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a b s t r a c t

We propose a theoretical scheme to coherently control the transport of a single electron in an
asymmetric double-quantum-dot system. The single-electron transport originates from the intrinsic
interplay between the externally applied few-cycle pulse and the inter-dot tunneling. Solving the
equations of motion for dot-density matrix, we reveal numerically that the current exhibits a significant
dependence on the carrier-envelope phase (CEP) of the few-cycle pulse, which is similar to the magnetic
flux controlled coherent transport in an Aharnov–Bohm (AB) interferometer. As a result, by varying the
CEP of the pulse one can suppress or enhance the current either instantaneously or periodically. Our
results illustrate the potential to utilize few-cycle pulses for excitation in quantum dot systems through
the CEP control, as well as a guidance in the design for possible experimental implementations.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, it has been realized that the phase of electro-
magnetic (EM) fields can provide a powerful technique to control
or manipulate matters. The method of phase control is associated
with the coherent interaction between EM fields and matters,
which has already been applied to a variety of different systems
[1–7]. Phase dependent phenomena are demonstrated by control-
lable population dynamics [3], suppressed spontaneous emission
[4], and coherent transport in coupled tunneling systems [5,6].

Instead of atomic and molecular systems, solid-state media,
especially the quantum dot (QD) structures, have attracted significant
research attention due to their potential applications in the develop-
ment of novel optoelectronic devices and solid-state quantum infor-
mation science [8]. In QD systems, to manipulate electrons an external
magnetic flux is applied firstly to implement possible coherent phase
controls. However, it is technologically difficult to confine a strong
magnetic field within a very small region, which might be a crucial
obstacle for its future applications in quantum processing and
computation. Therefore, it is a reasonable choice to replace the
magnetic field by some source more easy to control. A natural idea
is to use the phase of applied EM fields to control the coherent
transport between QD systems, which has revealed many interesting
phenomena ranging from photon-assisted tunneling to charge/spin

pumping [9–17]. In a recent experiment, microwave spectroscopy has
been measured in coupled QDs [18], and the photon-assisted reso-
nances, which involve the emission or absorption of a microwave
photon, are found when applying a modulated gate voltage. Some
other systems based on time-dependent influences also give rise to
promising physical phenomena and applications [19–23].

Meanwhile, tremendous progress in the generating of ultra-short
pulses in the few-cycle regime allows one to explore a new class of
phase-dependent phenomena. The relative phase difference between
the carrier wave and the pulse envelope, which is the so-called
carrier-envelope phase (CEP), has many distinctive observable fea-
tures. Both experimental and theoretical studies have revealed that
the CEP of few-cycle pulses indeed plays an important role in the
light-matter interactions [24–40]. In this work, we propose a scheme
for controlling single-electron transport in an asymmetric double QD
system. The coherent transport is externally controlled by applying a
few-cycle pulse with an adjustable CEP. We demonstrate that the
single-electron transport is in fact the result of the intrinsic interplay
between the external few-cycle pulse and the inter-dot tunnel
coupling. In particular, we further show that the current can be
periodically suppressed or enhanced by modulating the CEP. Our
study provides an efficient tool to manipulate the quantum dynamics
in QD systems with an adjustable CEP.

2. Model and equations of motion

The present QD system is given in Fig. 1. This device is
composed of two different QDs (marked as the left (L) and right
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(R) dots) and two normal metal leads. The size of the right dot is
assumed to be much smaller than that of the left one, therefore the
energy spacing of it is much larger than that of the left one.
The ground state j1〉 and the first excited state j3〉 of the left dot
and the other ground state j2〉 of the right dot form a three-level
system. Such kind of QD configuration can be realized by a
quantum heterostructure consisting of different semiconductor
materials (GaAs/AlGaAs). Metal gates could be deposited on the
top of a GaAs/AlGaAs heterostructure with a two-dimensional
electron gas about 100 nm below the surface [8]. Generically,
Coulomb charging energies are of a few meV and they are the
largest energy scales. Hence the states associated with more than
one additional transport electron can be safely neglected [41–43].
Typical energy difference between the ground state j1〉 and the
first excited state j3〉 is of the order of several meV [8]. The states
j1〉 and j3〉 are both coupled to the state j2〉 via the tunneling
through the barrier. The transition between the states j1〉 and j3〉
themselves is resonantly driven by a few-cycle pulse characterized
by the electric field [25] E(t), which is further defined via the
vector potential, EðtÞ ¼ �∂AðtÞ=∂t. This definition guarantees that
the vector potential A(t) vanishes at t ¼ 71, or equivalently, the
pulse area under E(t) over the entire pulse duration becomes
exactly zero [44], which excludes unphysical results. Specifically
we assume that the vector potential has a Gaussian temporal
envelope, i.e.,

