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Abstract
The estimation of some parameters with super-Heisenberg (SH) sensitivity, i.e. beyondHeisenberg
limit, is one of the principal problems for current quantummetrology.We propose to use Bose–
Einstein condensate quantumbright solitons for this purpose.We have shown that solitons, as
quantumnonlinear structured field objects, allow SHphase estimation evenwith coherent probes in
the framework of a nonlinearmetrology approach. To achieve ultimate scaling in nonlinear phase
estimation, which is 1/N3, we examine soliton phase shift occurring due to interaction of weakly
coupled 1D solitons.Wehave shown that steady states of coupled solitons can be used for the
formation ofmaximally path-entangledN00N-state providingminimal propagation error of solitons’
relative distance,momentum, and atom–atom scattering length parameter.

1. Introduction

Over the past decade, rapidly growing experimental facilities in quantum technologies have led to an increasing
interest in quantummetrology and sensing [1, 2].Many important applications, such as gravitational waves
detection interferometers [3], frequency standards and atomic clocks [4, 5], magnetometers [6], quantum
gyroscopes [7], thermometry of living cells [8], or high resolution imaging in biology [9] require to achieve
ultimate sensitivity for some vital parameters, defined by quantum limitations ofmeasurement accuracy. The
measuring schemes, which should be highly phase-sensitive, propose an estimation of the phase shift containing
all the information about the required parameter, see [10, 11].

In quantumoptics,measurements formetrological purposes typically base onMach–Zehnder
interferometers operatingwith fewphotons (discrete variables) orwith bright light beams containing a large
average number of photons (so-called continuous variables [9]). In atomic optics domain,matter-wave
interferometers commonly explore two internal state operations corresponding to a two-mode optical
interferometer design [1].

Previously it was shown (see e.g. [12]) that twoweakly coupled Bose–Einstein condensates (BEC) represent a
versatile platform formetrological purposes in the framework of linear phase-sensitivemeasurements. In
particular, Josephson and Fock regimes of interacting condensates allow to enhance accuracy of phase
measurement beyond standard quantum limit (SQL), N1 , whereN is an average number of particles
involved in ameasurement scheme.Moreover, it was shown that so-calledHeisenberg limit,N−1,might be
saturatedwithmaximally entangledN-particleN00N-state in the framework of two-modemodel approach
[13, 14]. In this sense,N00N-state producedwith amoderate number of particles represents a vital problem for
currentmetrology and sensing. Some proposals are realizedwith a few number of particles [15–18]. The
formation of robustN00N-states with atomic condensates is discussed in [19–21]where authors proposed to use
two-site Bose–Hubbardmodel that is valid under some physical conditions for interacting condensates [22].

In [23]we examinedweakly coupled one dimensionalmatter-wave bright solitons operating in a non-
moving regime.We have shown that soliton superposition,N00N-state, is formed in the limit of Schrödinger-
cat state only under certain requirements on parameters of the system. The sensitivity beyondHeisenberg limit
was predicted.
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In this sense it is important to answer the question: canwe obtain any benefits formetrological purposes
with interacting condensates considered beyond two-mode approximation? In otherwords, what is the
fundamental limit for the phase estimation andmeasurement if we use quantumfield structures like solitons?

Beforewe answer these questions in the paper, some important features of solitons in quantumdomain are
worthmentioning. In particular, quantumfield theory predicts that the average value of quantum soliton field
amplitude represents superposition of classical solitons having different phase velocities [24]. Physically, it
means that nonlinear phase contribution to quantum soliton behavior is non-trivial: the phase self-modulation
compensates dispersion only on average, see [24]. The squeezing effect of quantumfluctuations and
entanglementmanifest this behavior, see [25, 26].

Strictly speaking, considering quantum solitonswe deal with nonlinear quantummetrology approach based
onmany-body interactions [27, 28]. The nonlinear phase shift is the subject ofmeasurement and estimation in
this case [29, 30]. It is shown that super-Heisenberg (SH) scaling, which is beyondHeisenberg limit,might be
attained evenwith coherent (semiclassical) probes [31].

