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Abstract
The Josephson junctions (JJs) are at the heart of modern quantum technologies and metrology. In
this work we establish quantum features of an atomic soliton Josephson junction (SJJ) device,
which consists of two weakly-coupled condensates with negative scattering length. The
condensates are trapped in a double-well potential and elongated in one dimension. Starting with
classical field theory we map for the first time a two-soliton problem onto the effective two-mode
Hamiltonian and perform a second quantization procedure. Compared to the conventional
bosonic Josephson junction condensate system, we show that the SJJ-model in quantum domain
exhibits unusual features due to its effective nonlinear strength proportional to the square of total
particle number, N2. A novel self-tuning effect for the effective tunneling parameter is also
demonstrated in the SJJ-model, which depends on the particle number and rapidly vanishes as the
JJ population imbalance increases. The formation of entangled Fock state superposition is
predicted for the quantum SJJ-model, revealing dominant N00N-state components at the ‘edges’
for n = 0, N particle number. We have shown that the obtained quantum state is more resistant to
few particle losses from the condensates if tiny components of entangled Fock states are present in
the vicinity of the major N00N-state component. This peculiarity of the quantum SJJ-model
establishes an important difference from its semiclassical analogue obtained in the framework of
Hartree approach. Our results are confirmed by studying the first and N-order Hillery–Zubairy
criteria applied for studying multiparticle entanglement and planar spin squeezing. The
Einstein–Podolsky–Rosen quantum steering represents an important prerequisite for the crossover
to the mesoscopic superposition Schrödinger-cat and/or N00N-states. The feasibility in
observation for these predicted states of the SJJ-model in the experiments is also discussed by
taking into account one- and three-body losses for lithium condensates.

1. Introduction

The Josephson junctions (JJs) represent an indispensable tool for current quantum technologies. The
Josephson effect, that is at the core of various JJ-devices, presumes the macroscopic quantum effect of
particle tunneling between two (or more) junctions; it was initially discovered in superconductors with
Cooper pairs [1]. The JJs, which exhibit superfluidity, were demonstrated with 3He, 4He environments
[2–4]. The atomic, so-called bosonic Josephson junctions (BJJs), were shown for weakly-coupled atomic
Bose–Einstein condensates (BECs) [5, 6].

Since experimentally accessible temperatures of atomic BECs are very low (tens of microkelvins and
below), the dynamical regimes reveal an interplay between coherent Josephson tunneling and nonlinearity
characterizing weak atom–atom interaction in Born approximation [7, 8]. The exciton–polariton BECs in
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narrow band semiconductor microstructures allow to obtain JJs at much higher temperatures like a few of
kelvins [9, 10]. The photons possess tunneling between the contacts; however, in this case dissipation and
temperature dependent phenomena must be taken into account [11]. Strictly speaking, such tunnely-
coupled waveguides represent purely photonic analogues of JJs far from thermal equilibrium [12, 13].

On the contrary, the low temperatures promote the observation of purely quantum phenomena with JJs,
such as macroscopic or mesoscopic superposition Schrödinger-cat (SC) states [14–18], entanglement, and
spin squeezing in ultracold atomic ensembles [17, 19–24]. It is also important to mention so-called
steerable states, which represent a physically specific and mathematically strict subset of the set of entangled
(non-separable) states [25]. In particular, such states mean the ability of Alice to remotely prepare Bob’s
state. As shown in [21], Einstein–Podolsky–Rosen (EPR) steering for BJJs appears in atomic condensates
with negative atom–atom scattering length.

From fundamental point of view, BJJ-devices may form macroscopic SC-states [26]. Some recent results
associated with symmetry (rotational and inversion) are obtained for superposition states in [27, 28].
Practically, BJJ quantum features are promising for realization of macroscopic quantum computation [29,
30], as well as for quantum metrology and sensing purposes [31]. In particular, planar quantum squeezing,
discussed in the framework of atomic JJs, allows to enhance the metrological sensitivity of measurements
for arbitrary phase shifts [32]. Noteworthy, SC-states and especially maximally path-entangled N-particle
N00N-states represent a paramount tool to achieve the phase measurement at the Heisenberg sensitivity
level [33].

The experimental generation of N00N-states with a large number of particles, N, is one of the important
and non-trivial problems, which significantly affects the state of art of current quantum metrology [34–36].
Investigating various aspects of appropriate N00N-states is imperative in the presence of decoherence and
losses, which can rapidly destroy N00N-states [37, 38]. For example, in the presence of losses balanced
N00N-states are non-optimal for the implementation in quantum metrology [39, 40]. Designing
macroscopic quantum states, which may be robust to losses, represents an essential and challenging task for
current quantum technologies with atomic systems, cf [41].

In this work we propose to create macroscopic entangled (Fock) states by means of tunnely-coupled
bright atomic solitons, which demonstrate some useful features for quantum metrology purposes, cf
[42–44]. In particular, as reported in [43], quantum atomic solitons allow to surpass the Heisenberg limit
and obtain N−3/2 accuracy in nonlinear phase shift estimation even with coherent probes in the framework
of nonlinear quantum metrology. To overcome this limit we suggested SC- and N00N-states formation in
the scheme with two weakly-coupled condensate bright solitons.

However, in [42, 43] we restricted ourselves by the Hartree approximation that cannot fully provide the
advantages of the solitonic model in a quantum domain, cf [44]. In this work we show that the system of
coupled atomic solitons represents a new quantum soliton Josephson junction (SJJ) device with a nontrivial
physical behavior in comparison with a conventional BJJ-device based on atomic condensates, which
possess Gaussian-shape wave functions. In particular, paper aims to demonstrate that SJJs are suitable for
the generation of entangled superposition Fock states, which may be resistant to some weak losses.

Remarkably, quantum solitons represent the Lieb–Liniger model, which was discussed in the literature
for a long time ago, see e.g. [45–47]. Various aspects of solitons quantum fluctuations related to quadrature
squeezing, entanglement, and photon number statistics were studied in a quantum optics domain [48–51].
However, optical solitons represent systems containing a large number of particles far from thermal
equilibrium. In this sense, atomic solitons favorably differ from optical analogues and could be recognized
as the best candidates for the experimental realization of macroscopic quantum superposition states.

The progress in theory and experiment achieved with matter-wave bright solitons is discussed and
summarized in [52]. The bright solitons were experimentally demonstrated in several labs with atomic
BECs possessing negative scattering length and allowing a moderate number of particles (from several tens
to thousands) [53, 54]. The collisions for such solitons were recently shown in [55]. Notably, the
observation of bright matter-wave solitons, which admit collapsing phenomena due to attractive
inter-particle interaction, represents a non-trivial task for experimenters, see e.g. Lev Khaykovich’s article in
reference [52]. Alternatively, bight solitons may be formed in periodic structures by manipulating the sign
of effective particle mass [56]. However, exploiting a macroscopically large particle number (thousands and
more) in solitons leads to various (many-body) losses [57]. In this sense, solitons with mesoscopic number
of particles (few hundreds and less) represent a primary interest. Some of recent proposals with quantum
atomic solitons are established in [58–60].

Finally, let us mention mesoscopic atomic Bose-systems, so-called quantum droplets, which occur by
means of manipulation with scattering atomic length, and possess intriguing quantum features [61].
Ferrier-Barbut et al in [62] demonstrated the important influence of quantum fluctuations on droplet
stabilization beyond the mean-field level that occur for strong dipolar Bose gases containing several

2



New J. Phys. 22 (2020) 113016 D Tsarev et al

hundreds of particles. Physically, beyond-mean-field energy correction in low dimensions plays an essential
role for quantum droplet formation and behavior [63]. In particular, as predicted in [64, 65], quantum
droplets represent soliton-like (bell-shape) objects and consist of two one-dimensional Bose–Bose mixtures
with competing (repulsive and attractive) interactions.

In this work we establish a new approach to the two-soliton (SJJ) problem mapping it onto the effective
two-mode Hamiltonian and performing a second quantization procedure.