AðtÞ ¼ A0e�ð2 ln 2Þðt�2τÞ2=τ2 sin ðωtþφÞ; ð1Þ
where A0 is the peak of the pulse envelope, ω is the carrier
frequency (2π=ω corresponds to an optical oscillation cycle time),
and φ is the CEP. The CEP describes the offset of the peak laser
pulse relative to the peak position of the envelope. In Eq. (1), we
have assumed that the temporal intensity profile is Gaussian
temporal envelope with pulse duration τ (full width at half
maximum (FWHM)).

In the present system, the effective Hilbert space can be
thought of as being spanned by four basis states: j0〉 (no electron
in both dots), j1〉 (one electron in the ground state of the left dot),
j2〉 (one electron in the ground state of the right dot), and j3〉 (one
electron in the excited state of the left dot). The total Hamiltonian
of the system can be expressed in the form [8]

H ¼HD0þHDLþHDT þHBþHep: ð2Þ

The first term is the free Hamiltonian of the two QDs,

HD0 ¼ ∑
j ¼ 1;2;3

ϵjjj〉 〈jj; ð3Þ

where ϵj represents the energy of the state jj〉 (j¼ 1;2;3). The

second term describes the interaction between the left dot and a
few-cycle pulse,

HDL ¼ �ΩξðtÞj1〉 〈3jþH:c:; ð4Þ
where ξðtÞ ¼ω�1∂½e�ð2 ln 2Þðt�2τÞ2=τ2 sin ðωtþφÞ�=∂t. The Rabi fre-
quency for the transition j1〉2j3〉 is denoted by 2Ω¼ μ13ωA0=ℏ,
with μ13 being the corresponding transition dipole moment. The
third term describes the coupling Hamiltonian of the dots through
the tunneling effect,

HDT ¼ κ12j1 〉〈2jþκ32j3 〉〈2jþH:c:; ð5Þ
where κij is the tunneling coefficient between the states ji〉 and jj〉.
The fourth term represents the interaction between the leads and
the dots and the interaction between the photon modes and the
left dot,

HB ¼ ∑
k;η ¼ L;R

εk;ηc
†
k;ηck;ηþ∑

qν
ωqa

†
qνaqνþ∑

k
½VkLc

†
kLðj0〉〈1jþj0〉〈3jÞ

þVkRc
†
kRj0〉〈2jþH:c:�þ∑

qν
ðVqνj3〉〈1ja†qνþH:c:Þ; ð6Þ

where ckη is the annihilation operator of electrons in the lead η
(η¼ L;R), and aqν is the annihilation operator of photons with
momentum q and polarization ν. Vkη denotes the coupling
strength of the interaction between electrons in the QDs and the
leads η. For simplicity, we have assumed that both levels in the left
dot interact with the lead L via the same strength. The final term

Hep ¼∑
Q

1
2
gQsz1ða�Q þa†Q Þþ∑

Q
ωQa

†
QaQ þ∑

p

1
2
gpsz2ða�pþa†pÞ

þ∑
p
ωpa†pap ð7Þ

describes the coupling of phonons to the charge density which has
been found to be the dominant interacting mechanism in a single
two-level dot and in the double QDs. Here sz1 ¼ ðj3〉〈3j�j1〉〈1jÞ,
sz2 ¼ ðj2〉〈2j�j1〉〈1jÞ, a†Q ða†pÞ is the creation operator of phonons
with frequency ωQ ðωpÞ, and gQ ðgpÞ is the coupling strength of the
interaction between electrons and phonons [45].