Thematerial of the paper is arranged as follows. In section 2we consider ultimate scaling for nonlinear phase
estimation accessible with quantummatter-wave solitonwhichwemap onto single-mode (Goldstone)
Hamiltonian. In section 3we represent quantumfield theory ofmoving solitons suitable formetrological
purposes.We analyse various dynamical regimes for that. In section 4 the conditions and prerequisites ofN00N-
state formationwithmatter-wave solitons are established. Soliton coordinate andmomentum represent new
additional variables in this case which introduce some new important peculiarities in themeasurement
procedure of phase characteristics in the framework of quantummetrology. The sensitivity of coupled solitons’
parameters estimation is discussed in section 5. In section 6we summarize the results obtained.

2.Quantum solitons as ametrological tool

We start with the description of BEC given inHeisenberg representation. The dimensionlessHamiltonian
describing dilute 1D atomic condensate looks like

H x x t
x

u
x t x t U x x td ,

1

2 2
, , , , 1

2

2 trò y y y y= -
¶
¶

- +
⎛
⎝⎜

⎞
⎠⎟ˆ ˆ ( ) ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( )† †

where x t,ŷ ( ) ( x t,ŷ ( )† ) is a quantumfield annihilation (creation) operator obeying bosonic commutation
relations.We suppose that condensate is strongly trapped in the transverse yz plane that implies 2Dharmonic
potential, andUtr(x) is a trapping potential in the third x dimension that is of our interest. In equation (1)
u a a2 sc 0p= ∣ ∣ characterizes Kerr-like atomic nonlinearity, asc is an s-wave scattering length (in the paperwe
focus on attractive particles with negative scattering lengthwhich is already accounted in (1)), a m0 0 w= is
a characteristic trap size andω0 is a harmonic trap frequency in a radial direction. All the variables in (1) are given
in dimensionless units. In particular, all space variables are normalized on a0: x y z x a y a z a, , , ,0 0 0 , and
time is normalized onω0: t t0w .

For amoderate number of particles x t,ŷ ( ) admits factorization [19]

x t a t x, , 2y = Yˆ ( ) ˆ ( ) ( ) ( )

where a tˆ ( ) is a time dependent operator characterizing quantumproperties of a single condensatemode,Ψ(x) is
a C-number responsible for condensate spatial distribution, which is taken independent onN.

Notice that quantization of condensatefield implies quantization of particle number operator defined as

N a a. 3=ˆ ˆ ˆ ( )†

Substituting (2) into (1) and using (3) for effective (single quantummode)Hamiltonian one can obtain:

H N N , 4Leff 2
2 = W - Wˆ ˆ ˆ ( )

wherewe defined

x x
x

U x xd
1

2
, 5L

2

2 tr* òW = Y -
¶
¶

+ Y
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )

u
x x

2
d . 62

4 òW = Y∣ ( )∣ ( )

Equations (4)–(6) reflect a commonly used approach to condensate dynamical description if spatial degree of
freedom is reduced [12, 19, 21, 22, 32]. The numerical values of condensate parameters in (5), (6) can be
obtained viaGaussian variational anzatz forΨ(x)wave-function.

Let us now examine bright (non-moving) soliton solution case. Atfirst, it is instructive to examine the
problem in classical limit. Classical (C-number) description implies convenient Gross–Pitaevskii equation

2
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obtained for condensate ‘wave-function’ x t x t, ,y yˆ ( ) ( ) if condensate fluctuations are completely neglected
[32]. The bright (non-moving) soliton solution of equation (7) is (see (2))

x t
N u Nux

,
2

sech
2

e , 8ti N u2 2
8y =

⎡
⎣⎢

⎤
⎦⎥( ) ( )

and obey normalization condition, x Nd2ò y =∣ ∣ , where N N= á ñˆ is an average particle number. In the
framework offield theory it is possible to consider classical Hamilton function corresponding to equation (7)
withUtr=0, which looks like (see [33])

H x x t
x

u
x t x td ,

1

2 2
, , . 9

2

2
2*ò y y y= -
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Substituting equation (8) into (9)we immediately obtain

H
N u

x
Nux Nux

32
d tanh

2
sech

2
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Performing integration in (10)we get H N u

24

3 2

= - . Then taking into account quantization condition (3) one can
represent correspondingHamiltonian operator as

H N , 11eff 3
3= - Wˆ ˆ ( )

where

u

24
. 123

2

W = ( )

Thus, equation (11) represents effective (singlemode)Hamiltonian in quantumdomain for bright soliton
solution, see (4)–(6). One can see that the nonlinear structure of solitonfield providesmuch higher power in
respect to condensate quantum field (mode) operators â† and â, see (4) and (11).