The paper is arranged as follows. In section 2 we discuss a classical field approach to coupled BECs
possessing negative scattering length. We represent a general approach for tunneling BECs in elongated
traps in section 2.1. Important peculiarities and limitations for the JJ-models are also discussed. In
section 2.2 we represent a familiar BJJ-model problem valid for atomic condensates with a Gaussian wave
function. We implement this model through the paper for validation of the results obtained with the
SJJ-model. Then we establish the SJJ-model that operates with coupled 1D bright solitons. The Hamilton
formalism is used to find mean-field equations. The important features of these equations are revealed in a
steady state. The quantum approach to the BJJ- and SJJ-models is given in section 3. The macroscopic
properties of the energy spectrum for superposition states are analyzed in the framework of the Hartree
approximation. In section 4 the full quantum theory of the SJJ-model is presented. The peculiarities of the
quantum energy spectrum are discussed in detail. We elucidate the quantum features of entanglement and
EPR steering in the crossover region where the Hartree approach is violated. The experimental conditions
for quantum superposition state formation in the presence of many-body losses are discussed in section 4.3.
We also analyze the influence of few particle losses on predicted condensate states in the framework of the
fictitious beam splitter (BS) approach, cf [66]. Finally, in conclusion we summarize the results obtained.

2. Classical field models for coupled atomic condensates

2.1. General approach to JJ-models
The atomic JJ system can be created basically by means of appropriate condensate trapping. In various
experiments with JJ the BEC is confined in a potential V = VH + VW, where VH is familiar 3D harmonic
trapping potential, VW is responsible for condensate double-well confinement [6, 67]. The aim of such a
trapping is to split the condensate into two parts which possess tunneling through the barrier created by VW

potential.
The scheme of possible realization of JJ-device with two weakly coupled condensates is evident from

figure 1, where for clarity we depicted the probability distribution for 2D condensates. In particular, the JJ
platform consists of two highly asymmetric (cigar-shaped) condensates elongated in X direction and
trapped in a double-well potential (green line in figure 1) allowing some distance d between trap centers. In
experiments with dipole traps d is few micrometers [67]. The BEC particles possess an interaction that we
suppose attractive in this work. This assumption allows to examine Gaussian (BJJ-model) and bright soliton
(SJJ-model) solutions for the condensate wave functions in the framework of the same physical set-up
illustrated in figure 1.

We represent the condensate wave function Ψ(r⊥, x, t) relevant to the scheme in figure 1 in a
superposition state as

Ψ(r⊥, x, t) = Φ1(r⊥ − d/2)Ψ1(x, t) +Φ2(r⊥ + d/2)Ψ2(x, t), (1)

where Φ1,2(r⊥ + d/2) and Φ2(r⊥ − d/2) are spatial (time independent) wave functions of condensates in
transverse plane on either side of the barrier.

In equation (1) Ψ1 ≡ Ψ1(x, t) and Ψ2 ≡ Ψ2(x, t) are two condensate wave functions which characterize
dynamical properties of JJ system and obey coupled Gross–Pitaevskii equations (cf [44])

i
∂

∂t
Ψ1 = −1

2

∂2

∂x2
Ψ1 − u|Ψ1|2Ψ1 +

1

2
ν2x2Ψ1 − κΨ2; (2a)

i
∂

∂t
Ψ2 = −1

2

∂2

∂x2
Ψ2 − u|Ψ2|2Ψ2 +

1

2
ν2x2Ψ2 − κΨ1, (2b)

where u = 2π|asc|/a⊥ characterizes Kerr-like (focusing) nonlinearity, asc < 0 is the s-wave scattering length
for attractive particles, a⊥ =

√
�/mω⊥ is a characteristic trap scale, and m is particle mass.

In equation (2) κ ≡ |K| /ω⊥ > 0 denotes an absolute value of the tunneling rate (K < 0), normalized
on radial frequency, ω⊥; K depends on the condensate wave functions Φ1,2(r⊥ ± d/2) overlapping in
YZ-plane; ν = ωx/ω⊥ is a trap asymmetry parameter, ωx and ω⊥ are harmonic trap frequencies in X-axis
and radial direction, respectively.
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Figure 1. Sketch of probability density distribution |Ψ|2 vs spatial coordinates X and Y for the coupled condensates trapped in a
double-well potential (dashed green curve). Shadow regions display BEC projections in XY- and YZ-planes, which demonstrate
Gaussian distribution along Y-axis. In X-dimension the distribution represents secant and Gaussian for the SJJ- and BJJ-models,
respectively.

In the framework of field theory it is possible to consider a Hamilton function corresponding to
equation (2), which looks like (cf [42, 43])

H =

2∑
j=1

(
1

2

∣∣∣∣∂Ψj

∂x

∣∣∣∣
2

− u

2

∣∣Ψj

∣∣4
+
∣∣Ψj

∣∣2
VH(x)

)
− κ

(
Ψ∗

1Ψ2 +Ψ1Ψ
∗
2

)
, (3)

where VH(x) = 1
2ν

2x2 is trapping potential in X direction. In (2) and (3), Ψ1 and Ψ2 obey a normalization
condition ∫ ∞

−∞
(|Ψ1|2 + |Ψ2|2)dx = N, (4)

where N is the average total number of particles.
In equations (2)–(4) we also propose rescaled (dimension-less) spatial and time variables, which are:

x, y, z → x/a⊥, y/a⊥, z/a⊥ and t → ω⊥t, cf [42–44]. In other words, all lengths and time variables in the
work are given in a⊥ and ω−1

⊥ units respectively.
Let us briefly discuss limitations for equations (1)–(3) and conditions for bright atomic soliton

formation that we are interested in this work. In particular, if the number of condensate particles, N, is not
too large, spatial wave functions Φ1,2(r⊥ ± d/2) may be considered as Gaussian and still unchanging within
appropriate time scales. Typically, this assumption is valid for weakly-coupled condensates possessing a
moderate number of particles, N. In other words, equation (1) represents some ansatz for the wave function
that provides so-called two-mode approximation used in this work. In particular, as it is shown in [68],
characteristic trap scale, a⊥, should be larger than nonlinear strength, N|asc|, in two-mode approximation.
The results obtained in the experiments with condensate BJJs manifested validity of the two-mode approach
up to few thousand particles [6, 8, 67].

However, condensates with attractive interaction between the particles possess instability and collapse if
the number of atoms exceeds some critical value, Nc; references [69, 70] exhibit recent experimental efforts
in this field. The critical particle number is Nc = 0.67a⊥/|asc|, [52]. In particular, for condensate solitons
with 7Li atoms possessing the negative scattering length, the effective nonlinear parameter is uNc ≈ 4.2. In
early experiment [54] authors demonstrated that N is limited by the number of atoms 5.2 × 103 in the
soliton providing Nc|asc| � 1.105 μm. At the same time, it is shown that there exists some parameters
window, where 1D bright soliton avoids collapsing.

Another way to obtain bright atomic solitons is based on formation of band gap solitons occurring due
to the condensate confinement in a periodical optical lattice. Although the condensate possesses the positive
scattering length, the negative effective mass meff < 0 of the particles that forms at the edge of Brillouin
zone provides bright soliton occurrence in this case [71]. In [56] authors demonstrated band gap bright
soliton formation with N � 250 rubidium atoms interacting repulsively. Thus, the number of particles, N,
in the soliton can be estimated from

N =
a2
⊥m

1.5|meff|x0asc
, (5)

where x0 is the soliton width [56]. From (5) follows that the number of particles, N, may be reduced if we
can enhance the value of scattering length asc by means of Feshbach resonance method, cf [72], or with
tailoring the effective atom mass, m/|meff |, in the lattice, cf [73]. The ratio m/|meff | was equal to 10 in [56].
To be more specific, below we restrict ourselves by the matter-wave bright solitons with the negative
scattering length.
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2.2. Classical JJ-models
Let us assume that the wave function shape in X-dimension is Gaussian and looks like

Ψj =
ν1/4

√
Nj

π1/4
e−ν x2/2 eiθj , (6)

where Nj and θj are the average particle number and phase of jth condensate, respectively. The approach
discussed here is valid at zero temperature in thermodynamic limit when the number of particles and
occupied volume are extremely (infinitely) large but their ratio is finite. The losses and non-equilibrium
phenomena are neglected.