The transition rates between the states of the left lead and the
two states of the left dot are expressed as Γ7

Lj ¼ΓLf
7
j ðϵjÞ (j¼1,3),

where ΓL ¼ 2π∑kjVkLj2δðϵj�εkLÞ and f 7j ðϵÞ ¼ f1þexp½7
ðϵ�μLÞ=kBTg�1 is the Fermi distribution function of the left
reservoir. Here μL is the chemical potential, and 7 corresponds
to the occupied/empty state of the left lead. More specifically, Γþ

Lj
represents the tunneling rate of the transition of electrons from
the left lead into the state jj〉, while Γ�

Lj represents the tunneling
rate of the inverse process. Furthermore, here we only consider a
low bias configuration where μL is well below the two energy
levels of the left dot [11,17], hence the Fermi distribution functions
can be approximated as f þL ðϵjÞ ¼ 0 and f �L ðϵjÞ ¼ 1. In this case, the
transition rates are further simplified as Γ�

Lj ¼ΓL and Γþ
Lj ¼ 0.

Now we consider the transition of electrons in the “right” part
of the system. We assume that the chemical potential μR of the
right lead is well above the energy level of the right dot. By similar
deduction, the tunneling rate of transition of electrons from the
state j2〉 to the right lead is given by Γ�

R ¼ 0, and the tunneling rate
of the inverse process is approximated as Γþ

R ¼ΓR [11,17]. For
simplicity, we assume that the dot-lead tunneling rates satisfy
ΓL ¼ΓR ¼Γ. Under the assumption of weak coupling between the
QDs and the leads, the behavior of the double QDs in the
sequential regime can be described in terms of the density
operator of the system. After adiabatically eliminating the reser-
voir operators ckR, ckL, aqν, ap, aQ and employing the Born–Markov
approximation, the master equations for the density matrix of the
system can be written as [49]

∂ρ33

∂t
¼ �γ3ρ33�Γρ00þ iΩξðtÞðρ13�ρ31Þþ iκ32ðρ23�ρ32Þ; ð8Þ

2

L R

3

1

E(t)

L

R

Fig. 1. Schematic diagram of a three-level system which consists of the ground
state j1〉 and the first excited state j3〉 in the left dot, and the ground state j2〉 in the
right dot in an asymmetric double QD structure. The ground state j1〉 in the left dot
is coupled resonantly to the excited state j3〉 by a few-cycle pulse E(t).
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∂ρ11

∂t
¼ γ3ρ33�Γρ00� iΩξðtÞðρ31�ρ13Þþ iκ12ðρ21�ρ12Þ; ð9Þ

∂ρ22

∂t
¼ �γ2ρ22þΓρ22� iκ12ðρ21�ρ12Þ� iκ32ðρ23�ρ32Þ; ð10Þ

∂ρ13

∂t
¼ �γ3þβ

2
ρ13þ iΩξðtÞðρ33�ρ11Þþ iκ32ρ21� iκ12ρ23; ð11Þ

∂ρ12

∂t
¼ � γ2þβ�Γ

2
þ i Δþω

2

� �� �
ρ12þ iκ12ðρ11�ρ22Þ

þ iκ32ρ13� iΩξðtÞρ32; ð12Þ

∂ρ23

∂t
¼ � γ2þγ3þβ�Γ

2
� i Δþω

2

� �� �
ρ23� iκ12ρ13

þ iκ32ðρ22�ρ33Þ� iΩξðtÞρ21; ð13Þ
with ρ00þρ11þρ22þρ33 ¼ 1, where the detuning frequency
Δ¼ ε2�ε1�ω=2 is tunable if an external bias is applied perpen-
dicularly to the barrier layer. The diagonal elements of the density
matrix, ρjj (j¼ 0;1;2;3), correspond to the populations of electrons
on the states jj〉. The off-diagonal density matrix elements describe
the coherent superposition of the three levels. The damping terms
including population decay rates and related dephasing rates are
added phenomenologically in the above equations. The population
decay rate γj for the state jj〉 comes primarily from the interaction
between the QDs and the vacuum EM fields. The dephasing rate β
arises from the phonon emission and scattering, and the interac-
tion between electrons and phonons [42]. A more complete
theoretical treatment in which the incoherent relaxation processes
are taken into account is thought to be interesting [42,45–48], but
this goes well beyond the scope of this paper.