In the framework of quantummetrologywe are interested in precise estimation of some parameterχ
bounded by a quantumCramer–Rao bound [34, 35]

F

1
, 13

Q

c
n

D ( )

where ν is a number of experimental runs, FQ is a quantumFischer information.Without loss of generality, the
unknown valueχ;Ωjmight be inferred from themeasurement procedure characterized by a unitary operator
U Gexp ic=cˆ [ ˆ ], where Ĝ is a generator of state transformation. In the case of pure states, the Fisher information

is characterized by dispersion of Ĝ [30]. As a result, one can show that for enough smallχ=1 and G N
k=ˆ ˆ , the

χ-parameter estimation scales as

N

1
. 14

k
cD µ ( )

Thereafter we remove n -factor for simplicity.
It follows from (14), that ultimate precision ofmeasurement a condensate effective energy,χ=Ω0,

determined by (4) is

N

1
, 15cD = ( )

which clearly corresponds to familiarHeisenberg limit [35].
An accuratemeasurement ofχ=Ω2;u—parameter according to its definition in (6) for nonlinear

(‘Kerr-like’) phase shift impliesmaximal scaling

N

1
. 16

2
cD = ( )

It is important that one can surpass theHeisenberg limit (15) and obtain N1 3 2cD µ measuring nonlinear
phase shift with coherent probes, see (16) and [31].

The equation (14)demonstrates one important result of this paper for quantum solitons considering them
in a singlemode approximation:maximal scaling is

N

1
, 17

3
cD = ( )

which is obtained from (14)with k=3 , see (4).
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3.Quantummodel of coupledmatter-wave solitons

3.1.Quantumfield approach
From the practical point of view it ismore convenient to consider an interferometer consisting of two-mode
condensate trapped in a double-well potential [23]. TheHamiltonian of the systemunder consideration is

H H H H a, 181 2 int= + +ˆ ˆ ˆ ˆ ( )

where Hj
ˆ ( j=1, 2) is theHamiltonian for condensate particles in jthwell, see (1); while Hint

ˆ accounts the inter-
well coupling between two sites. In the second quantization formwe explicitly have

H x x
x

u
x x x bd

1

2 2
; 18j j j j j

2

2ò y y y y= -
¶
¶

-
⎛
⎝⎜

⎞
⎠⎟ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )† †

H x x x cd h.c., 18int 2 1òk y y= +ˆ ˆ ( ) ˆ ( ) ( )†

whereκ denotes the inter-well tunneling rate and depends on the distance between the traps, see figure 1.
Schrödinger picture ismore suitable for the analysis of the systemdescribed by (18). Further we restrict

ourselves by theHartree approach justified in a large particle number limit [23]. TheN-particle ground state
vector, NYñ∣ , can bewritten in this case as a product ofN single-particle states

N
x

1
d 0 , 19N

N

1 1 2 2ò y yYñ = Y + Y ñ
-¥

¥⎡
⎣⎢

⎤
⎦⎥∣

!
( ˆ ˆ ) ∣ ( )† †

where 0 0 01 2ñ º ñ ñ∣ ∣ ∣ is a two-mode vacuum state;Ψ1 andΨ2 are unknown time-dependent soliton ‘wave-
functions’ for which normalization condition

xd 1 20N N 1
2

2
2òáY Yñ = Y + Y =

-¥

¥
∣ (∣ ∣ ∣ ∣ ) ( )

is satisfied. In this case, the bosonicfield annihilation operators act on the state vector (19) as follows:

N j, 1, 2. 21j N j N 1y Yñ = Y Yñ =-ˆ ∣ ∣ ( )

Wecan find the functionsΨj by variational approach, conventionally used in the field theory [19]. In
particular, using (19) and (21)with(18)we obtain the Lagrangian density of coupled condensates in the form:

L
x

u Ni

2

1

2

1

2

. 22

j
j j j j

j
j

1

2 2
4

1 2 1 2

* *

* *

å

k

= Y Y - Y Y -
¶Y

¶
+

-
Y

- Y Y + Y Y
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟[ ˙ ˙ ] ( ) ∣ ∣

( ) ( )

Notice that in (22)wehave omitted the common factor,N, describing themean total number of particles. It is a
constant so, as a common factor of Lagrangian terms, itmakes no contribution to soliton dynamics.