Substituting (6) into (3) and omitting constant energy terms proportional to N for effective classical
Hamiltonian HBJJ =

∫∞
−∞ H dx one can obtain

HBJJ = − u
√
ν

2
√

2π

(
N2

1 + N2
2

)
− 2κ

√
N1N2 cos[θ]. (7)

It is instructive to represent the Hamiltonian (7) in terms of new variables z = (N2 − N1)/N and
θ = θ2 − θ1. Omitting the constant energy term for (7) we obtain

HBJJ = κN

(
−λ

2
z2 −

√
1 − z2 cos[θ]

)
, (8)

where z and θ are normalized population imbalance and phase difference, respectively. In equation (8) we
introduce the effective nonlinear parameter

λ =

√
ν uN

2
√

2π κ
≡

√
ν uN ω⊥

2
√

2π |K|
. (9)

The equation (8) with the key parameter λ represents a conventional JJ Hamiltonian and characterizes
an atomic condensate BJJ-model intensively studied in the framework of various quantum and nonlinear
features occurring as a result of tunneling and inter-particle interaction interplay [8, 14, 16, 17, 74].

It is worth noticing that the Hamiltonian (8) is invariant under the transformation κ→−κ and
θ → θ + π. However, as it is argued in [75], physically correct tunneling rate K must be negative, cf
[42–44].

Now let us consider the case when two condensates in X-dimension may be described by bright soliton
solutions. We suppose that condensate trapping in X-dimension is weak enough that can be realized for
highly elongated condensates obtained by means of asymmetric trapping potential with ν 
 1, see figure 1.
Thereafter, we completely neglect the trapping term in equation (3), cf [44].

If coupling parameter κ is switched-off, the two condensates behave independently possessing
non-moving bright soliton solutions in X-dimension, which are

Ψj =
Nj
√

u

2
sech

[
uNj

2
x

]
eiθj . (10)

Substituting (10) into (3) for effective classical Hamiltonian HSJJ =
∫∞
−∞ H dx one can obtain

HSJJ = −u2

24

(
N3

1 + N3
2

)
− 4κN1N2

N
I(z) cos[θ], (11)

where

I(z) =

∫ ∞

0

dx

cosh2[x] + sinh2[zx]
≈ 1 − 0.21z2. (12)

The Hamiltonian (11) in terms of z and θ variables reads as

HSJJ = κeffN

(
−Λeff

2
z2 −

√
1 − z2 cos[θ]

)
, (13)

and looks similar to equation (8) obtained for the BJJ-model. In (13) we introduced the effective nonlinear
parameter

Λeff =
u2N2

16κeff
≡ Λ

(1 − 0.21z2)
√

1 − z2
, (14a)

where

Λ ≡ u2N2

16κ
=

u2N2 ω⊥
16 |K| (14b)
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is the vital parameter that determines various regimes of soliton dynamics.
Equation (13) derived for the SJJ-model can be understood in the framework of the BJJ-model

Hamiltonian (8) with tunneling rate, κeff ≡ κ(1 − 0.21z2)
√

1 − z2, that depends on solitons population
imbalance, z. The nonlinear effects in the tunneling process vanish for z2 
 1. In this limit the BJJ- and
SJJ-models possess the same features.

However, when z2 → 1, the effective tunneling rate, κeff , goes to zero and effective parameter Λeff

essentially increases. In other words, we deal here with self-tuning effect for effective tunneling parameter,
κeff , that establishes various regimes for interacting solitons. As we can see below, this limit is of particular
interest for the quantum (superposition) states formation, which we specify in the paper.

The equations θ̇ = −∂HSJJ/∂z and ż = ∂HSJJ/∂θ for canonical variables, z and θ, can be obtained with
the Hamiltonian (13) as [42, 44]:

ż = (1 − z2)(1 − 0.21z2) sin[θ]; (15a)

θ̇ = Λz − 2z(1.21 − 0.42z2) cos[θ]. (15b)

In equation (15) dots denote derivatives with respect to effective (dimensionless) time τ = κNt. These
equations permit non-trivial steady-state solutions

z± = ±
√

1

0.42
(1.21 − Λ

2
); (16a)

cos[θ] = 1, (16b)

which are valid for 1.58 < Λ � 2.42. For another specific value of phase θ we have

z± = ±1; (17a)

cos[θ] =
Λ

1.58
, (17b)

that requires 0 < Λ � 1.58.
It is important that classical mean-field theory admits realization of one of solutions: either with z+ or

with z−. On the contrary, the quantum approach, that we are going to discuss below, permits the
simultaneous realization of these states, being a clearly superposition state.

3. Quantum approach to JJ-models

3.1. Effective Hamiltonian quantization
The quantum theory approach proposes a second quantization procedure for the classical effective
Hamiltonians (8) and (13), and relevant field amplitudes. Notice that especially for nonlinear Hamiltonians
containing phase-dependent terms this procedure can be non-unique because of the absence of rigorous
phase quantization procedure and non-commutativity of relevant operators. However, as known, various
approaches to Hamiltonian quantization permit difference in terms by the factor proportional to 1/N and
less, which is negligibly small for large N. This difference occurs due to non-commutativity of annihilation
and creation operators forming the Hamiltonian.

To be more specific, we start with quantization of the classical Hamiltonian (8) for the BJJ-model. The
quantization procedure that we propose here is based on the approach described in [76]. We construct a
quantum Hamiltonian from equation (8) by introducing particle number operators N̂1 = â†â and

N̂2 = b̂†b̂, respectively; one can define the reduced particle number difference operator ẑ = 1
N

(
b̂†b̂ − â†â

)
,

where â (â†) and b̂ (b̂†) are usual Bosonic annihilation (creation) operators for condensate modes in
two-mode approximation, cf [76]. Then one can suppose in (8) that

√
1 − z2 cos[θ] corresponds to

1
N

(
â†b̂ + b̂†â

)
if we assume decomposition â =

√
N
2

√
1 − ẑ eiθ̂/2 and b̂ =

√
N
2

√
1 + ẑ e−iθ̂/2 for

annihilation operators â and b̂, respectively. The quantized Hamiltonian obtained from (8) for the
BJJ-model now has the form

ĤBJJ = κN

(
−λ

2
ẑ2 − 1

N

(
â†b̂ + b̂†â

))
. (18)

For the SJJ-model we start from the classical Hamiltonian (13) rewriting it as

HSJJ = κN

(
−Λ

2
z2 − (1 − 0.21z2) (

√
1 − z2 cos[θ])

√
1 − z2

)
, (19)

6
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that is suitable for quantization procedure described above. The last term in (19) we treat by using (formal)
Taylor expansion representation for the operator

√
1 − ẑ2 =

∑∞
k=0 Ck

1/2(−1)kẑ2k. Finally, the quantum
version of Hamiltonian (19) reads as

ĤSJJ = κN

(
−Λ

2
ẑ2 − 1

2N

( ∞∑
k=0

Ck
1/2(−1)k(1 − 0.21ẑ2)

(
â†b̂ + b̂†â

)
ẑ2k + h.c.

))
. (20)

Thereafter, we refer to equation (20) as quantum SJJ-model that characterizes the coupled quantum bright
soliton problem in a two-mode approximation. Unlike familiar BJJ-model, atom number difference
dependent tunneling is also at the core of the quantum SJJ-model, cf (18).

Formally, from equation (20) it is clear that Λ-parameter for the SJJ-model plays the same role as
parameter λ in the conventional two-mode BJJ-model, see (18). However, it is possible to see that
Λ = ℘λ2 ∼ N2, where we introduced parameter ℘ ≡ πκ/2ν that characterizes differences in the BJJ- and
SJJ-models experimental realization.

3.2. Macroscopic superposition states in Hartree approximation
Now we consider the features of macroscopic states for coupled solitons possessing a quite large number of
atoms in two-mode approximation. These features can be revealed in the framework of the Hartree
approximation applied to solitons [46, 77] and quantum dimers [78]. In particular, the Hartree
approximation presumes factorization of N-particle state, which allows to represent it as
|ψN〉 = |ψ〉 ⊗ |ψ〉 ⊗ · · · |ψ〉, where |ψ〉 is a single particle (qubit) state [14, 46].