We can solve Eqs. (8)–(13) numerically to obtain the time-
dependent current flowing from the right lead to the QD in the
sequential regime [49,50],

IðtÞ=e¼Γρ00ðtÞ: ð14Þ
According to the law of current conservation, the time-dependent
current flowing from the QD to the left lead can be written as

IðtÞ=e¼Γ½ρ11ðtÞþρ33ðtÞ�: ð15Þ
Under our approximation that μL{ϵ1;3 and μRcϵ2, electrons

can tunnel out from both the excited and ground states of the left
QD. Therefore these two states must contribute to the transport, as
shown in Fig. 1. According to Eq. (15), the current contributions of
the two states are equivalent. For convenience, we separate the
current into IðtÞ=e¼ I1ðtÞ=eþ I3ðtÞ=e where I1ðtÞ=e¼Γρ11ðtÞ and
I3ðtÞ=e¼Γρ33ðtÞ. Therefore, the few-cycle pulse does have a strong
effect on the non-equilibrium transport in the present double QD
system. We mainly focus on the modulation of the CEP of a few-
cycle pulse φ on the current. In the following section, we will
directly examine the final current Ið1Þ=eΓ by numerically inte-
grating Eqs. (8)–(13) without making the RWA in the adiabatic
basis by means of a fourth-order Runge–Kutta method. Besides,
we restrict our calculations within the resonant case of transition
(ϵ3�ϵ1 ¼ω) and assume κ12 ¼ κ32 ¼ κ for simplicity.

3. Numerical results and discussion

Here we discuss some implications from our numerical results.
Shown in Fig. 2 is the behavior of the resonant few-cycle pulses
with the pulse duration τ¼ 5 ps and the carrier frequency
ω¼ ϵ3�ϵ1 ¼ 4 meV with the central wavelength λ¼ 0:31 mm.
Thus the pulse corresponds to the few-cycle THz pulses (the
number of optical oscillation cycles N¼ τ=ð2π=ωÞC5) [51,52]. It
is evident that the electric field as a function of time depends on
the CEP, although the envelope is the same for all pulses. One can

also see that a phase shift φ of π=2 changes the peak value of the
central oscillation near the envelope maximum considerably. It
will be demonstrated later that related physical processes induced
by this few-cycle pulse also have strong dependence on the CEP.

To acquire a tentative impression of the properties of Ið1Þ, we
first consider the simple situation that the resonant few-cycle
pulse is absent (Ω¼ 0) and the decay and dephasing effects are
not taken into account (γ2 ¼ γ3 ¼ β¼ 0). Fig. 3(a) plots the current
Ið1Þ=eΓ as a function of the detuning Δ under this simplification.
It can be seen that the current spectrum exhibits a two-peak
structure, as shown by the black solid line. The locations of the
two peaks are at Δ¼ 7ω=2, corresponding to the two channels of
electron resonant tunneling: j2〉2j1〉 and j2〉2j3〉. When
Δ¼ �ω=2, the electron can only transport from the state j2〉 to
j1〉 and then a peak appears. This transition is determined by the
resonant tunneling κ12. Similarly, if Δ¼ω=2, the main transition
channel of the electrons is from the state j2〉 to j3〉 and another
peak shows up, which is determined by the resonant tunneling
κ32. We have restricted our calculation under the condition
κ12 ¼ κ32, hence the current Ið1Þ=eΓ (solid-line) consists of two
components I1ð1Þ=eΓ (dotted-line) and I3ð1Þ=eΓ (dashed-line).
Both of them contribute equally to the current, thus the current
spectrum shows a symmetric two-peak structure, as shown in
Fig. 3(a). In a realistic double QD system, the population decay and
dephasing rates are generically nonzero. For example we can set
γ2 ¼ γ3 ¼ β¼ 0:001 meV, and it can be found in Fig. 3(b) that the
peak values are lower down. From here on in this paper, we will
take into account the effect of the decay and dephasing.

If the transition j1〉2j3〉 is driven by a few-cycle pulse
(Ω¼ 0:2 meV), the current spectrum shows an interesting beha-
vior. Compared to the situation withΩ¼ 0, the two-peak structure
becomes asymmetric, while the peak locations remain unchanged,
as shown in Fig. 4. When φ¼ 0 (see Fig. 4(a)), one can find that the
right peak is higher than the left one, while one gets the exactly
opposite result when φ¼ π=2 (see Fig. 4(b)). This interesting
phenomenon comes from the CEP-dependent quantum interfer-
ence. When Δ¼ �ω=2, there are two transport pathways for the
transition channel j2〉2j1〉. One is simply the single electron
tunneling j2〉2j1〉, which is determined by the tunneling rate
κ12. The other is j2〉2j3〉2j1〉, which is determined by the
tunneling rate κ32 and the driven field E(t). These two pathways
can interfere with each other either constructively or destructively,
depending on the CEP φ. The situation with Δ¼ω=2 is quite
similar. There are also two transport pathways for the transition
channel, either j2〉2j3〉 or j2〉2j1〉2j3〉. They are determined by
κ12 only or by κ32 and driven field E(t)together, respectively. These
two pathways also interfere with each other. Fig. 4 illustrates the
interference pattern between two transport pathways for two