Varying (22) for the independent field variablesΨ1 andΨ2, we obtain coupled equations

t x
uNi

1

2
. 231,2

2

2 1,2 1,2
2

1,2 2,1k
¶
¶

Y = -
¶
¶

Y - Y Y + Y∣ ∣ ( )

SinceN?1 in equation (23)we suppose thatN−1≈N.

Figure 1.A sketch of counter-propagatingmatter-wave bright solitonswithmomenta P P P 21 2
¾

=
¾

=∣ ∣ ∣ ∣ and relative distance δ
which aremeasured via solitons’nonlinear relative phase estimation. The platform is represented by two highly asymmetric (cigar-
shape) condensates which are trapped in a double-well potential. d is the distance between trap centers, it can be explored by tailoring
tunneling rate,κ.
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Equation (23) in the limit ofκ=0 admit exactmoving soliton solution, see (8):

N u

N

uN
x x P t

N u
t

P
t P x x

2
sech

2
exp i

8
i

2
i , 24j

j j
j j

j j
j j0

2 2 2

0Y = - - - + -
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( )

where x0j andPj play the roles of jth soliton initial average center position andmomentum, respectively. In
equation (24)weuse normalization condition x N Ndj j

2ò Y =∣ ∣ that leads to (20).

3.2. Basic equations
We suppose thatweak coupling between solitons does not change the formof soliton envelope forwhichwe
consider wave-function ansatz, see (24), in the form:

N u

N

uN
x X

2
sech

2
e , 25j

j j
j

P x Xi ij j jY = - q + -
⎡
⎣⎢

⎤
⎦⎥( ) ( )( )

whereNj(t), θj(t),Xj(t) andPj(t) are jth soliton’s particle number, phase, coordinate andmomentum,
respectively, which now are time-depended (variational) parameters. Thereafter, usingGalilean invariance, we
examine soliton properties in the reference frame supposing P1=−P2 in (25).

By plugging (25) into (22) and averaging it, one can obtain an effective Lagrangian

L x z
P P

I z IŁ d
2 4

, 26
2

2ò q
d

k kº = - + - + L + -
-¥

¥
˙ ˙

( ) ( )

where dots denote derivatives with respect to time t; δ=X2−X1,P=P2−P1, z N N

N
2 1= - and θ=θ2−θ1

are new variablesminimally required for characterization of solitons’ dynamics; N u

16

2 2

L =
k
is a vital parameter of

the system. In (26)we omit common factors and constant terms unimportant here. In (26)we alsomade a
definition

I
Px uN x
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. 27ò
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With the Lagrangian (26), one can obtain the following variational equations for canonically conjugate
soliton parameters:

z
z

z I a
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2
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z z
I
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2
1 ; 282

q
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¶
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P
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P
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2
1 ; 282d

k
= + -

¶
¶
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P z
I

d1 , 282

d
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¶
¶
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where dimensionless time τ=2κt is used.

4. Soliton dynamics

4.1. Small-amplitude oscillations
The set of equations (28) characterizes amodel of interacting solitons in the presence of theirmotion, see
[23, 36]. Thismotion introduces some new important features whichmight be practically useful in the case of
quantummeasurement realization.

