obtain Ax o 1/N>/2 measuring nonlinear
phase shift with coherent probes, see (16) and [31].
The equation (14) demonstrates one important result of this paper for quantum solitons considering them

in a single mode approximation: maximal scaling is
Ax = —, 17)

which is obtained from (14) with k = 3, see (4).
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Figure 1. A sketch of counter-propagating matter-wave bright solitons with momenta ﬁ) = ﬁ = P/2 and relative distance ¢
which are measured via solitons’ nonlinear relative phase estimation. The platform is represented by two highly asymmetric (cigar-
shape) condensates which are trapped in a double-well potential. d is the distance between trap centers, it can be explored by tailoring
tunneling rate, k.

3. Quantum model of coupled matter-wave solitons

3.1. Quantum field approach
From the practical point of view it is more convenient to consider an interferometer consisting of two-mode
condensate trapped in a double-well potential [23]. The Hamiltonian of the system under consideration is

H=H+H+ Hu (18a)

where PAI] (j = 1,2)is the Hamiltonian for condensate particles in jth well, see (1); while H., accounts the inter-
well coupling between two sites. In the second quantization form we explicitly have

N N 2 Tt N n
Hj=fdx¢;(x)(—%% - % ,-(x)il)j(x))wj(x); (18b)
A = & [[dxlly ()7 () + hec, (18¢)

where x denotes the inter-well tunneling rate and depends on the distance between the traps, see figure 1.

Schrédinger picture is more suitable for the analysis of the system described by (18). Further we restrict
ourselves by the Hartree approach justified in a large particle number limit [23]. The N-particle ground state
vector, | W)y, can be written in this case as a product of N single-particle states

1 o . P N
Wy = | [ b+ w10, 19)

where [0) = |0);]0), is a two-mode vacuum state; ¥, and ¥, are unknown time-dependent soliton ‘wave-
functions’ for which normalization condition
oo

W) = [ AUP + BP)dx = 1 20)

is satisfied. In this case, the bosonic field annihilation operators act on the state vector (19) as follows:
Ui W)y =GN [U)y_1,j =1, 2. (1)

We can find the functions ¥; by variational approach, conventionally used in the field theory [19]. In
particular, using (19) and (21) with (18) we obtain the Lagrangian density of coupled condensates in the form:

2 . 2
1 : g 1| 0Y; u(N — 1)
L= SN — ] — = | L 2 g
jzl(z[ i = i 2| ox 2 %1
— (T, + U0, (22)

Notice that in (22) we have omitted the common factor, N, describing the mean total number of particles. Itisa
constant so, as a common factor of Lagrangian terms, it makes no contribution to soliton dynamics.
Varying (22) for the independent field variables ¥; and W,, we obtain coupled equations

iy, = L0 g NP, + KT (23)
at 1,2 2 axz 1,2 1,2 1,2 2,1

Since N >> 1inequation (23) we suppose that N — 1 & N.
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Equation (23) in the limit of x = 0 admit exact moving soliton solution, see (8):

p2
0 — _\/7 sech[—(x — xoj — P; t)]expl —t— 1—t + iPi(x — Xoj)], (24)

where xo;and P; play the roles of jth soliton initial average center position and momentum, respectively. In
equation (24) we use normalization condition f |T[Pdx = N; / N thatleads to (20).

3.2. Basic equations
We suppose that weak coupling between solitons does not change the form of soliton envelope for which we
consider wave-function ansatz, see (24), in the form:

N; ulN; -

where Nj(t), 0)(1), X;(t) and P(#) are jth soliton’s particle number, phase, coordinate and momentum,
respectively, which now are time-depended (variational) parameters. Thereafter, using Galilean invariance, we

examine soliton properties in the reference frame supposing P; = —P,in (25).
By plugging (25) into (22) and averaging it, one can obtain an effective Lagrangian
2
L_f Ldx = —0z +5—pr—+ k(A + D22 — Ir, (26)

where dots denote derivatives with respect to time ;6 = X, — X,P =P, — P,z = % andf = 0, — 0,

are new variables minimally required for characterization of solitons’ dynamics; A = IIIT is a vital parameter of
the system. In (26) we omit common factors and constant terms unimportant here. In (26) we also made a
definition