0 5 10 15 20
1.0

0.5

0.0

0.5

1.0

Time ps

E
t
E 0

Fig. 2. Time variation of the electric field for few-cycle pulses with a different CEP
φ. A comparison between φ¼ π=2 (dotted-line) and φ¼ 0 (dashed-line) is shown.
Other parameters used are τ¼ 5 ps and ω¼ 4 meV.
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transition channels. (a) shows the constructive interference for the
transition j2〉2j3〉 and the destructive interference for the transi-
tion j2〉2j1〉 when φ¼ 0, while (b) shows the destructive inter-
ference for the transition j2〉2j3〉 and the constructive
interference for the transition j2〉2j1〉 when φ¼ π=2. It can also
be seen that in Fig. 4(a) I3ð1Þ=eΓ (dashed-line) gives a larger
contribution than I1ð1Þ=eΓ (dotted-line), thus the current spec-
trum exhibits asymmetric peak structure (solid-line). Fig. 4(b) also
shows that both the current components I1ð1=eΓÞ (dotted-line)
and I3ð1Þ=eΓ (dashed-line) unequally contribute to the
current peaks.

In order to further explore the dependence of the current on
the CEP, we present in Fig. 5 the final current as a function of the
CEP of the few-cycle pulse, and the parameters are chosen as
Ω¼ 0:2 meV and Δ¼ 2 meV. Obviously, the current spectrum has
a strong dependence on the CEP and it can be enhanced and
suppressed periodically as the change of the CEP. The current
reaches its maxima at φ¼ kπ (k¼ 0;1;2) and its minima at
φ¼ kπ=2. The role of the CEP here is quite similar to the magnetic
flux in an AB ring [53]. However, it is quite different from the AB
interferometer results from the external bias voltage in an AB ring.
Here, the modulation of the current results from quantum inter-
ference induced by the few-cycle pulse. But our system shares the
same physical background with an AB ring for the phase modu-
lated quantum interference.

For get a better insight into the CEP modulation effect on the
global behavior of the current, we present the contour plot of the
current in Fig. 6, in which the horizontal and vertical axes
correspond to the CEP φ and the electric field amplitude ℏΩ,

respectively. It can be seen that the maximal (minimum) value of
the final current increases (decreases) as Ω increases, which
clearly illustrates the feature that the few-cycle pulse with higher
intensity leads to more significant modulation of the final current.
Plotted in Fig. 7 is the contour map of the current as a function of
the CEP φ and the detuning frequency Δ with a fixed electric
amplitude Ω¼ 0:2 meV. It can be found that at Δ¼ 7ω=2 the
modulation is more pronounced. Besides, the electric field E(t) has
the period 2π as a function of CEP, which implies that the current
approximately has a period π as a function of CEP, which is clearly
shown in Figs. 5–7. In conclusion, it is the quantum interference
determined by the CEP that can be used to modulate the current in
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Fig. 3. The final current as a function of detuning frequency Δ in the absence of a few-cycle pulse (Ω¼ 0): the current Ið1Þ=eΓ (solid-line), I1ð1Þ=eΓ (dotted-line), and
I3ð1Þ=eΓ (dashed-line). A comparison between the cases without and with the decay rates is shown for (a) γ2 ¼ γ3 ¼ β¼ 0 and (b) γ2 ¼ γ3 ¼ β¼ 0:001 meV, respectively.
Other parameters used are κ¼ 0:05 meV, and ϵ3�ϵ1 ¼ω¼ 4 meV.
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Fig. 4. The final current as a function of detuning frequency Δ in the presence of a few-cycle pulse (Ω¼ 0:2 meV): the current Ið1Þ=eΓ (solid-line), I1ð1Þ=eΓ (dotted-line),
and I3ð1Þ=eΓ (dashed-line). A comparison between the cases with a different CEP is shown for (a) φ¼ 0 and (b) φ¼ π=2. Other parameters used are κ ¼ 0:05 meV,
γ2 ¼ γ3 ¼ β¼ 0:001 meV, and ϵ3�ϵ1 ¼ω¼ 4 meV.
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Fig. 5. The final current Ið1Þ=eΓ as a function of the CEP φ. The parameters used
are Ω¼ 0:2 meV, Δ¼ 2 meV, γ2 ¼ γ3 ¼ β¼ 0:001 meV, ϵ3�ϵ1 ¼ω¼ 4 meV, τ¼ 5 ps,
and κ¼ 0:05 meV.

