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Abstract: We reveal a controllable manipulation of anomalous interac-
tions between Airy beams in nonlocal nematic liquid crystals numerically.
With the help of an in-phase fundamental Gaussian beam, attraction
between in-phase Airy beams can be suppressed or become a repulsive one
to each other; whereas the attraction can be strengthened when the Gaussian
beam is out-of-phase. In contrast to the repulsive interaction in local media,
stationary bound states of breathing Airy soliton pairs are found in nematic
liquid crystals.
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1. Introduction

During the past several years, self-accelerating Airy beams [1–8] have drawn considerable at-
tention due to their unique characteristics, such as ballistic motion [9,10], self-healing [11–13],
etc. Up to now, a large variety of potential applications of Airy beams have been reported,
such as optically mediated particle clearing [14], linear light bullets [15], Airy surface plas-
mons [16–18], and electron Airy beam [19, 20]. In comparison with the linear regime, it has
been illustrated that the nonlinear control of Airy beams becomes a more interesting topic from
the physical point of view, due to a host of new phenomena, e.g., nonlinear generation of Airy
beams [21, 22], and propagation of Airy beams in nonlinear media [23–30]. In particular, soli-
tons, a localized wavepacket when nonlinear self-focusing and linear diffraction balance each
other, can be formed with the Airy beams in nonlinear media. For instance, the dynamics of
spatial Airy solitons [31,32] and spatiotemporal Airy light bullets [33–36] have been studied in
different nonlinear physical settings.

The propagation dynamics of Airy beams is also investigated extensively in nonlocal non-
linear media. In optics, nonlocality means that the light-induced refractive index change of a
material at a particular location is determined by the light intensity in a certain neighborhood
of this location. Nonlocal nonlinearity exists in nematic liquid crystals [37] and thermal medi-
a [38]. Many works have shown that nonlocality has profound effects on the solitons propaga-
tion [39]. For Airy beams, it has been shown that the boundary conditions of a strongly nonlocal
media affect deeply the propagation dynamics of self-accelerating beams [40]. Furthermore, an
analytical expression of an Airy beam propagating in a strongly nonlocal nonlinear media was
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derived to show the normalized intensity distribution of the Airy beam is always periodic [41].
We have numerically obtained such periodic intensity distribution of Airy beam in the regime
of strong nonlocality [42].

Interactions are important and interesting features of solitons dynamics. They interact like re-
al particles, exhibiting attraction and repulsion on one another [43]. Interactions between Airy
pulse and temporal solitons was studied [44,45]. The interaction of an accelerating Airy beam
and a solitary wave was also investigated for integrable and non-integrable equations [46]. In
a photorefractive crystal under focusing conditions, the interaction between two incoheren-
t counterpropagating Airy beams leads to light-induced waveguide [47, 48]. Soliton pairs can
be generated through interactions of Airy beams [49–51]. It is known that both out-of-phase
and in-phase Airy beams are always repulsive in local media with some particular parame-
ters of amplitudes and beam intervals [50, 51]. At the first glance, it seems that it is hard to
obtain stationary bound states of Airy solitons in local media [50, 51]. However, in nonlocal
media, it has been shown that nonlocality provides a long-range attractive force, leading to the
formation of stable bound states of both out-of-phase bright solitons [52–54] and dark soliton-
s [55–58]. Based on this effect of nonlocality, in our previous work, we have obtained stationary
bound states (soliton pairs) of in-phase as well as out-of-phase Airy beams in nonlocal nonlin-
ear media [42]. More recently, the evolution of a two-dimensional broad accelerating Airy
beam interacting with an intense Gaussian beam was studied numerically and experimentally
to demonstrate gravitational dynamics (general relativity) in lead glass with a nonlocal thermal
nonlinearity [59].

In this paper, with a fundamental beam, we reveal that the interactions between in-phase
Airy beams is controllable. With the long-ranged nonlocal nonlinear interaction, such as ne-
matic liquid crystals, the attractive interaction between in-phase Airy beams can be weakened
or switches into a repulsive one through the introduction of another in-phase fundamental Gaus-
sian beam. Moreover, with an out-of-phase fundamental Gaussian beam, one can enhance the
attractive interaction between in-phase Airy beams. In contrast to only repulsive force in lo-
cal media, such a nonlolcal attractive force provided by nematic liquid crystals also leads to
the formation of stationary bound states of breathing Airy soliton pairs of in-phase as well as
out-of-phase beams.