_ f cos[@ + 2Px'/uN]dx’ 27)
s cosh[x’ — zuN6/4] + cosh[zx’ — uNé/4]
With the Lagrangian (26), one can obtain the following variational equations for canonically conjugate
soliton parameters:
; 10
0=Az— ——[(1 — z)I]; 28a
> 5% [( )] (28a)
1 oI
> — (1 — ZZ —; 28b
z 2( ) 50 (28b)
: p ol
b= — + (1 — 22 —_— 28¢
» ( ) 5P (28¢)
. ol
P = — 1 — Zz - 28d
( ) 5% (284)

where dimensionless time 7 = 2kt is used.

4. Soliton dynamics

4.1. Small-amplitude oscillations
The set of equations (28) characterizes a model of interacting solitons in the presence of their motion, see
[23, 36]. This motion introduces some new important features which might be practically useful in the case of
quantum measurement realization.

We start our analysis from small-amplitude inter-well oscillations occurring for the condensate population
imbalance, z, see [37]. Fortunately, in this limit it is possible to approximate functional (27) as:

2 sm[ ](1 — 0.2122) cos [0]
sinh [uN6 /4] sinh [27P/uN ]

~

= Iy(P, 6)(1 — 0.21z%) cos[0]. (29)

Direct numerical analysis of I revealed the fact that (29) is valid within the domain |z] < 0.2 and
[P, 18] < 0.1with arelative error about 1.5%. In this limit (284) and (28b) read

0 = z(A + 1.211, cos[0)); (30a)
z= —%Io sin[6]. (30b)
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Figure 2. Phase difference (a), population imbalance (b), distance between solitons (c), and solitons’ relative momentum (d) versus
scaled dimensionless time 7 for in-phase (blue solid curves) and out-of-phase (red dashed-and-dotted line) solitons’ parameters with
A = 3and A = 2, respectively. The initial conditions are following: z(0) = 0.1,(0) = 10 >, P(0) = 10 >,and x = 0.1 in
dimensionless units. The initial phase differences (0) = 0 and 6(0) = = for the in-phase and out-of-phase solitons, respectively.

In (29) and (30) I defines inter-well tunneling current amplitude, see [37]. If we additionally assume P < 1 and
6 < 1,then Iy approaches

Iy ~ 2(1 _¥NE P ) (31)
96 3u’N?

For numerical estimations we examine } Li condensate containing N ~ 10° attractive particles. The
scattering length, a;,. = —1.45 nm, is a tunable variable through Feshbach resonance [38, 39]. Trap
characteristic length, ay &~ 7 um, achieved withw = 27w x 29 Hz. The condensate density in the trap center,

n = Na, °, in this case isabout 3 x 10" cm . The particle interaction energy, UN = %, is 1.83 nKin

temperature units and corresponds to uN = UNkg /hw ~ 1.3. The inter-well tunneling rate,
K = /wr/kg = 0.14 nK, impliesk = 0.1and A = 1.
At first, we examine in-phase soliton dynamics with average (in time) phase behavior around 6 = 0, see the
blue curves in figure 2. From (30) we obtain
0 = z(A + 2.42); (32a)
z=—0. (32b)

Equations (32) describe small amplitude harmonic oscillations of the population imbalance, z, with a

frequency wy = /(2.42 + A), thatis clearly seen in figure 2(b).
To examine temporal behavior of the distance between solitons, 6, and momentum, P, we combine (28¢) and
(28d) obtaining one second-order differential equation for é:

2 2
0= 16 cos[9](A - 7T—cos[@]) + 2 p sin[6]. (33)
3 3 6K

In (33) one can omit rapidly oscillating terms characterizing population imbalance, z, and phase difference,
0, see figures 2(a)—(d). As a result, we obtain

« 1{ 72
0= ——|— — A|b,
3(3 ) >4
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Figure 3. The same as in figure 2 but for the in-phase solitons with A = 4. Initial conditions are the same.