W.-X. Yang et al. / Optics Communications 328 (2014) 96–101 99



a double QD system. This effect may serve as a CEP controlled
current switch.

To visualize the modulation depth of the current modulated by
the CEP φ, we introduce the parameter

M¼ ImaxðφÞ� IminðφÞ
ImaxðφÞþ IminðφÞ

: ð16Þ

From Fig. 5, one can find that the modulation depth M can reach
0.8 if the parameters are fixed as Ω¼ 0:2 meV, Δ¼ 4 meV.
Furthermore, Figs. 6 and 7 imply that M can be tuned by changing
the electric amplitude and detuning frequency. By investigating
the effect of few-cycle pulses on the single-electron transport in a
double QD system, the pulse width plays an important role at the
given carrier frequency ω. It determines the number of cycles of
the field in the pulse. In Fig. 8, we plot M as a function of the
number of cycles N (in units of optical period of the pulse, i.e.,
N¼ τ=½2π=ω�) at a different electric amplitude Ω and detuning
frequency Δ. It can be seen that M decreases as the number of
cycles increases. This means that the modulation depth strongly
depends on the pulse width τ. The longer the pulse width, the
smaller the modulation depth, which can be explained by the
time-dependent perturbation theory. In addition, Fig. 8(a) shows
that M increases as Ω increases, which clearly illustrates the fact
that a smaller Rabi frequency induces a smaller modulation which
is therefore unfavorable from the viewpoint of the experimental
measurement. The lower limit of the Rabi frequency depends on
the precision of the measurement of the current [8]. Fig. 8
(b) shows that the detuning frequency Δ has a significant effect
on the CEP modulation depth as well. It can be concluded from
Fig. 8 that the single-electron transport can be optimized (max-
imized) by choosing a proper set of detuning Δ, amplitude Ω, and
the pulse width τ.

4. Conclusion

In conclusion, we have demonstrated coherent control of the
single-electron transport in an asymmetric double QD system
driven by a few-cycle pulse by varying the CEP. By numerical
simulations, it is clearly shown that the current is extremely
sensitive to the CEP if the pulse is in the few-cycle regime. The
results suggest that such a system can provide a potential electro-
optical method to control the electron transport. A possible
experimental implementation for our proposed scheme is to tune
the energy levels by applying a gate voltage in an asymmetric QD.
Another possible experimental realization is proposed by Fujisawa
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Fig. 6. The contour map of the final current Ið1Þ=eΓ for the varying CEPs φ and
varying electric amplitudes Ω of the few-cycle pulse. The parameters used are
Δ¼ 2 meV, γ2 ¼ γ3 ¼ β¼ 0:001 meV, ϵ3�ϵ1 ¼ω¼ 4 meV, τ¼ 5 ps, and κ¼ 0:05 meV.
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varying detuning frequencies Δ. The parameters used are Ω¼ 0:2 meV,
γ2 ¼ γ3 ¼ β¼ 0:001 meV, ϵ3�ϵ1 ¼ω¼ 4 meV, τ¼ 5 ps, and κ¼ 0:05 meV.
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γ2 ¼ γ3 ¼ β¼ 0:001 meV, ϵ3�ϵ1 ¼ω¼ 4 meV, and κ ¼ 0:05 meV.
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et al. [42], of which an important requirement is the asymmetric
double dot structure. Although the work of Fujisawa et al. is
concentrated on a two-level system, it can be easily generalized to
the three-level case by applying an adequate external field [54–56]
(an additional channel is opened for the transport). Based on the
advanced nanofabrication technologies, we believe that our model
can be experimentally realized under proper arrangements. It
should be noted that our CEP control shares a similar mechanism
to that of the magnetic flux controlled interferometer. Moreover,
the interaction between the electron and the few-cycle pulse is
much easier to manipulate. We believe that the quantum inter-
ference or coherence phenomena in other material systems [57–
59] besides the QD would also show a similar sensitive CEP
dependent effect. Therefore, the CEP controlled quantum inter-
ference or coherence shall provide another feasible approach for
applications in nanoelectronics and quantum information science.
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