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Abstract: We investigate the dynamics of spatial optical solitons
launched in a medium with a finite perturbation of the refractive index. For
longitudinally short perturbations of super-Gaussian transverse profile, as
the input power varies we observe a transition from a wave-like behavior
where solitons break up into multiple fringes to a particle-like behavior
where solitons acquire a transverse velocity retaining their shape. For
longitudinally long perturbations with an attractive potential solitons get
trapped inside the well and propagate with transverse periodic oscillations,
resulting in an efficient power-dependent angular steering or deflection.
Using the Ehrenfest theorem we derive analytical expressions for soliton
trajectory, and achieve excellent agreement between theory and numerical
simulations for large powers, that is, narrow solitons.
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1. Introduction

Scattering and transmission of light beams by inhomogenities of the medium are fundamen-
tal phenomena and have been widely investigated in both linear and nonlinear regimes [1–3].
The dynamics of spatial optical solitons, i.e. transversely localized nonlinear wavepackets [4],
at the interface between media has been addressed as well, both experimentally and theoret-
ically [5–12]. Aceves et al. adopted a particle approach to model reflection and transmission
of an obliquely incident beam propagating through a nonlinear interface [5], even in the cases
of multiple beams or multiple interfaces [6]. It was demonstrated that spatial solitons are ro-
bust enough to survive transitions at the interface, including total internal reflection [8, 10, 11],
trapping and scattering [13, 14], tunneling and escaping [12, 15]. Since the resulting soliton
trajectory depends on power, some of these features have suggested their use for all-optical
switching and computing [16–18].

Interactions of optical solitons with defects have also been studied in discrete waveguide
arrays [19–21]. The effects of either attractive or repulsive defects were studied by considering
increases or decreases in coupling strength [22, 23], linear or nonlinear impurities in the array
[24, 25] as well as longitudinal modulations of the nonlinearity [26, 27]. The interaction of
discrete breathers with impurtiy modes can lead to interesting phenomena such as fusion [28].

The aim of this work is to study the dynamics of optical spatial bright solitons (hereafter sim-
ply called solitons) propagating in a medium in the presence of a finite linear perturbation of the
refractive index associated to a localized photonic potential [13, 29, 30]. Such index inhomo-
geneity can affect the soliton dynamics [31, 32], including oscillations with period depending
on power in either saturating [33] or nonlocal media [34]. Moreover, we recently demonstrated
that by varying the ratio between the widths of the input beam and the defect one can observe
wave-particle dualism asssociated to the soliton-defect interaction [17, 18]. When the ratio is
large, i.e. the soliton is much wider than the tranverse size of the photonic potential, the phase
of the beam is modulated by the defect resulting in beam breakup into multiple fringes; when
the soliton is much narrower than the defect (i.e. a narrow soliton), the beam maintains its shape
and can be steered, i.e. its trajectory can be controlled by power, an interesting phenomenon
towards all-optical processing architectures. Hereby we characterize the interaction of a soliton
with a photonic potential of finite size in both transverse and longitudinal coordinates, specif-
ically addressing soliton splitting and steering. Even though our results concern optics, they
can be adapted and applied to other fields, particularly to Bose-Einstein condensates where the
condensate density plays the role of the light wavepacket.
The paper is organized as follows: in section 2, starting from the Ehrenfest theorem, we de-
velop a general model (i.e., independent on the specific nonlinearity) for the soliton trajectory
in inhomogeneous nonlinear media; in section 3 we present numerical simulations of soliton dy-
namics in both repulsive as well as attractive defects, for various profiles of the linear photonic
potential; in section 4 we extend the analysis to the study of breathers and their propagation
in a potential. In all cases we compare numerics and analytical predictions to show their good
agreement, particulary for narrow solitons.