2. Model and basic equations

We consider a one-dimensional Airy beam propagating in a nematic liquid crystal in the pres-
ence of an applied static electric field. The slowly varying envelope of this Airy beamψ(x,z)
is governed by the dimensionless nonlocal nonlinear Schrödinger equation [46,60–62],

i
∂ψ
∂ z

+
1
2

∂ 2ψ
∂x2 +2θψ = 0, (1)

where the variablesx andz are the normalized transverse coordinate and the propagation dis-
tance, scaled by the characteristic transverse widthx0 and the corresponding Rayleigh range
kx2

0, respectively [50]. Here,θ describes the change of the director angle from the pretilt s-
tate [62], which is related to the nonlinear change to the optical refractive index and can be
described by the following diffusive equation [53,63]:

σ2 ∂ 2θ
∂x2 −θ +

1
2
|ψ |2 = 0, (2)

whereσ corresponds to the degree of nonlocality. Whenσ → 0 andσ → ∞, It describes for
local and strongly nonlocal media, respectively [39]. Using Fourier transformation and the con-

#259922 Received 23 Feb 2016; revised 31 Mar 2016; accepted 3 Apr 2016; published 11 Apr 2016 
© 2016 OSA 18 Apr 2016 | Vol. 24, No. 8 | DOI:10.1364/OE.24.008501 | OPTICS EXPRESS 8504 



volution theorem, one can find the solution of Eq. (2) [53,63]:

θ =
1
2

∫ ∞

−∞
R(x− x′)|ψ(x′)|2dx′, (3)

whereR(x) is the normalized nonlocal response function from the liquid crystals [53],

R(x) =
1

2σ
exp

(

−
|x|
σ

)

. (4)

In fact, the actual form of the nonlocal response is determined by the details of physical process
responsible for the nonlocality. For all diffusion-type nonlinearities, e.g., the re-orientational-
type nonlinearities (nematic liquid crystals) [52] and the general quadratic nonlinearity describ-
ing parametric interaction [64], the nonlocal response function is an exponential form.

Fig. 1. Trajectories of in-phase interacting Airy beams and Gaussian beam in nematic liquid
crystals with the degree of nonlocalityσ = 0 (local case). The amplitude isA = 3 in all the
plots, andC = 0 for (a-c) andC = 0.3,0.8,1 for (d-f), respectively. The beam intervals are:
(a,d)B = 1, (b,e)B = 2, and (c,f)B = 3.

In our previous work [42], we have investigated the interactions of both in-phase and out-of-
phase Airy beams in nonlinear media with a Gaussian nonlocal response function. We assumed
that the incident beam is composed by a coherent superposition of two shifted counter propa-
gating Airy beams with a relative phase between them [42,50,51],

ψ(x) = A{Ai[(x−B)]exp[a(x−B)]+exp(iρπ)Ai[−(x+B)]exp[−a(x+B)]}, (5)

whereA is the amplitude,B is the parameter controlling the beam separations, andρ is the pa-
rameter controlling the phase shift withρ = 0 andρ = 1 describing in-phase and out-of-phase
Airy beams [42,50,51], respectively. We have also numerically checked (not shown) such inter-
actions of Airy beams in nematic liquid crystals and found that they have similar dynamics with
the case of Gaussian nonlocal response function. Of course, study of the interactions between
two Airy beams is not our purpose in this paper.

In this work, we focus on the manipulation of interactions of Airy beams with the help of a
fundamental beam. Similar to Eq. (5), we assume that the incident beam is composed of two
shifted counter propagating Airy beams, but with an additional Gaussian beam with a relative
phase between them,

ψ(x) = A{Ai[(x−B)]exp[a(x−B)]+Ai[−(x+B)]exp[−a(x+B)]}

+ exp(iρπ)Cexp
(

−x2/2
)

, (6)
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whereC is the amplitude of the Gaussian beam. WhenC = 0, we can obtain the previously
studied in-phase Airy beams [42,50,51]. Here, for the Gaussian beam, a coherent superposition
is also applied with a relative phase difference, withρ = 0 andρ = 1 describing in-phase and
out-of-phase interactions, respectively.