7I'2

where A, = = ~ 3.29 isacritical value of parameter A relevant to soliton distance behavior. Particularly, in

2 2
domain A < %, 0 possesses small amplitude oscillations with frequency €y = %(% — A) thatis shown in

figure 2(c) by the blue solid curve. Similar oscillatory behavior is inherent to P as it is seen from figure 2(d).

Otherwise,at A > %2, solitons tend to separate, that is confirmed by numerical simulations of (28) and
shown in figure 3. In particular, the distance between two solitons and their momentum difference
exponentially grow and some certain population imbalance establishes as a result, see figures 3(b)—(d). Also
notice that this dynamic regime is characterized by a running phase difference, 6.

Now let us switch our attention to the out-of-phase soliton interaction regime with average (in time) 6 ~ .
The red dashed lines in figure 2 demonstrate soliton parameter dynamics in this case. Small amplitude
oscillations of zoccur with frequency w, = /(2.42 — A), see figure 2(b). This solution is valid only for
A < 2.42. Simultaneously, small-amplitude oscillations of 6 and P happen with the frequency
Q. = %(%2 + A) , see figures 2(c), (d).

Our estimations and figure 2 clearly demonstrate the important relations between characteristic frequencies
which are wy/w, > 1,90/, < 1,see[37].

The analysis of (28) is quite complicated in a general case. Figure 4 reflects essentially nonlinear behavior of
solitons’ parameters. The dynamics starts from the running regime of the phase difference, figure 4(a). The
parameters of the system correspond to self-trapping for population imbalance in this case. Then, the system
enters to large amplitude (nonlinear) Rabi-oscillations shown in figure 4(b). The figure 4(a) shows that the
phase, 0, admits oscillations in this case.

Itis important to emphasize that these features of zand 6 are inherent to moving solitons only and caused by
the other soliton parameters influence, see [23, 36]. Actually, the parameters ¢ and P behave unstable and possess
highly anharmonic but small amplitude persistent oscillations.

4.2. The steady-states

The set of equations (28) for static (non-moving) solitons admits steady-state solutions which are important for
quantum measurement purposes [23]. Particularly, we are interested in an extreme case of the population
imbalance, z = £1. From (28) we have
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Figure 4. The same as in figure 2 but for the out-of-phase solitons with A = 5. Initial conditions are the same.

0 = (A + I)sign(z);

z=0;
: 1
6 = —P;
2K
P=0.

In this limit one can evaluate functional (27) analytically as

™

I= —sech[
2

7P Pé
— 0 + si — |~ A 0
» ]cos[ sign(z) 5 ] cos[0]

TP

(35a)
(35b)

(35¢)

(35d)

(36)

with A = = sech| ™2 | cos| £ |. The last expression in (36) is valid for 7 < 7, = 2Ky /P. Thus, the
2 2

uN

measurement procedure should be performed within the time #,,c,s < 7. The numerical estimations
performed for Lithium condensate solitons with §; ~ 0.1 and P ~ 0.25lead to time 7., ~ 0.08 which
corresponds to experimentally accessible values of &, ~ 0.7 um, P ~ 0.036 /7 pm~'and ., >~ 2.16 mstakenin

physical units.

As aresult, equation (36) can be taken as time-independent for small 7 and steady-state solution of (354)

looks like

z(f:l;

0y = arccos[—A/A].

(37a)
(37b)

Notably, in the limit of non-moving solitons we put P = 0in (37b) and the phase difference takes the form

0y = arccos[—2A /7], seein [23].

5. Quantum measurements with traveling solitons

5.1. Projection measurement procedure

The results obtained in (37) with population imbalances, z = %1, enable to consider a macroscopic quantum
superposition NOON-state. Two ‘halves’ of the NOON-state can be obtained substitutingz = £1 into (25) and

then into (19)

e} R . N
1) = | [ w0 e o),

il

(33)
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where W(x) = sech| —x |. I'he -state now represents a quantum superposition o :
here U(x) = Y sech [ ¥x]. The NoON P q perposition of (38)
1 .
NOON) = —(|+) + e Noo|—)), (39)
I ) ﬁl ) [-)

where we omitted the common phase factor eN?> and introduced the phase difference between two soliton
states; 0 is the phase difference defined in (37b).