To be more specific we are interested in the quantum field variational approach to the model described
by (20) exploiting an atom-coherent state ansatz in the form

|ψN〉 =
1√
N!

[
αâ† + βb̂†

]N
|0〉 , (21)

where |0〉 ≡ |0〉a|0〉b is a two-mode vacuum state and α, β are unknown (variational) wave functions
obeying normalization condition |α|2 + |β|2 = 1. The mean energy in respect of state (21) is obtained from
(20) and looks like

E(α,α∗,β,β∗) =
〈

ĤSJJ

〉
= κN

(
−Λ

2
S2 − 2|α‖β|

(
1 − 0.21S2

)
(α∗ β + β∗α)

)
, (22)

where S ≡ 〈ψN |ẑ|ψN〉 = |β|2 − |α|2.
The energy E in equation (22) implies Lagrangian, L, given by

L =
i

2

[
α∗α̇− α̇∗α+ β∗β̇ − β̇∗β

]
− κN

(
−Λ

2
S2 − 2|α‖β|

(
1 − 0.21S2

)
(α∗β + β∗α)

)
. (23)

By using equation (23) we derive the equations of motion for the field variables α,β in the form,

iα̇ = κN

(
αSΛ− α

|β|
|α|

(
1 − 0.21S2

)
(α∗β + β∗α)

− 0.84αS|α‖β| (α∗β + β∗α) − 2β|α‖β|
(

1 − 0.21S2
))

; (24a)

iβ̇ = κN

(
−βSΛ− β

|α|
|β|

(
1 − 0.21S2

)
(α∗β + β∗α)

+ 0.84βS|α‖β| (α∗β + β∗α) − 2α|α‖β|
(
1 − 0.21S2

))
, (24b)

where it is assumed that |α| �= 0, or |β| �= 0 that implies S �= ±1.
Setting in (24) stationary solutions α(t) ≡ αe−iκNμt; β(t) ≡ βe−iκNμt we get

μ = SΛ− |β|
|α|

(
1 − 0.21S2

)
(α∗β + β∗α)

− 0.84S|α‖β| (α∗β + β∗α) − 2
β

α
|α‖β|

(
1 − 0.21S2

))
; (25a)

μ = −SΛ− |α|
|β|

(
1 − 0.21S2

)
(α∗β + β∗α)

+ 0.84S|α‖β| (α∗β + β∗α) − 2
α

β
|α‖β|

(
1 − 0.21S2

))
, (25b)
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equation (25) lead to a single equation:

SΛ− S
(
1.42 − 0.63S2

) α∗β + β∗α

2|α‖β| −
(
β

α
− α

β

)
|α‖β|

(
1 − 0.21S2

)
= 0. (26)

In general, the functions α and β in equation (26) can be represented as α ≡ |α|eiθa , β ≡ |β|eiθb , where
θ = θb − θa is phase difference. In particular, equation (26) reduces to

S

(
Λ

2
+ 1.21 − 0.42S2

)
= 0 (27)

for θ = π, and to

S

(
Λ

2
− 1.21 + 0.42S2

)
= 0, (28)

for θ = 0, respectively. Notice, if we change the sign of tunneling rate, κ, the shift of phase by π is expected
for (27) and (28).

Equations (27) and (28) possess a trivial solution with S ≡ S0 = |β0|2 − |α0|2 = 0 that is valid for any

Λ. Equation (28) permits two additional solutions, namely solutions S± = ±
√

1
0.84 (2.42 − Λ) exist for

1.58 � Λ < 2.42, cf (16a). Variables α and β which correspond to these solutions are

α0 = β0 =
1√
2
; (29a)

β± = α∓ =

√
1

2

(
1 ±

√
1 − X2

)
, (29b)

where X ≡
√

1 − S2
± =

√
1

0.84 (Λ− 1.58).

The energies corresponding to equation (29) are given in the form

E0 = −κN; (30a)

E± = κN
(
0.30Λ2 − 1.44Λ + 0.74

)
. (30b)

It is important that E± � E0 for any Λ, when S± solution exists.
Substituting (29b) into (21) one can obtain ‘two halves’ of the SC-state∣∣∣ψ(SC)

N ,±

〉
=

1√
N!

[
α±â† + β±b̂†

]N
|0〉 . (31)

The states (31) can form macroscopic superpositions∣∣∣ψ(SC)
±

〉
=

1√
2(1 ± ε)

(∣∣∣ψ(SC)
N ,+

〉
±
∣∣∣ψ(SC)

N ,−

〉)
, (32)

possessing the same energy (30b).

The states
∣∣∣ψ(SC)

±

〉
in (32) are mutually orthogonal SC-states defined within the domain

1.58 < Λ < 2.42, cf (16a). The ε-parameter in (32) characterizes states
∣∣∣ψ(SC)

N ,±

〉
overlapping

(distinguishability) and is defined as

ε =
〈
ψ(SC)

N ,+|ψ(SC)
N ,−

〉
= XN . (33)

At ε = 1 (X = 1, Λ � 2.42) the states
∣∣∣ψ(SC)

N ,±

〉
cannot be distinguished at all. In this case, we have

β± = α∓ = 1/
√

2 in (29b) and SC-states definition (32) becomes useless.
In another limit, setting X → 0 in (33) we obtain ε→ 0 that corresponds to macroscopically

distinguishable states
∣∣∣ψ(SC)

N ,±

〉
.

As it follows from (33), at ε = 0 (X = 0) the states
∣∣∣ψ(SC)

N ,±

〉
are orthogonal, i.e. maximally

distinguishable. In this limit the SC-states approaches the N00N-state that occurs for X = 0 (Λ = 1.58), see
(29b), (31), and (32).

In other words, the N00N-state appears for S = ±1 that implies |α| = 0 or |β| = 0 in (21)–(23) (see
also equation (17)). These solutions are

∣∣∣ψ(N00N)
N ,−

〉
= eiNθa |N〉a|0〉b =

(
â†
)N

eiNθa

√
N!

|0〉 ; (34a)

8
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∣∣∣ψ(N00N)
N ,+

〉
= eiNθb |0〉a|N〉b =

(
b̂†
)N

eiNθb

√
N!

|0〉 , (34b)

where ‘±’ correspond to the sign of S that defines two ‘halves’ of the N00N-state:

|N00N〉 = 1√
2

(∣∣∣ψ(N00N)
N ,−

〉
+ eiNθ

∣∣∣ψ(N00N)
N ,+

〉)
. (35)

In (35) we omit the common phase factor eiNθa . State (35) possesses phase independent mean energy

E(N00N) = −1

2
κNΛ. (36)

The phase θ in (35) obey equation (17b) and defines the domain 0 < Λ � 1.58 for Λ-parameter, where
the N00N-state can appear in the framework of the Hartree approach discussed above.

Noteworthy, the state (35) is fragile enough and rapidly collapses to states |N − 1〉a|0〉b or |0〉a|N − 1〉b

even in the presence of one particle loss, cf [38]. As we see below, the SJJ-model exhibits some new specifics
for the N00N-state formation in a purely quantum limit.

4. Mesoscopic quantum superposition states

4.1. Quantum energy spectrum
Now let us consider purely quantum features of the superposition states for the SJJ-model beyond the
Hartree approach. This approximation presumes a quite large number of particles, that can be thousands or
more in experiments with atomic condensates, see e.g. [79]. However, for the condensates possessing the
negative scattering length the number of atoms is limited due to the collapsing effect. For the BECs confined
in optical lattices and representing familiar Bose–Hubbard system the number of atoms varies from several
tens to several hundreds per site, see e.g. [80], representing a mesoscopic system with a moderate number of
particles. In respect of the number of particles, mesoscopic (in Greek ‘meso’ means ‘middle’) regime is
located between microscopic (up to tens of particles) and macroscopic (thousand particles and more)
regimes and represents a great interest for current studies in quantum physics [81]. The formation of
efficient quantum mesoscopic superposition states represents one of challenging problems both in theory
and experiment [41]. It is worth mentioning that the crossover from a coherent to Fock (or number
squeezed) regime possessing some important quantum features plays an important role in this case [85]. In
particular, variation of the tunneling rate between the lattice sites allows to achieve the crossover from a
coherent to Fock regime (Mott-insulator state). However, as it is shown below the (self)tuning of this
crossover may be much more efficient for the SJJ-model that represents the simplest (two-site)
Bose–Hubbard system.