We start our analysis from small-amplitude inter-well oscillations occurring for the condensate population
imbalance, z, see [37]. Fortunately, in this limit it is possible to approximate functional (27) as:

I
z

uN P uN
I P z

2 sin 1 0.21 cos

sinh 4 sinh 2
, 1 0.21 cos . 29

P

2
2

0
2

p q

d p
d q»

-
º -

d⎡⎣ ⎤⎦( ) [ ]

[ ] [ ]
( )( ) [ ] ( )

Direct numerical analysis of I revealed the fact that (29) is valid within the domain z 0.2<∣ ∣ and
P , 0.1d <∣ ∣ ∣ ∣ with a relative error about 1.5%. In this limit (28a) and (28b) read

z I a1.21 cos ; 300q q= L +˙ ( [ ]) ( )

z I b
1

2
sin . 300 q= -˙ [ ] ( )
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In (29) and (30) I0 defines inter-well tunneling current amplitude, see [37]. If we additionally assume P=1 and
δ=1, then I0 approaches

I
u N P

u N
2 1

96

2

3
. 310

2 2 2 2 2

2 2

d p
» - -

⎛
⎝⎜

⎞
⎠⎟ ( )

For numerical estimationswe examine 3
7 Li condensate containingN≈103 attractive particles. The

scattering length, asc=−1.45 nm, is a tunable variable through Feshbach resonance [38, 39]. Trap
characteristic length, a0≈7 μm, achievedwithω≈2π×29 Hz. The condensate density in the trap center,

n Na0
3= - , in this case is about 3×1012 cm−3. The particle interaction energy,UN a N

ma k

2 sc
2

0
3

B

= p ∣ ∣ , is 1.83 nK in

temperature units and corresponds to uN UNk 1.3B w= »/ . The inter-well tunneling rate,
K k nK0.14Bwk= = , impliesκ=0.1 andΛ=1.

Atfirst, we examine in-phase soliton dynamics with average (in time)phase behavior around θ≈0, see the
blue curves infigure 2. From (30)we obtain

z a2.42 ; 32q = L +˙ ( ) ( )
z b. 32q= -˙ ( )

Equations (32) describe small amplitude harmonic oscillations of the population imbalance, z, with a
frequency 2.420w = + L( ) , that is clearly seen infigure 2(b).

To examine temporal behavior of the distance between solitons, δ, andmomentum,P, we combine (28c) and
(28d) obtaining one second-order differential equation for δ:

z P¨ 1

3
cos

3
cos

6
sin . 33

2 2

d d q
p

q
p
k

q= L - +
⎛
⎝⎜

⎞
⎠⎟[ ] [ ] [ ] ( )

In (33) one can omit rapidly oscillating terms characterizing population imbalance, z, and phase difference,
θ, see figures 2(a)–(d). As a result, we obtain

¨ 1

3 3
, 34

2

d
p

d= - - L
⎛
⎝⎜

⎞
⎠⎟ ( )

Figure 2.Phase difference (a), population imbalance (b), distance between solitons (c), and solitons’ relativemomentum (d) versus
scaled dimensionless time τ for in-phase (blue solid curves) and out-of-phase (red dashed-and-dotted line) solitons’ parameters with
Λ=3 andΛ=2, respectively. The initial conditions are following: z(0)=0.1, δ(0)=10−3,P(0)=10−3, andκ=0.1 in
dimensionless units. The initial phase differences θ(0)=0 and θ(0)=π for the in-phase and out-of-phase solitons, respectively.
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where 3.29cr 3

2

L = »p is a critical value of parameterΛ relevant to soliton distance behavior. Particularly, in

domain
3

2

L < p , δ possesses small amplitude oscillations with frequency 0
1

3 3

2

W = - Lp( ) that is shown in

figure 2(c) by the blue solid curve. Similar oscillatory behavior is inherent toP as it is seen from figure 2(d).
Otherwise, at

3

2

L > p , solitons tend to separate, that is confirmed by numerical simulations of (28) and
shown infigure 3. In particular, the distance between two solitons and theirmomentumdifference
exponentially grow and some certain population imbalance establishes as a result, seefigures 3(b)–(d). Also
notice that this dynamic regime is characterized by a running phase difference, θ.

Now let us switch our attention to the out-of-phase soliton interaction regimewith average (in time) θ≈π.
The red dashed lines infigure 2 demonstrate soliton parameter dynamics in this case. Small amplitude
oscillations of z occurwith frequency 2.42w = - Lp ( ) , see figure 2(b). This solution is valid only for
Λ�2.42. Simultaneously, small-amplitude oscillations of δ andP happenwith the frequency

1

3 3

2

W = + Lp
p( ) , see figures 2(c), (d).