2. Ehrenfest theorem for solitons

Starting from Maxwell’s equations in the harmonic regime in isotropic media, neglecting the
divergence of the electric field it is possible to derive that the electric field satisfies a vectorial
Helmholtz equation:

(∇2 + k2
0n2)E(x,y,z) = 0, (1)

where n = n0+nL(x,y)+n2|E|2 is the overall distribution of the refractive index, with n0 the
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Fig. 1. Sketch of the soliton interaction (blue arrow) with a finite linear photonic poten-
tial (box) of width wp across x and of length Lpd along z (units in the laboratory frame).
A soliton is launched along the axis z in (x = 〈x0〉, z = 0). After the interaction the soli-
ton emerges with a finite angle θ depending on both beam power and input location. In
the sketched example the defect has a positive index increase (darker area) and is able to
transversely trap the beam.

linear index, nL the linear (i.e., independent from light) perturbation in index, n2 the nonlinear
Kerr coefficient. Thus in Eq. (1) we can write n2 = n2

0 + 2n0nL + 2n0n2|E|2 in the limit of
small perturbations. Assuming linearly polarized beams we can write E = A(x,y,z)exp(ik0n0z),
where k0 = 2π/λ is the vacuum wavenumber. For the sake of simplicity we also limit the
analysis to only one transverse dimension by setting ∂y = 0. For paraxial wave propagation
along the axis z, Eq. (1) reduces to the scalar wave equation in (1+1)D

2ik0n0
∂A
∂ z

+
∂ 2A
∂x2 +2k2

0n0nLA+2k2
0n0n2|A|2A = 0, (2)

where we took |nL| � n0. Defining Z = z/Lp, X = x/wp, u =
√

2pn0n2A, Lp = k0w2
pn0 and

labelling wp the width of the defect, Eq. (2) can be recast as

i
∂u
∂Z

+
1
2

∂ 2u
∂X2 + |u|2u− pVeff (X ,Z)u = 0, (3)

with p = k2
0w2

p/2 and Veff = −2n0nL(X ,Z) = −Δexp
(−X2l

)
rectd (Z −Z0), where

Δ/
(
k2

0w2
pn0

)
is the increase/decrease in linear index (i.e. positive/negative resulting in an at-

tractive/repulsive defect, respectively), d is the defect extension along Z and l is a positive
integer related to the abruptness of head and tail in nL(X ,Z). Hereby we consider photonic po-
tentials with longitudinally invariant shape (along Z) and even symmetry across X (see sketch
in Fig. 1). The input wavepacket is a Kerr soliton u(X ,Z = 0) = Nu0sech(u0X), the integer N
spanning the soliton order (N = 1 fundamental soliton, N > 1 higher order solitons [35]).

The dynamics of the soliton beam, after interacting with the linear defect, can be appreciated
using the Ehrenfest theorem [36], which provides the expectation value for the beam position
as

d2 〈X〉
dZ2 =−p

∫
ψ

∂Veff

∂X
dX , (4)

with ψ = |u|2/∫ |u|2dX the normalized intensity and 〈X〉 = ∫
ψXdX the beam position.

Owing to symmetry, the contribution of the nonlinear potential is zero as long as it is symmetric
with respect to the beam axis 〈X〉: in this limit the right hand side of Eq. (4) depends only on
the linear index distribution nL.
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Fig. 2. Force experienced by the input beam for the case of a repulsive potential and
various l values. The magnitude of the force increases with l. The maximum force becomes
increasingly localized near 〈X〉= 1 due to the flattening of the index well with l.

Equation (4) is equivalent to the Newton equation, with the soliton as a pointlike particle
located in X = 〈X〉, with an effective velocity v = d 〈X〉/dZ, the latter corresponding to the
slope of the trajectory with respect to the axis Z. The effective velocity changes under the
action of an effective force F given by the right hand side of Eq. (4), and is the average of the
index gradient perceived by the soliton across its profile.
Expressing Veff in a power series with respect to X −〈X〉 we get

d2 〈X〉
dZ2 =−p

∫
ψ
(∂Veff

∂X
+

∂ 2Veff

∂X2 (X −〈X〉)+ 1
2

∂ 3Veff

∂X3 (X −〈X〉)2 + . . .
)∣∣
∣
X=〈X〉

dX , (5)

which can be cast in a more compact form as

d2 〈X〉
dZ2 = p

∞

∑
m=0

Wm (〈X〉)〈ξ m〉ψ (6)

by setting Wm (〈X〉) =− 1
m!

∂ m+1Veff
∂Xm+1

∣
∣
∣
X=〈X〉

, with ξ = X −〈X〉 and 〈ξ m〉ψ =
∫

ψξ mdX .