Here we are interested in mesoscopic limit for the SJJ-model illustrated in figure 1. We assume that the
total number of atoms, N, is not too large, and the characteristic temperatures, T, Tc, relevant to the
condensates are sufficiently low in comparison with the characteristic energy space, δE, between the
neighboring low-energy quantum levels of the system [86]; Tc is the critical temperature of the phase
transition to the BEC state. Physically it implies the importance how a small number of atoms behave in the
presence of a large total number, N. In such a limit the analysis of the two-mode system described by
Hamiltonians (18) and (20) has to be fully quantum.

We represent the quantum two-mode state, |Ψ(τ)〉, in the Fock basis as (cf [16]):

|Ψ(τ)〉 =
N∑

n=0

An(τ)|N − n, n〉, (37)

where |N − n, n〉 ≡ |N − n〉a|n〉b denotes the two-mode atom-number state; the coefficients An(τ ) obey
normalization condition

∑N
n=0 |An(τ)|2 = 1. The An(τ ) fulfills the Schrödinger equation

i
dAn(τ)

dτ
= 〈N − n, n|Ĥ|Ψ(τ)〉. (38)

In connection with quantum Hamiltonians (18) and (20) the equation (38) can be represented as:

iȦn = anAn+1 + βn−1An−1, (39)

9
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Figure 2. (a) Dependencies of the quantum Hamiltonian Ĥ eigenenergies, E/κN, vs Λ-parameter for N = 300 particles. Black
and blue dashed lines characterize mean energies in Hartree approximation. Quantum energy spectrum is bounded by values E0

(solid red line) and E300 (upper solid yellow line). Vertical dashed line indicates the critical value Λc ≈ 2.000 9925 of vital
parameter Λ for the SJJ-model. (b) Energy spectrum for N = 2 particles vs λ-parameter. The key parameter Λ is equal to ℘λ2,
℘ = 2 for the SJJ-model. Red and blue lines correspond to equations (42) and (43), respectively.

where the following notations are introduced:

αn = −λ

2

(
2n

N
− 1

)2

, (40a)

βn = − 1

N

√
(n + 1)(N − n) (40b)

for the BJJ-model, and

αn = −Λ

2

(
2n

N
− 1

)2

,

βn = − 1

N2

([
1 − 0.21

(
2n

N
− 1

)2
]

(n + 1)
√

(N − n)(N − n − 1)

+

[
1 − 0.21

(
2(n + 1)

N
− 1

)2
]

(N − n)
√

n(n + 1)

)
(41a)

for the SJJ one.
Then let us focus on stationary solution An(τ) = An e−iEnτ of (39) that enables to find out energy

spectrum En of the quantum Hamiltonian (20) for the SJJ-model.
Figure 2(a) demonstrates numerical calculations of the spectrum for N = 300 particles as a function of

Λ-parameter. Practically, the dependence on Λ can be examined with the help of a Feshbach resonance
through controlling atom–atom scattering length (u-parameter) [59, 72].

The black dashed curve in figure 2(a) indicates the steady-state solutions for the SJJ-model in the energy
dense region, where the Hartree approach is satisfied, cf [78]; this curve characterizes the energies (36) and
(30b), and is valid for 0 < Λ � 1.58 and 1.58 < Λ � 2.42, respectively. The blue dashed line corresponds to
the energy E0 in accordance with equation (30a).

Main peculiarities with the coupled soliton energies occur in the vicinity of point Λ ≡ Λc ≈ 2.000 9925.
In particular, at Λ = Λc the SJJ-system loses its coherence features entering Fock (Mott-insulator) regime
modifying particle number fluctuations, cf [5, 18, 67]. Notice, that in this case, the SJJ-system treated
classically changes its regime from Rabi-like oscillations to self-trapping, cf [8, 42, 44]. In particular, at
Λ < Λc energetically favorable state for the quantum SJJ-system in figure 2(a) is described by the blue
dashed (or the red solid) line exhibiting the minimal energy E0. As seen from figure 2(a), at Λ � Λc the
energies E±, E(N00N), which correspond to the superposition states in the Hartree approximation, are
comparable with E0 but placed a little bit above it.

Situation changes completely in a purely quantum limit when parameter Λ crosses its critical value Λc.
The red solid line in figure 2(a) clearly shows that the quantum N00N-state is energetically favorable at
Λ � Λc for the SJJ ground state (it is demonstrated below that this state is not exactly a N00N-state as it
happens in the semiclassical limit).
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To understand the main properties of the SJJ-model at low energies (n = 0) we examine the simplest
case with N = 2 particles. The diagonalization of (20) gives three energy eigenvalues obtained analytically:

E0 = −κN
Λ

2
; (42a)

E± =
1

4
κN

[
−Λ±

√
Λ2 + 2.5

]
. (42b)

Similar results may be obtained for the BJJ-model. Diagonalization of the relevant Hamiltonian (18) leads
to

E0 = −κN
λ

2
; (43a)

E± =
1

4
κN

[
−λ±

√
λ2 + 16

]
. (43b)

The energy eigenvalues (42) and (43) are plotted in figure 2(b) as functions of λ that is relevant to the key
parameter combination uN/κ and inherent to both JJ-models. The gap ΔE = E0 − E− between two lowest
energy eigenstates obtained from equations (42) and (43) looks like

ΔESJJ =
1

4
κN

[
−Λ +

√
Λ2 + 2.5

]
; (44a)

ΔEBJJ =
1

4
κN

[
−λ+

√
λ2 + 16

]
. (44b)

From equation (44) it follows ΔESJJ � 0.4κN and ΔEBJJ = 4κN for vanishing nonlinearity u ≈ 0.
Notably, the limiting case with u = 0 is not valid for the SJJ-model since bright solitons do not exist in the
absence of nonlinearity. On the contrary, for the relatively large nonlinear parameter, such as λ,Λ � 1,
from (44) we obtain for the energy gaps ΔEBJJ ≈ 4κ2/u, and ΔESJJ ≈ 5κ2/Nu2 ≈ 5ΔEBJJ/4Nu, respectively.
The suppression of this gap with increasing atom-atom scattering length (u-parameter) is clearly seen in
figure 2(b).

For the moderate values of λ and Λ parameters ΔESJJ is N times larger than ΔEBJJ. The lifetime TE− for
transition ΔE is proportional to �/ΔE−, see e.g. [87]. It is evident that in general even for a small number
of particles the lifetime of soliton junctions may be sufficiently larger than for the conventional BJJ-model,
cf [78].

In figure 3 we represent the ground state probability distributions, |An|2, (eigenfunctions of (20) with
the minimal energies) for different values of the key parameters Λ and λ for the SJJ- and BJJ-models,
respectively. The plots for the SJJ-model are established by red and can be easily compared with the ones for
the BJJ-model indicated by blue. Figure 3(a) demonstrates a small difference in distributions for the SJJ-
and BJJ-models in an ideal (non-interacting) atomic gas limit. Since the total number of particles is large
enough, the initial distribution approaches Gaussian for the BJJ-model.

The differences between distributions considered for the SJJ- and BJJ-models become evident and
important in figures 3(b)–(d) due to the particle number dependence of the effective tunneling rate, κeff ,
see (14). Figures 3(b) and (c) exhibit features of examined JJ-systems immediately before and after the
crossover, respectively. In the vicinity of the critical value Λc � 2 the distribution for the SJJ-model becomes
significantly non-Gaussian, see figure 3(b).

The SJJ- and BJJ-models behave differently at the crossover region for parameters Λ � Λc and λ � λc,
respectively. In particular, deepening in ground state probability |An|2 takes place for the BJJ-system with
increasing λ.