3. Anomalous interactions of Airy beams with in-phase Gaussian beam

First, we consider the interactions between both in-phase Airy beams and Gaussian beam (ρ =
0). We fix the amplitudes of Airy beams by settingA = 3. In Figs. 1(d)-1(f), in the case of a
weak Gaussian beam (C is much smaller thanA), we show the interactions for different beam
intervalsx0 in nematic liquid crystals with the degree of nonlocalityσ = 0 (local case). As a
comparison, we also re-do some previous results withC = 0 in Figs. 1(a)-1(c) [42,50,51]. We
can see that, with the help of in-phase Gaussian beam, the attractive force between Airy beams
becomes stronger, leading to the decrease of the width and breathing period in the bound states
when the interval parameter is small, such asB = 1 [Figs. 1(a) and 1(d)] andB = 2 [Figs.
1(b) and 1(e)], respectively. However, for a larger beam intervalB = 3 [Figs. 1(c) and 1(f)],
an anomalous and interesting phenomena happens. Now, the interaction between Airy beams
weakens with its breathing period of the bound state becomes larger obviously.

Fig. 2. Amplitude and intensity of the in-phase input beam. The amplitude isA = 3 in
all the plots. All the solid lines representC = 0, and dashed lines in (a,d), (b,e), and (c,f)
representC = 0.3,0.8,1, respectively. The beam intervals are: (a,d)B = 1, (b,e)B = 2, and
(c,f) B = 3, respectively.

In order to illustrate the physical mechanism of these interactions, we show in Fig. (2) the
amplitude and intensity of input beams by calculating Eq. (6) directly. The solid and dashed
lines describe the case ofC = 0 andC 6= 0, respectively. It is obviously that, for smaller intervals
B = 1 [Figs. 2(a) and 2(d)] andB = 2 [Figs. 2(b) and 2(e)], the Gaussian beam effectively
increases the amplitude and intensity in the center region between the main lobes of two Airy
beams, which leads to an increase in the refractive index in this region. This in turn attracts
more light to the center, moving the main lobes of each Airy beam toward it [43], and hence
the attraction between Airy beams is enhanced naturally. On the contrary, for a larger interval
B = 3, the amplitude in the center region between two main lobes is negative whenC = 0
[solid line in Fig. 2(c)]. When a in-phase positive Gaussian beam (C 6= 0) overlaps with the
Airy beams, the absolute of amplitude in this region will decrease [dashed line in Fig. 2(c)],
then the intensity [dashed line in Fig. 2(f)] and the corresponding refractive index in this region
will decrease subsequently. Therefore, the attraction between the Airy beams will be weakened
[Figs. 1(c) and 1(f)].
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Fig. 3. Trajectories of in-phase interacting Airy beams and Gaussian beam in nematic liquid
crystals with the degree of nonlocalityσ = 0 (local case). The amplitude isA = 3 and the
interval isB = 3. The amplitude for the Gaussian beams areC = 0.9,1.5,1.6,1.7 for (a-d),
respectively.

To demonstrate the interactions of Airy beams with a larger interval controlled by another
Gaussian beam, we display in details the dynamics of the interactions in Fig. (3) forB = 3.
Increasing the amplitude of the fundamental beamC gradually, the attractive force between
Airy beams decreases first [Fig. 3(a)], and then increases subsequently [Figs. 3(b)-3(d)]. We
also show in Fig. (4) the corresponding intensity distribution of the input beam. We can see that
the intensity in the center region between the two main lobes decreases first, and then increases
subsequently after it reaches zero. This variation of the intensity or the refractive index will
affect the dynamics of Airy beam dramatically, which indicates that the interaction between
Airy beams with a larger interval can be flexibly controlled by a fundamental Gaussian beam.

−4 −2 0 2 4
0

1

2

3

4

 x

 In
te

ns
ity

Fig. 4. Intensity distribution of the in-phase input beam withA = 3 andB = 3. The dotted,
solid, dashed, and dash-dotted lines represent the amplitude in the Gaussian beams for
C = 0,0.8,1.3, and 2, respectively.