Figure 2 displays the force F calculated at a given section z = const and acting on a funda-
mental soliton (N = 1) as a function of its width (inversely proportional to the amplitude u0)
and for different defect profiles (i.e., varying l); the soliton is positioned at various transverse
positions 〈X〉. Owing to the even symmetry of the photonic potential, we limit our consider-
ation to the case X > 0, retaining such hypothesis hereafter in the article. Consistently with
physical intuition, the force experienced by a narrow soliton is maximum when the latter is
located on the largest gradient of the linear perturbation nL(X), its position being denoted as
Xm; for a wide soliton the peak force reduces and shifts towards larger 〈X〉 due to the spreading
of the wavefunction ψ . In addition, the largest absolute force increases and becomes localized
in a narrower spatial region versus l.
We now consider narrow solitons in order to simplify Eq. (6): in this limit the force acting on
the beam can be expressed as
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Fig. 3. (a) Refractive index well for l = 1,2,8. The index well flattens with l (top to
bottom). (b) Corresponding refractive index gradient (top to bottom in the left half). (c)
Comparison of force as given by Eq. (6) (symbols) and by Eq. (7) (solid lines) for l = 2,
u0 = 1, 2 and 10 (bottom to top).

d2 〈X〉
dZ2 = p

(
W0 +W2

〈
ξ 2〉) . (7)

Equation (7) states that, if the soliton is narrow with respect to the potential Veff, its trajec-
tory 〈X〉(Z) depends on the beam position 〈X〉 and on its width w, the latter proportional to√
〈ξ 2〉 through a constant. In particular, Eq. (7) predicts the saturation of the change in soliton

trajectory at high powers: in this regime the soliton motion is solely determined by the linear
distribution nL, quite a counterintuitive result. Hereafter, in the computations, we assume that
the soliton waist (or equivalently its amplitude) does not change in propagation. Even though
the Ehrenfest theorem can be generalized to a set of dynamical equations for all the moments,
their form is quite cumbersome and hampers a simple physical interpretation. While reason-
ably simple equations can be derived for

〈
ξ 2

〉
, their solutions strongly depend on the specific

nonlinearity and will be investigated in future work.
Figures 3(a)-(b) shows the refractive index distribution and its gradient dnL/dX for various

l, with the gradient proportional to W0(〈X〉). The comparison between complete and simplified
formulae is plotted in Fig. 3(c): it is apparent that for broad solitons (u0 = 1 and 2) the two
approaches do not match, whereas for narrow solitons (u0 = 10) they yield an equal force. In
other words, the force from Eq. (6) is well approximated by just the W0 term for a narrow
soliton, whereas the terms depending on W2 and Wm with m > 2 become non-negligible for a
wider soliton.
In essence, the soliton dynamics depends markedly on the distribution of the photonic potential;
for Δ > 0 the light beam is attracted by the defect core, eventually leading to soliton trapping,
whereas for Δ < 0 the beam is repelled. In the next section we examine two kinds of defects
and present their salient features on soliton propagation.

3. Fundamental soliton dynamics

Hereby we address the interactions of fundamental solitons (i.e., N = 1) with the linear inho-
mogeneity nL by means of standard FD-BPM (Finite Difference Beam Propagation Method)
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Fig. 4. Beam intensity evolution for l = 1 (top), l = 4 (middle) and l = 8 (bottom) for
various u0. Here d = 0.5, Z0 = 2.25, Δ =−1 and the beam is launched at 〈X〉0 = 0.

simulations. We note that for N = 1 the soliton normalized power P, defined as P =
∫ |u|2dX ,

scales linearly with u0 due to the dependence of the soliton width on its own amplitude. Pho-
tonic potentials of various transverse profiles, from Gaussian to flat-top, can be simulated by
varying the super-Gaussianity parameter l. The boundaries of the refractive distribution nL be-
come increasingly abrupt as l gets larger, with the core region getting flatter and flatter. Various
refractive wells for different l are graphed in Fig. 3(a) for a repulsive defect, together with the
corresponding index gradients in Fig. 3(b), the latter becoming increasingly localized around
X = |1| for large l.