Behavioral scenarios after crossover points Λc � 2 and λc � 1 for the SJJ- and BJJ-models, respectively,
are represented in figures 3(c) and (d). In particular, two probability peaks corresponding to the
macroscopic SC-state arise for BJJs. Further increasing of λ results in the growth of the ‘distance’ between
the cats ‘moving’ to the ‘edges’, n = 0 and n = N, see figure 3(d). The N00N-state,

|N00N〉 = 1√
2

(
|N〉a|0〉b + eiθN |0〉a|N〉b

)
, (45)

occurs for the BJJ-model in the limit of a very large λ-parameter, see below figure 4(b) and cf [16, 18].
In general, the SJJ-model demonstrates evident advantages to achieve a N00N-state. Roughly speaking,

state (37) for the SJJ-model after the crossover represents a superposition of entangled Fock states
possessing a large N00N-state component—see figure 3(c). A physical explanation for this phenomenon is
illustrated as follows.
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Figure 3. Ground state probabilities |An|2 vs n for (a) Λ = 0, λ = 0; (b) Λ = 2, λ = 1; (c) Λ ≈ 2.000 9925, λ = 1.06;
(d) Λ = λ = 4. The total particle number is N = 300. Insets in (c) and (d) show the probabilities in the vicinity of ‘edge’ states
with n = 0 (left-hand panels) and N = 300 (right-hand panels), respectively.

Figure 4. E(1,N)
HZ for (a) the SJJ- and (b) BJJ-models as functions of parameters Λ and λ, respectively. The inset in

(a) demonstrates the behavior of E(1)
HZ within a tiny crossover region. The inset in (b) demonstrates E(N)

HZ at large λ.

First, for a given tunneling rate, κ, the Λ-parameter depends on N2, which allows to achieve a required
crossover point for the moderate number of particles, N.

Second, as it follows from figures 3(b) and (c) the crossover for the SJJ-model happens abruptly with a
slightly increasing Λ parameter. The dependence of the effective tunneling rate, κeff , on the atom number
leads to a significant improvement of the ‘edge’ states occupation. In particular, as clearly seen in
figure 3(c), two large peaks of probability distribution occur at the ‘edges’ with n = 0 and n = N,
respectively. They correspond to the N00N-state. Simultaneously, there exist small (non-vanishing
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symmetric) peaks for n = 1, N − 1, n = 2, N − 2, etc, in the vicinity of ‘edge’ states—see the inset in
figure 3(c).

Furthermore, the increment in Λ leads to the suppression of small peaks probabilities, but to the
enhancement of the ‘edge’ states n = 0, N population. The distribution approaches approximately ‘ideal’
N00N-state (45) at moderate values of Λ, cf figure 3(d). However, as we show below, the presence of small
components in the satellite entangled Fock state plays an important role for the resistance of state (37) to
weak particle losses, cf [39].

4.2. Entanglement, steering and planar spin-squeezing
The complete analysis of the highly nonclassical states formation requires investigating high (two- and
much higher) order correlation functions. Entanglement and spin squeezing are important prerequisites of
non-classical behavior of multiparticle atomic system. To be more specific we examine here so-called
m-order Hillery–Zubairy (HZ) criterion [17, 23] defining as

E(m)
HZ = 1 +

〈
â†mâmb̂†mb̂m

〉
−
∣∣∣〈âmb̂†m

〉∣∣∣2

〈
â†mâm

(
b̂mb̂†m − b̂†mb̂m

)〉 . (46)

The entanglement occurs when inequalities

0 � E(m)
HZ < 1 (47)

are satisfied. The value E(m)
HZ = 1 should be discussed separately for some specific states. We examine two

limiting cases for definition (46). In particular, for m = 1 we can recast equation (46) in terms of N-particle
spin-operators as following:

E(1)
HZ =

δJX + δJY

〈̂J〉
, (48)

where δJj ≡
〈(

ΔĴ j

)2
〉
=

〈
Ĵ2

j

〉
−
〈

Ĵ j

〉2
is the variance of fluctuations for jth component of spin, established

by operators

ĴX =
1

2

(
â†b̂ + b̂†â

)
; ĴY =

1

2i

(
b̂†â − â†b̂

)
; ĴZ =

1

2

(
â†â − b̂†b̂

)
;

Ĵ =
1

2

(
â†â + b̂†b̂

)
=

1

2
N̂. (49)

Combining equation (46) with (47) one can see that strong entanglement can be obtained if variances
δJX and δJY are minimal for a given atom number, N. Strictly speaking, δJ‖ = δJX + δJY represents the

variance of fluctuations of atomic spin in XY-plane. Red curve in figure 4(a) demonstrates behavior of E(1)
HZ

versus vital parameter Λ. Since the SJJ-model is invalid for ideal atomic gases, we represent a relevant curve
dashed in the vicinity of u = 0. For the BJJ-model (see blue curve in figure 4(b)) in this limit we can exploit
the two-mode condensate state like (21) with |α|2 = |β|2 = 0.5 that gives E(1)

HZ = 0.5.
The EPR steering entanglement is achieved in the region, where E(1)

HZ < 0.5, cf [21, 25]. From figure 4(a)
it is evident that this area occurs close to the point Λc � 2. Noteworthy, the sharp behavior of E(1)

HZ within
the crossover region appear in the absence of losses, see the inset in figure 4(a). Evidently, broadening of this
region is expected if one- and, especially, three-body losses are taken into account.

The minimal value E(1)
HZ,min of parameter E(1)

HZ, that we denote as CJ, is determined through uncertainties
in JX and JY components which do not commute. The CJ-coefficient is estimated from inequality

E(1)
HZ � CJ . (50)

In figure 5 we plot the parametric dependence of the normalized CJ-coefficient on a spin vector ‘length’,
J, that is simply a half of the particle number, N/2. In particular, the BJJ-model exhibits the largest depth of
steering determined by CJ.

The coefficient CJ theoretically can be estimated by using the Gaussian distribution function possessing
width, σ, (see figure 3(b)), cf [17]. In particular, for the BJJ-model σBJJ = (2J)−2/3 and
C(BJJ)

J ∝ 1/σBJJ = 0.6J−1/3 giving the minimum of the blue curve in figure 4(b) about 0.163. The magnitude

C(SJJ)
J (that is about 0.319 24) for the SJJ-model in figure 4(a) (red curve) is not so simple to estimate

analytically because of essentially nonlinear behavior happening close to the value Λc � 2 (or, λc � 1).
However, as clearly seen from figure 3(b) the distribution for the SJJ-model is sufficiently narrower than for
the BJJ one, i.e. σSJJ < σBJJ, and we expect C(SJJ)

J > C(BJJ)
J to take place for curves exhibiting E(1)

HZ in
figures 4(a) and (b).
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Figure 5. Normalized coefficient CJ vs J = N/2 for the SJJ- and BJJ-models.

Notably, the suppression of variance δJ‖ manifests planar squeezing defined as (cf [32])

δJ‖ < J‖, (51)

where J‖ ≡
√〈

ĴX

〉2
+
〈

ĴY

〉2
is the magnitude of the spin component in XY-plane. In particular, for both

SJJ- and BJJ-models we have
〈

ĴX

〉
≈ J,

〈
ĴY

〉
=

〈
ĴZ

〉
= 0 within the domain 0 < Λ � 2 for figure 4(a) and

0 � λ � 1 for figure 4(b), respectively. Thus, in this area E(1)
HZ reflects the planar spin squeezing that occurs

due to significant enhancement of fluctuations in the Z-component of spin [17].
It is important to stress that in figure 4(a) (green dashed line) the SJJ-system undergoes the abrupt

transition to N00N-state (45) at the crossover region for Λc � 2 that is consistent with figure 3(c). The
E(m)

HZ -parameter calculated for m = 1 and m = N by using N00N-state (45) gives E(1)
HZ = 1, E(m)

HZ = 0.5,
respectively.

From figure 4(b) (green dashed line) it is evident that the transition to the N00N-state for the BJJ-model
occurs upon the large scales of λ � 1.