When the amplitude of Gaussian beam is large enough, i.e., a strong light, we show in Figs.
5(a)-5(c) the interactions with different beam intervalsB in local case. Similarly, the corre-
sponding amplitude and intensity of the input beam are displayed in Fig. (6). Interestingly, we
find that the repulsion between the Airy beams appears in the in-phase case for all the values
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of interval. However, they may have different physical dynamics. ForB = 1, the main lobes of
the Airy beams have the smallest interval [42, 51]. When a fundamental beam overlaps with
the superposed main lobes, the dynamics is similar to the in-phase Airy beams with a larger
amplitude. The intensity of superposed main lobes is enhanced [Figs. 6(a) and 6(d)]; while the
width is suppressed. Thus, the two solitons generated from the splitting of the superposed main
lobes will experience a smaller repulsion force [51]. The refractive index change will make the
solitons attract to each other. Moreover the attraction is quite strong over a long distance, but
eventually the repulsion will overtake the attraction [Fig. 5(a)].

Fig. 5. Trajectories of in-phase interacting Airy beams and Gaussian beam in nematic liquid
crystals. The degrees of nonlocality areσ = 0 (local case) for (a-c), andσ = 0.1,0.15,0.42
for (d-f). The amplitudes areA = 3 in all the plots andC = 0.4,1.62, and 2.41 for (a,d),
(b,e), and (c,f), respectively. The beam intervals are: (a,d)B = 1, (b,e)B = 2, and (c,f)
B = 3.

Although the main lobes have a slightly larger interval forB = 2, they will attract to each
other in a short distance and then repel when a strong intensity Gaussian beam located in the
center between two main lobes [Figs. 6(b) and 6(e)]. This comes from the reason that the main
lobes have smaller intervals with the peak of the Gaussian beam, which will provide a repulsive
force between the main lobes and the Gaussian beam. Eventually, Airy beams will repel to
each other [Fig. 5(b)]. For a larger intervalB = 3, the propagation of Airy beams also exhibits
repulsive effects [Fig. 5(c)]. However, they may have different physical mechanism with Figs.
5(a) and 5(b). As shown in Figs. 6(c) and 6(f), the maximum values of amplitude and intensity
are located at the position of main lobes, not in the center between them. The double-peaked
profile of the refractive index always attracts a part of the power of Gaussian beam to the main
lobes. It is clearly that the major power of the fundamental beam transfers to the Airy beams,
propagating as a weak light breathing [Fig. 5(c)].

As mentioned above, for smaller intervalsB = 1 andB = 2, an in-phase Gaussian beam
first appears as an interaction enhancer, then as an interaction switch in the interactions of in-
phase Airy beams. We also numerically find that the thresholds of amplitude areCth = 0.32
andCth = 1.38 forB = 1 andB = 2, respectively. Below the thresholds, the attractions between
Airy beams will be enhanced; whereas, above the thresholds, the original attractions will be
suppressed and become a repulsive one. For a larger intervalB = 3, situations become totally
different. WhenC < 0.8, the attractions between Airy beams weakens, then enhances when
0.8<C < 1.9, and finally becomes a repulsive one whenC > 1.9.

Stationary bound states of in-phase Airy beams may be obtained when the nonlocality of
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Fig. 6. Amplitudes and intensity of the in-phase input beam. The amplitudes areA = 3 for
all the plots. All the solid lines representC = 0, and dashed lines in (a,d), (b,e), and (c,f)
representC = 0.4,1.62,2.41, respectively. The beam intervals are: (a,d)B = 1, (b,e)B = 2,
and (c,f)B = 3.

the nematic liquid crystal balances the repulsion, as shown in Figs. 5(d)-5(f). In fact, a stable
breathing bound state comes from the balance between nonlocal, nonlinearity, diffraction, and
repulsion effects [42]. Here, nonlocality provides a long range attractive force to balance the
repulsive interaction between Airy beams [Figs. 5(a)-5(c)], resulting in the formation of bound
state.