Our estimations andfigure 2 clearly demonstrate the important relations between characteristic frequencies
which areω0/ωπ>1,Ω0/Ωπ<1, see [37].

The analysis of (28) is quite complicated in a general case. Figure 4 reflects essentially nonlinear behavior of
solitons’ parameters. The dynamics starts from the running regime of the phase difference, figure 4(a). The
parameters of the system correspond to self-trapping for population imbalance in this case. Then, the system
enters to large amplitude (nonlinear)Rabi-oscillations shown infigure 4(b). Thefigure 4(a) shows that the
phase, θ, admits oscillations in this case.

It is important to emphasize that these features of z and θ are inherent tomoving solitons only and caused by
the other soliton parameters influence, see [23, 36]. Actually, the parameters δ andP behave unstable and possess
highly anharmonic but small amplitude persistent oscillations.

4.2. The steady-states
The set of equations (28) for static (non-moving) solitons admits steady-state solutionswhich are important for
quantummeasurement purposes [23]. Particularly, we are interested in an extreme case of the population
imbalance, z=±1. From (28)we have

Figure 3.The same as infigure 2 but for the in-phase solitonswithΛ=4. Initial conditions are the same.
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I z asign ; 35q = L +˙ ( ) ( ) ( )
z b0; 35=˙ ( )
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k
=˙ ( )

P d0. 35=˙ ( )

In this limit one can evaluate functional (27) analytically as

I
P

uN
z

P
A

2
sech cos sign

2
cos 36

p p
q

d
q= + »

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) [ ] ( )

with A sech cosP

uN

P

2 2
0º p p d⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦. The last expression in (36) is valid for P2cr 0t t kd= . Thus, the

measurement procedure should be performedwithin the time tmeas<τcr. The numerical estimations
performed for Lithium condensate solitonswith δ0;0.1 andP;0.25 lead to time τcr;0.08which
corresponds to experimentally accessible values of δ0;0.7 μm, P 0.036 m 1 m - and tcr;2.16 ms taken in
physical units.

As a result, equation (36) can be taken as time-independent for small τ and steady-state solution of (35a)
looks like

z a1; 370
2 = ( )

A barccos . 370q = -L[ ] ( )

Notably, in the limit of non-moving solitonswe putP=0 in (37b) and the phase difference takes the form
arccos 20q p= - L[ ], see in [23].

5.Quantummeasurementswith traveling solitons

5.1. Projectionmeasurement procedure
The results obtained in (37)with population imbalances, z=±1, enable to consider amacroscopic quantum
superpositionN00N-state. Two ‘halves’ of theN00N-state can be obtained substituting z=±1 into (25) and
then into (19)

N
x x

1
e d 0 , 38Px

N

2,1
i 2ò yñ = Y ñ

-¥

¥
⎡

⎣⎢
⎤
⎦⎥∣

!
( ) ˆ ∣ ( )†

Figure 4.The same as infigure 2 but for the out-of-phase solitonswithΛ=5. Initial conditions are the same.
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where x xsechNu Nu

2 2
Y = ⎡⎣ ⎤⎦( ) . TheN00N-state now represents a quantum superposition of (38):

N N00
1

2
e , 39Ni 0ñ = +ñ + -ñq-∣ (∣ ∣ ) ( )

wherewe omitted the commonphase factor e Ni 2q and introduced the phase difference between two soliton
states; θ0 is the phase difference defined in (37b).

Note that equation (37b) is valid if inequality AL < ∣ ∣ is fulfilled. Physically, this condition implies certain
restrictions forΛ-parameter that determinesN00N-state formation domain. In the limit of non-moving
solitons, one gets 0<Λ<π/2.On the other hand,N00N-state formation becomes impossible since A 0 as
far as P  ¥.