Note that equation (37b) is valid if inequality A < |A]is fulfilled. Physically, this condition implies certain
restrictions for A-parameter that determines NOON-state formation domain. In the limit of non-moving
solitons, one gets0 < A < 7/2. On the other hand, NOON-state formation becomes impossible since A — 0 as
faras P — oo.

Consider a projectile measurement procedure with state (39) introducing an operator (see [40]):

S =) (=l =) (L (40)
Asaresult, for the average value of X-operator (40), we obtain
() = cos[Nb] (41)
with a dispersion
((AD)2) = sin2[N6,]. (42)

As seen from (41), the solitons’ phase shift, 8y, occurs in combination with a particle number, N, and as a
result, is super-resolved. Actually, an arbitrary parameter, ;, relaying to §, can now be estimated with sensitivity
determined by the error propagation formula (see [41]):

(43)

Factor N on the right-hand side in (43) indicates that the Heisenberg limit can be achieved if 6, depends on
linearly. To overcome this limit, we use a nonlinear metrology approach, see [27, 28, 30].

5.2. Solitons’ distance and momentum measurements

In general, the solitons’ phase difference, 6, is a complicated quantity containing the information about atomic
condensate material parameters, solitons’ position, and momentum differences. Hence, these parameters might
be subjects of estimation in a quantum domain. We start from accuracy of §, or P-parameter measurements.
Practically, such measurements seem to be actual in the framework of high resolution imaging and quantum
lithography exploiting matter-wave peculiarities, see [13, 14]. The SQL of the measurements can be derived
from the following simple arguments.

Suppose that the phase, 6, between two interfering counter-propagating atomic matter waves is ¢ = P§/h
(here we use actual physical units). The uncertainty in -measurement implies minimum detectable
displacement A§ = hAG/Pat fixed P. the SQL of phase measurement is Af = 1/+/N, for displacement
measurement we obtain

(Ad)sqL = 7% /NP. (44)
Similar arguments bring us to the SQL formulation for momentum difference measurement
(AP)sqr = /i /JN6. (45)

Itis important to stress that since the measurement time is small enough, we do not consider SQL occurring
due to time dependent measurements for the soliton position and momentum, see [42].

Taking into account (37b) and definition (43), the solitons’ position difference, y = 6y, can be estimated
with precision

Ab. — 32K VA2 — N (46)
"7 Nopu2 tan [P8y/2] |

Figure 5 exhibits the dependence of o, = Ax /AX;q; on normalized particle number, n = N/Np, where Ny
is a maximal average number of condensed atoms. It follows from figure 5 that SH sensitivity of §, measurement
occurs in the vicinity of points 71,,,;,, and #1,,,,, when A approaches A (definition of n presumes 71,,,,, = 1). The
region between these points determines a domain of solution represented by equation (37b). This region
decreases with increasing relative momentum, P. Particularly, if P — 0, then n,,;, — 0; asa result we obtain
Ay — 7/2 thatisalimit of non-moving solitons [23]. In the limit of P — 00, n,;, — land Ay — 0.

9
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—P=0.60; A, =0.70
1.2}~ P=065A,=063
P=0.70; A, = 0.56

0.8}
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0.2 0.4

Figure 5. Error propagation for normalized relative coordinate measurement accuracy o, = Ax/(Ax)sqr (X = &) versusn = N/
No. The parameters are following: Ny = 10%, uN, = 1.3 (A, = A),and §, = 0.1. Straight (red) line o, = lindicates measurement at
SQL.
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Figure 6. Error propagation for Y = u?-parameter. The parameters are the same as in figure 5.