3.1. Repelling potential

In this section we take Δ < 0, i.e., the potential “repels” light. Figure 4 shows the calculated
soliton propagation for various amplitudes u0 and three l, with a fixed d much shorter than the
Rayleigh length of the beam; the soliton is launched in 〈X〉0 = 0, i.e., on the symmetry axis of
the defect. In agreement with Fig. 2, when the beam is injected at the center of the photonic
potential the force acting on it is zero regardless of l, the latter feature holding valid even for
attracting defects (i.e., independent on the sign of Δ). A more complicated beam dynamics
takes place after the interaction with the defect. For narrow solitons (e.g. u0 > 1 in Fig. 4) the
phase modulation impressed on the beam across X is nearly uniform and the soliton profile
remains substantially unaffected by the potential. For wide solitons (e.g. u0 ≤ 1 in Fig. 4),
conversely, the defect induces an appreciable transverse phase modulation and power coupling
with diffractive modes, in agreement with inverse scattering theory [37]. Photonic potentials of
small extent along Z permit the soliton to survive but with a lower peak (otherwise stated, the
soliton becomes wider). Since higher l correspond to larger index gradients (see Fig. 3(b)), the
net result is a dissimilar beam breakup immediately outside the defect (e.g. u0 ≤ 1 in Fig. 4).

When the input beam is not collinear with the symmetry axis of the potential, the force does
not vanish. Figure 5 shows the calculated beam evolution when 〈X〉0 = 1 for l = 1,4,8 and
various input powers. Analogously to the case 〈X〉0 = 0, narrow solitons almost retain their
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Fig. 5. Beam intensity evolution for l = 1 (top), l = 4 (middle) and l = 8 (bottom) for
various u0. Here d = 0.5, Z0 = 2.25, Δ =−1 and the beam is launched at 〈X〉0 = 1.

profile after the interaction even if propagating in a different direction, whereas wide solitons
lose power due to coupling to radiation. Furthermore, consistently with Fig. 2, wide solitons
are nearly undeflected as positive and negative phase gradients cancels each other out when
integrated across their profile.

Figure 5 clearly shows that soliton deflection depends on l, as expected. To better quantify
soliton deflection and its dependence on power and l we introduce the output velocity vout =[〈X〉(Z f )−〈X〉(Zi)

]
/
(
Z f −Zi

)
, where Z f ,Zi � Z0 +d in order to ensure soliton stabilization

after the interaction with the inhomogeneity. In physical coordinates, vout is related to the exit
angle θ of the soliton via θ = arctan [vout/(k0n0wp)]. Figure 6 displays both analytical (via Eq.
(7), solid lines) and numerically calculated (symbols) vout versus u0 for various l and 〈X〉0.
Whatever the photonic potential, the soliton trajectories exhibit an asymptotic trend at high
powers, in agreement with Eq. (7) as we are in the particle-like regime [17]. For large solitons
(low u0) Eq. (7) fails to model the output angle as we are in the wave-like regime: the exact
Eq. (6) has to be employed for a correct prediction of the trajectory. The overall behavior of
vout versus u0 strongly depends on the input position. The deflection vout is monotonic and
saturates for 〈X〉0 in the neighbouring of Xm, i.e., in the proximity of the peak index gradient
(dnL/dX)max; conversely, for solitons launched far away from Xm, vout first increases and then
decreases versus power, with a local maximum. This is qualitatively maintained for various
l, as well, and can be readily interpreted by looking at the right hand side of Eq. (4), i.e. the
global force F : when the soliton is launched at the maximum index gradient, the overlap with
the region of highest |dnL/dX | gets larger as the soliton shrinks; conversely, when the input
soliton is slightly displaced from Xm, narrower solitons imply a lower overlap with the peak
of the gradient; eventually, for input solitons far away from Xm, vout tends to flatten versus u0

owing to the negligible beam overlap with the core of the photonic potential.
Figure 6 also shows that, for a fixed l, vout is largest for 〈X〉0 ≈ 1, whereas it reduces when

moving away from this position. In fact, from Fig. 3(b) it can be appreciated that the largest in-
dex gradient |dnL/dX | gets increasingly closer to X = 1 as l gets larger (in other words Xm → 1),
its location given by d2nL/dX2 = 2nL(X)Δ[(2l−1)X2(l−1)−2lX4l−2] = 0. Since the maximum
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Fig. 6. Soliton deflection versus soliton amplitude u0 for 〈X〉0 = 1 (blue), 1.5 (black)
and 2 (red) for l = 1 (dashed line (◦)) and 4 (dashed-dotted line (♦)). Here Δ = −3 and
d = 0.5. Symbols correspond to numerical result and solid line corresponds to analytical
which overlaps for large u0.