4.3. Quantum state engineering in the presence of losses
We now outline the possibility of experimental observation of N00N-states with solitons with feasible
condensate parameters. To be more specific we discuss lithium condensate solitons [54]. In addition, we
would like to mention the work [55] where authors recently studied lithium atomic soliton collisions on
relatively long times, i.e. on 32 ms and more. In particular, we focus on two weakly coupled condensates of
N = 300 atoms (|asc| � 1.4 nm, uN ∼ 1.88), confined in an asymmetric trap as it is shown in figure 1, with
ωx/2π = 70 Hz and radial trapping frequency ω⊥/2π = 700 Hz that imposes a⊥ � 1.4 μm. The solitons in
[54, 55] observed within characteristic time 8 ÷ 32 ms. The Λ parameter achieves its critical value, Λc � 2,
at tunneling rate |K|/2π � 77 Hz or |K| � 3.7 nK, which correlates the current experiments with atomic
JJs, see e.g. [67]. Notice, such a tunneling rate promotes effective coupling of solitons within their
observation time. Some moderate tuning of K or scattering length |asc| allows to obtain the crossover to the
N00N-state with Λ � Λc.

For the BJJ-model the critical value λc = 1 is achieved with |K|/2π � 83 Hz. However, the N00N-state
requires essential enhancement of λ in the experiment (60 times and more, see inset in figure 4(b)) that
may require a non-trivial experimental task. On the other hand, SC-states can be observed for the
BJJ-model with λ � 1, see figure 3(d) and [41].

Let us briefly discuss the loss issues for the SJJ-model described in this work. This problem is important
for applications of the SJJ-model in current quantum technologies, especially in quantum metrology, where
N00N-states play an essential role, cf [33, 38, 82].

Typically, it is instructive to consider one- and three-body losses occurring in condensates [83]. As
shown in [84], the role of various losses becomes critical at a relatively large number of particles in the
condensate. For example, in [84] it is shown that spin squeezing degrades for a bimodal condensate with
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N � 104 atoms. However, the N00N-state formation in the presence of weak losses requires some special
attention in this work.

First, let us estimate possible losses for the SJJ-model as a prerequisite for N00N-state formation. Since
vital parameter, Λ, is proportional to N2, many-body, especially three-body, inelastic collisions bringing to
losses may be important [88].

Physically three-body losses occur as a result of three-body recombination process appearing with
condensate atoms. Such processes primarily remove condensate particles possessing low kinetic energy and
those located at the trap center. The three-body losses play a very important role in the vicinity of Feshbach
resonance where scattering length essentially enhances [89].

As with one-body losses we expect here to have dynamical adiabatic changing of regimes from Fock to
Josephson or Rabi, if losses are weak [90]. On the other hand, since effective tunneling parameter, κeff ,
depends on the particle number, the SJJ-model in the presence of three-body losses may be also relevant to
some kind of dissipative tunneling problem [91].

In zero temperature limit the three-body recombination rate is L3 ∝ �a4
sc/m that approaches to

L3 � 2.6 × 10−28 cm6 s−1 for lithium atoms, see e.g. [92]. A simple rate equation for particle number leads
to decay of condensate atoms with the law as

N(t) � N(0)√
1 + 2L3ρ2t

, (52)

where N(0) is initial atom number in the condensate, ρ is atom number density that we assume here as a
constant. Taking it as ρ � 1013 cm−3 for the effective rate of three-body losses γ3 = 2L3ρ

2 we obtain
γ3 = 5.2 × 10−2 s−1.

The one-body losses rate may be estimated as γ1 = 0.2 s−1, see e.g. [41]. At times of soliton observation
in [54, 55] we effectively obtain γ1,3t 
 1 that allows to examine a non-perturbed SJJ-system. Notice, that
in [54] observation time was less than 10 ms.

This conclusion is supported by recent experiments performed in a more realistic case at finite
temperatures [93]. In particular, as it is shown in [94], three-body losses for lithium condensate atoms with
scattering length |asc| � 10.6 nm and tuned by magnetic field at the temperature T = 5.2 μK are important
at the time scales t � 100 ms and more. Especially at times t � 32 ms relevant to matter-wave soliton
observations in [55] the particle number reduction is practically negligible.

The analysis represented above is valid in the mean-field limit. In this sense, it is instructive to examine
few particle losses in a purely quantum way for state (37). We can consider an approach to the losses, which
is typically used in the framework of N00N-state applicability for quantum metrology tasks, see e.g.
[38–40, 66]. Various strategies are proposed to achieve maximally accessible scaling for phase estimation;
they manifest that in the presence of losses the ideal (balanced) N00N-state may be non-optimal. It is
shown that entangled Fock states, unbalanced N00N-states, and some specific two-component states may be
more useful in the presence of different level of losses [37, 39, 40]. Here we model the losses of condensate
particles by means of the fictitious BS approach. This approach represents a useful tool to study coupling of
quantum macroscopic superposition states with environment—see figure 6. The ‘input’ two-mode Fock
state (37) after two BSs transforms into (cf [40])

|N − n〉a|n〉b →
N∑

lb=0

N−lb∑
la=0

√
Bn

la ,lb
|N − n − la〉a|n − lb〉b |la〉 |lb〉 , (53)

where la and lb are the numbers of particles lost from ‘a’ and ‘b’ wells, respectively. In (53) we introduce a
coefficient

Bn
la ,lb

=

(
N − n

la

)(
n
lb

)
ηN−n

a (η−1
a − 1)laηn

b (η−1
b − 1)lb . (54)

that characterizes the relevant probabilities in the presence of particle losses. Here ηa and ηb (ηa,b � 1) are
the transmissivities of BSs in the channels ‘a’ and ‘b’, respectively. Then state |Ψout〉 after particle losses
reads as (see figure 6)

|Ψout〉 =
1√
p

N∑
lb=0

N−lb∑
la=0

N−la∑
n=lb

An

√
Bn

la ,lb
|N − n − la〉a|n − lb〉b |la〉 |lb〉 , (55)

where p =
∑N

lb=0

∑N−lb
la=0

∑N−la
n=lb

|An|2Bn
la ,lb

is a normalization constant for state |Ψout〉.
Let us suppose that we can somehow efficiently detect the numbers, la,b, of particles leaving the

condensate state. In particular, this situation is similar to the conditional state preparation by means of
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Figure 6. Scheme of particle losses from the condensate solitons trapped in double-well potential. Interaction with environment
at each well are provided by means of fictitious BSs BSa and BSb in quantum channels ‘a’ and ‘b’, respectively.

Figure 7. Probabilities |Cn
1,0|2 vs n for (a) Λ ≈ 2.000 9925, λ = 1.06; (b) Λ = λ = 4. The parameters are: ηa = ηb = 0.999,

la = 1, lb = 0. Initial total particle number is N = 300. Insets show probability features in the vicinity of ‘edge’ states with n = 0
(left-hand panels) and N′ = N − 1 = 299 (right-hand panels), respectively.

subtraction of a small number of particles. For example, in quantum optical experiments real BS devices are
used instead of fictitious ones, cf [95, 96]. Consider la = 1 and lb = 0, i.e. if only one particle is detected in
channel ‘a’ after BSa, the conditional state |Ψ(1,0)

out 〉 obtained from (55) at ηa = ηb = η takes the form

∣∣∣Ψ(1,0)
out

〉
=

1
√

p

N−1∑
n=0

An

√
N − n

√
ηN−1(1 − η)|N − n − 1〉a|n〉b. (56)

In figure 7 we represent the probabilities |Cn
1,0|2 (Cn

la ,lb
≡ 1√

p An

√
Bn

la,lb
) for the SJJ- and BJJ-models versus

n in the presence of weak and equal losses in each channel, ηa = ηb = 0.999. To be more specific, in
figures 7(a) and (b), we use the same condensate parameters as in figures 3(c) and (d), respectively.