Consider a projectilemeasurement procedure with state (39) introducing an operator (see [40]):

. 40S = +ñá- + -ñá+ˆ ∣ ∣ ∣ ∣ ( )

As a result, for the average value ofΣ-operator (40), we obtain

Ncos 410qáSñ =ˆ [ ] ( )

with a dispersion

Nsin . 422 2
0qá DS ñ =( ˆ ) [ ] ( )

As seen from (41), the solitons’ phase shift, θ0, occurs in combinationwith a particle number,N, and as a
result, is super-resolved. Actually, an arbitrary parameter,χ, relaying to θ0 can nowbe estimatedwith sensitivity
determined by the error propagation formula (see [41]):

N

1
. 43

2

2
0

1

c
q
c

D =
á DS ñ

=
¶
¶

c
¶ áSñ
¶

-( ˆ ) ( )
ˆ

FactorN on the right-hand side in (43) indicates that theHeisenberg limit can be achieved if θ0 depends onχ
linearly. To overcome this limit, we use a nonlinearmetrology approach, see [27, 28, 30].

5.2. Solitons’distance andmomentummeasurements
In general, the solitons’ phase difference, θ0, is a complicated quantity containing the information about atomic
condensatematerial parameters, solitons’ position, andmomentumdifferences. Hence, these parametersmight
be subjects of estimation in a quantumdomain.We start from accuracy of δ0 orP-parametermeasurements.
Practically, suchmeasurements seem to be actual in the framework of high resolution imaging and quantum
lithography exploitingmatter-wave peculiarities, see [13, 14]. The SQL of themeasurements can be derived
from the following simple arguments.

Suppose that the phase, θ, between two interfering counter-propagating atomicmatter waves is θ=Pδ/ÿ
(herewe use actual physical units). The uncertainty in θ-measurement impliesminimumdetectable
displacementΔδ=ÿΔθ/P at fixedP. the SQL of phasemeasurement is N1qD = , for displacement
measurement we obtain

N P. 44SQL dD =( ) ( )

Similar arguments bring us to the SQL formulation formomentumdifferencemeasurement

P N . 45SQL  dD =( ) ( )

It is important to stress that since themeasurement time is small enough, we do not consider SQL occurring
due to time dependentmeasurements for the soliton position andmomentum, see [42].

Taking into account (37b) and definition (43), the solitons’ position difference,χ≡δ0, can be estimated
with precision

N Pu

A

P

32

tan 2
. 460 3 2

2 2

0

d
k

d
D =

- L
[ ]

( )

Figure 5 exhibits the dependence of SQLs c c= D Dc on normalized particle number, n=N/N0, whereN0

is amaximal average number of condensed atoms. It follows fromfigure 5 that SH sensitivity of δ0measurement
occurs in the vicinity of points nmin and nmaxwhenΛ approachesA (definition of n presumes nmax=1). The
region between these points determines a domain of solution represented by equation (37b). This region
decreases with increasing relativemomentum,P. Particularly, if P 0 , then n 0;min  as a result we obtain

20 pL  that is a limit of non-moving solitons [23]. In the limit of P  ¥, n 1min  and 00L  .
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Wecan perform an estimation of solitonmomentumdifference in separate or subsequentmeasurements
due to uncertainty relation that takes place for the quantum soliton coordinate andmomentum [24]. The
propagation error,ΔP, looks like

P
N u

A

P

32

tanh tan 2
. 47

uN

P

uN

3 2

2 2

2
0 0

k

d d
D =

- L

+p p⎡⎣ ⎤⎦ [ ]
( )

For 4.8
uN0
2d »p , equation (47) approaches

P
N u

A16

tanh
. 48

P

uN

2

2 2k
p

D =
- L
p⎡⎣ ⎤⎦

( )

Equation (48) is relevant to numerical estimations considered in the paper.

Figure 5.Error propagation for normalized relative coordinatemeasurement accuracyσχ=Δχ/(Δχ)SQL (χ≡δ0) versus n=N/
N0. The parameters are following: N 100

3= , uN0=1.3 (Λ0=A), and δ0=0.1. Straight (red) lineσχ=1 indicatesmeasurement at
SQL.