Fig. 7. Intensity evolution for various u0, d and Δ = −1. The white rectangles represent
the potential.
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Fig. 8. Soliton deflection versus power for l = 2, 〈X〉0 = 1, Δ =−1 and d = 0.5 (♦), 1 (�)
and 10 (∗) computed via Eq. (7). Symbols are numerical results and the lines corresponds
to analytical predictions.

|dnL/dX | increases with l, the maximum vout over all possible input positions grows with l; this
implies that an index defect with sharp boundaries (e.g. l = 8) can steer the soliton more than
a defect with a smooth variation (e.g. l = 1) for a given Δ. As discussed earlier, the index well
increasingly flattens versus l, resulting in a negligible force for | 〈X〉0 | �= 1 and negligible steer-
ing for beams much narrower than the defect.
In summary, the transverse profile of a defect short along Z does not affect the soliton trajec-
tory as long as the potential is symmetric with respect to the soliton axis. The profile becomes
relevant on soliton steering when the beam input is away from the core of the defect, producing
beam breakup for wide solitons. Moreover, for a given photonic potential, soliton deflection de-
pends on the launch position: input solitons centered by the maximum refractive index gradient
will always experience the maximum force and be steered away for increasing input powers;
for solitons on either side, conversely, the deflection angle can increase, reach a maximum
and eventually decrease with power. The defect profile shifts the peak of the refractive index
gradient and affects the steering angle.

Finally, to completely characterize the system, we consider the role of longitudinally ex-
tended defects on soliton dynamics. We take potentials of length ranging from d = 0.5 to 38
and study the soliton evolution along Z. We fix l = 2 and 〈X〉0 = 0. Figure 7 displays the
soliton propagation for various lengths d and three input powers, u0 = 0.1,2, and 4, respec-
tively, such as to capture the essential physics. For short defects the beam dynamics goes from
multiple fringes to a soliton versus power; for increasing d the beam splits into equal halves,
each carrying equal amounts of power at opposite angles: at small powers the linear potential
dominates over the nonlinear well due to self-focusing and the soliton is destroyed; in the op-
posite limit, self-focusing overruns the defocusing due to nL and the soliton propagates nearly
unperturbed [38]. Clearly, the longer the defect the stronger is the defocusing action.

The extension d also affects soliton deflection vout: Fig. 8 plots vout when 〈X〉0 = 1, i.e., when
the force F is maximum. The deflection vout tends to saturate at high powers for all d, similar to
Fig. 6. Moreover, beyond a certain d the asymptotic vout clamps to the same value as the soliton
gets “pushed out” of the potential after some propagation (as in Fig. 5, rightmost panels), this
upper d being smaller for narrower solitons. The numerical results (symbols) agree quite well
with the analytical predictions from Eq. (7) in the particle-like regime (lines), in full analogy
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Fig. 9. Beam intensity evolution for a defect with d = 15, l = 2, Δ = 1 when the beam is
launched at 〈X〉0 = 0,0.5,1 for u0 varying from 4 to 12, as marked.

with Fig. 6 as expected.

3.2. Attracting potential

An attracting inhomogeneity Δ > 0 gives rise to a richer dynamics in soliton propagation as
compared to a repelling defect. In Fig. 9 the input power is chosen such that the soliton behaves
as a particle. The beam can be trapped inside the potential and undergo transverse oscillations
(for a long enough well along Z), also depending on the input position.

The oscillation period varies with both input position and power. Figure 9 illustrates the
beam evolution for solitons of various powers launched in different transverse locations of
a defect with d = 15. In all simulations l = 2. As power increases the period decreases for
beams injected by the maximum refractive index gradient; on either side of this maximum the
period increases. Noteworthy, the oscillation period becomes constant for very narrow solitons
in the particle-like limit (see Eq. (7)); hence, it is possible to steer solitons at desired angles by
controlling the power and the defect length. For short potentials the deflection angle resembles
that due to a repelling potential except for the sign, unless the period gets small enough to yield
soliton trapping within a longitudinally extended defect (see, e.g. experimental and numerical
results on trapping of nonlocal solitons in liquid crystals [15, 39]).