The multiplier
√

N − n in (56) plays a crucial role in the behavior of relevant probability |Cn
1,0|2 that

characterizes the conditional state |Ψ(1,0)
out 〉. In the presence of weak losses, the tendency to occupation of

‘edge’ states continues with increasing of parameter Λ, see figure 7(a). However, in this case the state with
n = N cannot be occupied due to one particle loss, cf figure 3(c). Strictly speaking, the state with n = 0,
which is state |N − 1〉a|0〉b, becomes macroscopically populated for the SJJ-model with probability
|Cn

1,0|2 ∝
√

N|AN−1|2ηN−1(1 − η). On the contrary, the probability of occupation of new ‘edge’ state with
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Figure 8. The 3D probabilities |Cn
la ,lb

|2 versus N − n − la and n − lb for ηa = ηb = 0.999 and Λ = 4, N = 300.

n = N − 1 is more than
√

N times lower. Physically, this case may by recognized as so-called partial
‘collapse’ of N00N-state (45) to state |N − 1〉a|0〉b, when one particle is detected in ‘a’ channel; some small
occupation of the state with n = N − 1 still exists, see the inset in figure 7(b). Notice that the states with
n = N − 1, N − 2, . . . are poorly populated even without any losses—see insets to figures 3(c) and (d).

It is worth noticing that since the particles possess some (Gaussian-like) distribution in the vicinity of
‘edges’, the SC-states for the BJJ-model seem to be more robust to the particle losses, see the inset in
figure 7(b) and cf figure 3(d).

However, for la = lb = 1, i.e., if two particles are detected simultaneously after BSs in figure 6, the
behavior of the conditional state (55) becomes fundamentally different. In this case for (55) we obtain:

∣∣∣Ψ(1,1)
out

〉
=

1√
p

N−1∑
n=1

An

√
n(N − n)

(
ηb

ηa

)n

ηN
a (η−1

a − 1)(η−1
b − 1)|N − n − 1〉a|n − 1〉b. (57)

In this limit, new ‘edge’ states with n = 1 and n = N − 1 are occupied with comparable probabilities. In
particular, for ηa �= ηb superposition (57) turns to the unbalanced N00N-state that possesses N − 2 total
number of particles and has a form

∣∣∣Ψ(1,1)
N00N

〉
∝

√
(N − 1)(1 − ηa)(1 − ηb)

(√
ηN−2

a |N − 2〉a|0〉b +
√
ηN−2

b |0〉a|N − 2〉b

)
. (58)

The unbalanced N00N-state (58) represents a useful tool for the quantum metrology purposes in the
presence of weak losses if the corresponding transmissivities exceed a certain threshold value, cf [40].

To generalize these results, let us examine the state (55) in the case, when the numbers of lost particles,
la and lb, are undetected (and unknown), as it is shown in figure 6. Tracing out the ancillary modes la, lb in
(55) for the resulting state we obtain (cf [38])

|Ψout〉 =
N∑

lb=0

N−lb∑
la=0

N−la∑
n=lb

Cn
la ,lb

|N − n − la〉a|n − lb〉b. (59)

In figure 8, we plot the probabilities |Cn
la ,lb

|2 in N − n − la and n − lb axis for the SJJ-model. Each column in
figure 8 corresponds to the probability of state |N − n − la〉a|n − lb〉b occupation. The parameter Λ = 4 in
figure 8 is the same as for figure 3(d). Two big (yellow) columns in figure 8 correspond to the N00N-state if
no condensate particles are lost. In general, in the absence of losses the occupied modes are located on the
main diagonal between these columns. In the presence of losses, the terms with la �= 0 and/or lb �= 0 appear;
they contain N′ = N − la − lb particles and are characterized by the columns on the lines parallel to the
main diagonal in figure 8. In particular, the columns depicted in orange and green-colors in figure 8 form
the set of the N00N-states with N′ < N number of particles, see (58) and cf [38]. These superposition states
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still exist if equal numbers of particle la and lb are measured after BSs in figure 6. However, relevant
probabilities essentially vanish with increasing la and lb.

5. Conclusion

In this work we have considered the problem of macroscopic and mesoscopic states formation with two
weakly-coupled atomic condensate bright solitons. The condensates are trapped in a double-well potential
in the YZ-plane and are significantly elongated in the X-axis forming the specific JJs geometry. We assume
that condensates admit a weak interaction between the atoms possessing a negative scattering length of
atom–atom interaction. This geometry allows to examine bright atomic soliton features in one (X)
dimension. We start from the classical (mean) field approach to the problem that admits bright soliton
solutions with preserving soliton shapes. In this limit these solutions permit to effectively map the system of
weakly-coupled solitons onto the two-mode problem.

Transferring to the quantum picture of the problem we perform the second quantization procedure of
effectively interacting modes that allows us to obtain the quantum version of the classical two-mode
Hamiltonian. We refer such a Hamiltonian to the SJJ model.

Comparing all the results obtained for the SJJs with the ones of BJJ model consisting of two
weakly-coupled (Gaussian-shape) condensates, we have shown that there exist two important differences
between the SJJ- and BJJ-models. First, the SJJ-model permits a particle dependent tunneling rate. Second,
the effective nonlinear parameter for the SJJ-model depends on the total particle number squared, N2, not
N, that takes place for the BJJ-model. To demonstrate the advantages of the SJJ-device we have examined
the quantum analysis of the superposition states formation.

Initially, we have considered the quantum field variational (Hartree) approach that predicts SC states
formation within the vital parameter, Λ, domain. In this limit we explore the atomic coherent state as the
basis for the superposition state analysis. We have shown that the cat states approach the N00N-state in the
limit when the cat becomes macroscopic.

We have performed the full quantum analysis of the energy spectrum for the SJJ- and BJJ-models to
consider the N00N-state formation problem for the JJs in detail. We have demonstrated that the crossover
to the N00N-state may be realized for the both models at some combination of atomic nonlinear strength
and tunneling rate. However, due to the particle dependence, the effective tunneling rate, κeff , that governs
this crossover, demonstrates self-tuning effect, revealing an abrupt transition to superposition of entangled
Fock states. The N00N-state appears at the ‘edges’ with n = 0, N of this superposition and represents its
major component. The existence of the satellite entangled Fock state components with non-zero
probabilities in the vicinity of ‘edges’ represent an important difference from the variational (Hartree)
approach. It is worth noting that probabilities of these components are vanishing, and the SJJ-model
approaches approximately ‘ideal’ N00N-state (45) for moderate values of Λ-parameter. The BJJ-model
approaches the same N00N-state only with a quite large nonlinear strength, λ � 60.

To confirm the results obtained we have examined the m-order HZ criterion and taken it with m = 1
and m = N, respectively. The numerical calculations reflect the existence of the strong entanglement and
the planar quantum squeezing, which occur up to the crossing point defined by the vital parameter Λ
(or λ). The EPR steering happens in the crossover point vicinity where Hartree approach is useless. Notably,
the depth of the steering is much higher for the familiar atomic JJs, which may be explained through the
additional particle number fluctuations occurring from the tunneling process for the SJJ-model. This
process leads to a narrower distribution function appearing immediately at the crossover point. The results
obtained for the HZ-criterion indicate the crossover from the quantum steering to the N00N-state. This
crossover exhibits a very sharp and large variation in the first order HZ-criterion that takes place for the
SJJ-model.

Finally, we examine how losses influence the formation of state (37). The qualitative estimations of
influence from one- and three-body losses demonstrate feasibility of observation on predicted phenomena
with SJJs. To take into account the losses of a few number of particles in condensate solitons, we have used
the fictitious BS approach that represents the essence of the state preparation procedure in figure 6. In
particular, we have shown that the existence of tiny satellite entangled Fock state components provides some
resistance of the N00N-state to complete collapsing if we are able to detect (non-equal) number particles
which are lost in each well (channel). We have also shown that the final state (56) preserves the N00N-state
structure if two or even number of particles are lost and may be equally detected in both channels.
Especially, such an analysis seems to be important for practical applications of the soliton JJs in ‘real world’
quantum metrology.

We are confident that the quantum state features of the SJJ-model described by Hamiltonian in
equation (20) potentially may be significantly larger than we describe in this work. In particular, established
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quantum SJJ-model may be also useful in quantum communication and quantum information science,
where quantum optical solitons represent an appropriate tool, cf [97]. In this sense quantum properties of
the SJJ-model proposed in this work represent a necessary step to further studies.
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