Figure 6.Error propagation for u2c º -parameter. The parameters are the same as in figure 5.
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In the opposite limit, i.e. for
uN0
2d p , the equation (47) takes the form

P
N u

A

P

32

tan 2
. 49

3 2
0

2 2

0

k
d d

D =
- L

[ ]
( )

Formally equation (49)predicts better scaling formomentum estimation than (48) ifPδ0/2 is close toπk/2
(k=0, 1, 2,K). However in this caseA-parameter tends toΛ and domain of accessibleN collapses. In practice,
equation (48) demonstrates better accuracy that obtainedwhen Pδ0/2 approachesπk.

5.3.Measurement of condensatematerial parameters
The solitonN00N-state (39) providesmeasurement ofχ≡u2-parameter with error, see [23],

N

A16

1 tanh
. 50

P

Nu

P

Nu

3

2 2

1

2

c
k

D =
- L

- p p⎡⎣ ⎤⎦
( )

The result obtained in (50) is in agreementwithmaximal scaling predicted in equation (17).
Figure 6 demonstrates SH sensitivity (50) of u2measurement performedwith fixed (known) values ofP, δ0

andκ. It is important to stress that for experimentally accessible condensate parameters, all the curves are
situated essentially below theHeisenberg limit. Equation (50) diverges when the denominator goes to zero. In
this limit, we are not able to use equation (50) for our purposes. In this limit, we are not able to use equation (50)
for our purposes, see figure 6.

6. Conclusion

In summary, we have theoretically studied the ultimate sensitivity ofmeasurement ofmatter-wave quantum
solitons’ parameters using the nonlinearmetrology approach.We have shown that nonlinear structured
quantumfields, which are bright quantum solitons, provide a unique opportunity to achieve SH scaling
( N1 3 2µ ) evenwith coherent probes.More accurate description of the problembeing under discussion is
based on the studies of twoweakly-coupled elongated BECs trapped in a double-well potential in zy plane.
Various dynamical regimes for solitons’ parameters: population imbalance, relative phase,momentum, and
coordinate, are examined in detail to elucidate experimentally accessible parameters for the estimation
procedure.We have shown that steady-state solutions for population imbalance and phase difference exist
within some parameters’window (at relatively short times) and providemaximally entangledN00N-state
formationwithmoving quantum solitons. Then, we use solitonN00N-state to perform the estimation
procedure of solitons’ parameters by using the solitons’nonlinear relative phase. Particularly, the propagation
measurement error of solitons’ parameters, namely the relative coordinate andmomentum, and u2-parameter,
proportional to atom–atom scattering length squared, scales as 1/N3. Applying these parameters’measurements
for current quantummetrological purposes looks promising.

In the paperwe have focusedmostly on (projective)measurement procedure with solitonN00N-states to
elucidate phase estimation beyondHeisenberg limit. Notably, the same SH limitmight be attainedwith parity
measurement scheme, see [23, 43]. Let us briefly discuss how to createN00N-states with solitons described
above.We are confident that it is a non-trivial task and it opens new challenges both in theory and experiment.
Wefind the protocol suggested in [20] themost suitable for these purposes. One can prepareN00N-state
dynamically starting from the state C N n n0 e ,n

N
n

n
0

i 0qY ñ = å - ñq
=

-∣ ( ( )) ∣( ) , where N n n,- ñ∣ is a two-mode
Fock state,Cn characterizes initial (binomial) distribution, and θ (0) is an initial phase difference. Next, it is
necessary to construct appropriate two-solitonHamiltonianwhich is relevant to a two-mode approach in the
framework of procedure described in equations (7)–(12)Then, applying an evolution operatorwith this
Hamiltonian after some time interval (defined by characteristic parameters of solitons) one can obtain
superposition (Schrödinger-cat orN00N) states like in equations (38), (39)Notably, as it was shown in [20], two
halves ofN00N-state are shifted byπ in θ-phase domainwhich is in agreementwith results that we exploit in
equations (38), (39). Actually, the phase difference θ0=θ0(0) in (37b) represents a steady-state solution and goes
toπ in the non-moving solitons limit for critical valueΛ=1.58, see [23].

Obviously, decoherence and losses represent very important problem at the stage ofN00N-state formation
[20].We discussed various aspects of this problem for non-moving quantumbright solitons in [23].Many-body
effects including single and two-body losses should be considered [44]. In forthcoming publications, we plan to
examine the influence of these effects on ourmodel in details.
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