Figures 10(a)-(b) shows the soliton trajectory and the corresponding radius versus Z for
beams of various input powers launched in 〈X〉0 = 1, with d = 0.5. Analogously to the previous
cases, the soliton trajectories for large amplitudes u0 are well modeled by Eq. (7). Noteworthy,
the soliton width is not appreciably affected by the linear potential. In this case solitons un-
dergo half oscillation: for larger d the deflection vout can span from positive to negative values
as power varies, since the oscillation period depends on soliton power/radius (see Fig. 9). As
the solitary beam can emerge on either side of the defect, this can be effectively used to achieve
wide angle steering (see, e.g., [30]). Another approach to change the sign of vout consists in
changing the peak Δ of nL, varying in turn the oscillator strength responsible for soliton trap-
ping. Results for vout in the case d = 10 are plotted in Fig. 10(c): the overall deflection can be
either positive or negative; Figs. 10(d)-(f) displays the corresponding soliton trajectories. Thus,
for a given input, an attracting photonic potential allows to approximately double the overall
steering angle versus power with respect to a repelling defect.

4. Breathers

In this section we extend the former results to a breather soliton with N = 2. We concentrate
on the case Δ > 0, i.e., a trapping defect. First, we investigate breathing oscillations inside the
potential, trying to determine whether and when Eq. (7) is valid for breather solitons: in fact,
the radius (width) of these nonlinear waves changes in propagation, so the force acting on them
is not constant along Z, even if the linear potential nL does not appreciably affect the beam
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Fig. 10. (a) Soliton trajectory and (b) corresponding beam radius for d = 0.5 and Δ = 1.
(c) Variation in output angle with u0 for d = 10 and Δ = 1 (◦), 2 (+) and 3 (X) with
the corresponding trajectories plotted in (d-f). In panels (a,d,e,f) solitons are launched in
〈X〉0 = 1 with l = 2 and u0 = 8 (∗),12 (�) and 20 (♦). Symbols correspond to numerical
and lines correspond to theoretical predictions.

width. To this extent we need to find breathing solitary oscillations in unperturbed Kerr media;
breather evolution along Z for N = 2 is given by [35]

u(X ,Z) = 4u0e
iu2

0Z
2

cosh(3u0X)+3cosh(u0X)e4iu2
0Z

cosh(4u0X)+4cosh(2u0X)+3cos(4u2
0Z)

. (8)

From Eq. (8) we can compute both the oscillation amplitude and period versus u0, as shown
in Fig. 11(a). u0 identifies each member of the soliton family, as in the case N = 1; however,
for a given u0, the power of the breather (Eq. (8)) is four times larger than the power of the
fundamental soliton because of the factor N in the amplitude. We also simulated numerically
the breather evolution in a trapping defect with Δ= 1 and d →∞, i.e., infinitely extended. Using
Eq. (7) with the breather width computed from Eq. (8), we can find the trajectory in the limit
of narrow solitons, assuming that nL does not affect substantially their transverse size. We then
compare the theoretically calculated trajectories of breathers launched for various u0 in various
locations 〈X〉0 with the corresponding numerical results, see Figs. 11(b)-(c): these approaches
are in good agreement for widths 1/u0 up to 0.1: beyond such value the beam deviates from
particle-like due to energy emission from the breather; depending on the amount of shed energy
this energy interacting with the defect boundary, can either propagate in a bound form with the
main soliton (Fig. 11(d)) or can evolve as an independent wavepacket.

We then demonstrate the steering of a breather soliton in a finite defect of length d. In full
analogy with the fundamental soliton, the oscillation period inside the linear trap depends on the
amplitude as well as on the input position: controlling the longitudinal extension d, the output
angle of the emerging breather soliton can be varied. We numerically studied the propagation of
breathers much narrower than the photonic potential (i.e., in the particle-like limit) launched in
〈X〉0 = 0.5. Figure 12 shows power controlled steering of breathers. The output angle (related
to the equivalent velocity vout via an arctan function) can be further controlled by varying the
defect length. For d = 10, four breather solitons of amplitudes u0 = 20, 14.29, 12.5 and 10.00,
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Fig. 11. (a) Breather soliton properties: oscillation period (∗), amplitude (�) and mean
radius (◦) versus inverse amplitude 1/u0. (b-c) Theoretical (solid line) and numerical (sym-
bols) trajectories for breather solitons of widths 0.05 (blue diamond) and 0.1 (black circles)
launched in (b) 〈X〉0 = 0.5 and (c) 〈X〉0 = 1.0. (d) Evolution profile of breather soliton in
propagation for 〈X〉0 = 0.5 for initial radius 0.3 showing energy escape. The theoretical
results here are derived by solving jointly Eq. (7) and Eq. (8). Here Δ = 1.