We can perform an estimation of soliton momentum difference in separate or subsequent measurements
due to uncertainty relation that takes place for the quantum soliton coordinate and momentum [24]. The
propagation error, AP, looks like

32K VA — N2

AP = ' "
N3u? j—;tanh [%] + o tan [Py /2]

For ¢y < j_:; ~ 4.8, equation (47) approaches

16K NAE — N2

A= 7N’u | tanh [:—;]

(43)

Equation (48) is relevant to numerical estimations considered in the paper.
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In the opposite limit, i.e. for §, > ~ the equation (47) takes the form

2 _ A2
AP — 32K A N . (49)
N3u?6, | tan[Péy/2]

Formally equation (49) predicts better scaling for momentum estimation than (48) if P§,/2 is close to wk/2
(k =0,1,2,...). However in this case A-parameter tends to A and domain of accessible N collapses. In practice,
equation (48) demonstrates better accuracy that obtained when Pd,/2 approaches mk.

5.3. Measurement of condensate material parameters
The soliton NOON-state (39) provides measurement of y = uz—parameter with error, see [23],

16k N

Ax = —
N3 | L= tanh[ﬂ]
2 Nu Nu

(50)

The result obtained in (50) is in agreement with maximal scaling predicted in equation (17).

Figure 6 demonstrates SH sensitivity (50) of 1* measurement performed with fixed (known) values of P, 6,
and k. [tis important to stress that for experimentally accessible condensate parameters, all the curves are
situated essentially below the Heisenberg limit. Equation (50) diverges when the denominator goes to zero. In
this limit, we are not able to use equation (50) for our purposes. In this limit, we are not able to use equation (50)
for our purposes, see figure 6.

6. Conclusion

In summary, we have theoretically studied the ultimate sensitivity of measurement of matter-wave quantum
solitons’ parameters using the nonlinear metrology approach. We have shown that nonlinear structured
quantum fields, which are bright quantum solitons, provide a unique opportunity to achieve SH scaling
(<1/N?/2) even with coherent probes. More accurate description of the problem being under discussion is
based on the studies of two weakly-coupled elongated BECs trapped in a double-well potential in zy plane.
Various dynamical regimes for solitons’ parameters: population imbalance, relative phase, momentum, and
coordinate, are examined in detail to elucidate experimentally accessible parameters for the estimation
procedure. We have shown that steady-state solutions for population imbalance and phase difference exist
within some parameters’ window (at relatively short times) and provide maximally entangled NOON-state
formation with moving quantum solitons. Then, we use soliton NOON-state to perform the estimation
procedure of solitons’ parameters by using the solitons’ nonlinear relative phase. Particularly, the propagation
measurement error of solitons’ parameters, namely the relative coordinate and momentum, and u*-parameter,
proportional to atom—atom scattering length squared, scales as 1/N°. Applying these parameters’ measurements
for current quantum metrological purposes looks promising.

In the paper we have focused mostly on (projective) measurement procedure with soliton NOON-states to
elucidate phase estimation beyond Heisenberg limit. Notably, the same SH limit might be attained with parity
measurement scheme, see [23, 43]. Let us briefly discuss how to create NOON-states with solitons described
above. We are confident that it is a non-trivial task and it opens new challenges both in theory and experiment.
We find the protocol suggested in [20] the most suitable for these purposes. One can prepare NOON-state
dynamically starting from the state |¥(6(0))) = SN C,e " ©|N — n, n), where [N — n, n)isatwo-mode
Fock state, C,, characterizes initial (binomial) distribution, and # (0) is an initial phase difference. Next, it is
necessary to construct appropriate two-soliton Hamiltonian which is relevant to a two-mode approach in the
framework of procedure described in equations (7)—(12) Then, applying an evolution operator with this
Hamiltonian after some time interval (defined by characteristic parameters of solitons) one can obtain
superposition (Schrodinger-cat or NOON) states like in equations (38), (39) Notably, as it was shown in [20], two
halves of NOON-state are shifted by 7 in §-phase domain which is in agreement with results that we exploit in
equations (38), (39). Actually, the phase difference 6, = 6,(0) in (37b) represents a steady-state solution and goes
to 7 in the non-moving solitons limit for critical value A = 1.58, see [23].

Obviously, decoherence and losses represent very important problem at the stage of NOON-state formation
[20]. We discussed various aspects of this problem for non-moving quantum bright solitons in [23]. Many-body
effects including single and two-body losses should be considered [44]. In forthcoming publications, we plan to
examine the influence of these effects on our model in details.
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