Fig. 12. Trajectories of breathers with power u0 = 20 (blue), 14.29 (green), 12.5 (black)
and 10.0 (red) launched in 〈X〉0 = 0.5 for defects of length (a) d = 10 and (b) d = 11.
(c) Corresponding velocities (symbols) and comparison with theoretical results (lines). (d)
Propagation of a breather of width 0.05 in an infinitely long potential.
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Fig. 13. Comparison of velocity variation of fundamental (dashed lines) and breather (solid
lines) solitons versus amplitude for various defect lengths (along columns) when launched
in 〈X〉0 = 0.5 (top) and 〈X〉0 = 1 (bottom).

respectively, propagate almost collinearly with very small difference in exit trajectory (angle),
see Fig. 12(a). For the length d = 11 the output angles drastically change with excitation, as
visible in Fig. 12(b). The corresponding soliton velocities vout following the defect are plotted
in Fig. 12(c) and compared with the analytical results, with excellent agreement.

Finally, in Fig. 13 we compare the steering of fundamental and breather solitons. For a mean-
ingful comparison we consider the same power P for both solitons, i.e. with N=1 and N=2,
respectively. In terms of u0, the two beams have the same power when the amplitude of the
fundamental soliton is 4 times larger than the amplitude of the breather; this implies that, at the
input, the fundamental soliton is 4 times narrower than the breather soliton. We stress that, even
if the breather size changes along Z, its mean width is close to the value 1/u0 (i.e., the soliton
width in Z = 0, point where the radius is maximum), as shown by the behavior of mean width
versus u0 plotted in Fig. 11. From these considerations we can expect that, for a given power,
due to its smaller radius a fundamental soliton is much closer to saturation than a breather soli-
ton: Fig. 13 confirms such prediction, showing how a breather soliton undergoes a much larger
deflection than a fundamental soliton.

5. Conclusions

We have studied the interaction of (one dimensional) spatial optical solitons with a linear pho-
tonic potential embedded in a nonlinearly-homogeneous Kerr medium, i.e. a finite perturbation
of the linear refractive index. Depending upon the ratio between the width of the input soliton
and the width of the defect, different propagation regimes were observed. When the ratio is
large, i.e. when a wide soliton is launched at the input, the defect induces strongly inhomo-
geneous phase modulations across the transverse profile of the soliton, eventually producing
its breakup into multiple fringes. When the input soliton is substantially narrower than the de-
fect, it survives the perturbation and undergoes deflection. In intermediate cases, a deflected
soliton emerges the interaction but with a lower amplitude due to power transfer to radiation.
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This phenomenology, jointly with the well known dependence of the soliton width with power,
entails power-tunable steering of self-confined light beams and the corresponding waveguides.
For a repelling potential the steering occurs in one half of the defect plane, whereas for an
attracting potential solitons can be steered in either halves. Using the Ehrenfest theorem we
can predict the evolution of width and position of narrow solitons, in good agreement with
numerics. We have characterized the role of transverse profile and longitudinal extension of
both repelling and attracting index wells on the soliton dynamics, depending on initial launch
position and excitation levels. These results illustrate novel avenues for soliton steering and de-
flection using linear perturbations of refractive index, paving the way to the use of electro-optic
or thermo-optic effect for complete control on soliton trajectories and routing of the associ-
ated waveguides. Finally, our results are not limited to Kerr media, but can be easily extended
to other nonlinearities, accounting e.g. for saturating as well as nonlocal responses. The use
of optical nonlinearities in soft matter (e. g. nonlocal reorientation in molecular media) could
readily permit the actual demonstration of various steering regimes employing stable sub-mW
two-dimensional self-confined beams (see, e.g. [40]), extending soliton (and soliton waveguide)
deflection to the full three-dimensional space.
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