Fig. 7. Trajectories of out-of-phase interacting Airy beams and an Gaussian beam in ne-
matic liquid crystals with the degree of nonlocalityσ = 0 (local case). The amplitude is
A = 3 in all the plots, andC = 0.8,0.3,0.2,2.4,1.1,0.7 for (a-f), respectively. The beam
intervals are: (a,d)B = 1, (b,e)B = 2, and (c,f)B = 3, respectively.

4. Anomalous interactions of Airy beams with out-of-phase fundamental Gaussian beam

For the out-of-phase interactions (ρ = 1), in the case of a weak Gaussian beam (C is much
smaller thanA), we show in Figs. 7(a)-7(c) the interactions for different beam intervalsB in
local media. The corresponding amplitude and the intensity of the input beam are demonstrated
in Fig. (8). Compared Figs. 7(a)-7(c) with Figs. 1(a)-1(c), we can see that, in the case of out-
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of-phase situation, the interactions between Airy beams become weaker, leading to an increase
both of the width and breathing period of bound states for smaller separations, such asB = 1
[Fig. 7(a)] andB = 2 [Fig. 7(b)]. However, for a larger beam separationB = 3 [Fig. 7(c)],
surprisingly, the interaction between Airy beams strengthens with its breathing period of the
bound state becomes smaller obviously. Similar to the in-phase case, an out-of-phase Gaussian
beam also acts as an interaction switch for two in-phase Airy beams.

It has been shown that for solitons interacting with aπ phase difference, the refractive index
in the central region is lowered by their overlap. Therefore, the centroid of each soliton moves
outward and the solitons repel to each other [43]. For smaller intervalsB = 1 [Figs. 8(a) and
8(d)] andB = 2 [Figs. 8(b) and 8(e)], the out-of-phase fundamental beam decreases the am-
plitude and intensity in the center region between the main lobes of Airy beams, which leads
to an decrease in the refractive index in this region. Then, the attraction between Airy beams
is suppressed. Whereas, for a larger intervalB = 3, the amplitude in the center of the region
between the main lobes is negative whenC = 0 [solid line in Fig. 8(c)]. When an out-of-phase
Gaussian beam overlaps with the Airy beams, the absolute of amplitude in this region will in-
crease [dashed and dotted lines in Fig. 8(c)], then the intensity [dashed and dotted lines in Fig.
8(f)] and the corresponding refractive index in this region will increase accordingly. Therefore,
the attraction between the Airy beams will be strengthened [Fig. 7(c)]. When the amplitude
of Gaussian beam increases as a strong light, we show in Figs. 7(d)-7(f) the interactions with
different beam intervalsB in local case. Similar as the in-phase case, the repulsion between the
Airy beams appears for all the intervals.

Fig. 8. Amplitudes and intensity of the out-of-phase input beam. The amplitude isA = 3
in all the plots. All the solid lines representC = 0, dashed lines in (a,d), (b,e), and (c,f)
representC = 0.8,0.3,0.2, and dotted lines in (a,d), (b,e), and (c,f) representC = 2.4,1.1,
and 0.7, respectively. The beam intervals are: (a,d)B = 1, (b,e)B = 2, and (c,f)B = 3.

Stationary out-of-phase bound states may be obtained with larger amplitudes of both Airy
beams and fundamental beam in nonlocal nematic liquid crystals [42], as shown in Fig. (9).
Here, we only consider the interaction of the Airy beams with the intervalB = 3. The nonlocal-
ity can balance the repulsion [Fig. 9(a)], resulting in helping the formation of breathing bound
state [Fig. 9(b)]. The intensities of bound breathing solitons at the inputz = 0 and the output
z = 30 are also displayed in Figs. 10(a) and 10(b), which indicates that part of power in Airy
beams transfer to the Gaussian beam.
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Fig. 9. Trajectories of out-of-phase interacting Airy beams and Gaussian beam in nematic
liquid crystals. The degrees of nonlocality areσ = 0 (local case) for (a), andσ = 0.8 for
(b). The amplitudes areA = 4.7 andC = 3; while the beam interval isB = 3.

Fig. 10. The intensity distribution of Fig. 9(b) at the propagation distancez = 0 (a) and
z = 30 (b).

5. Conclusions

In conclusion, we have demonstrated that the interactions between in-phase Airy beams can be
flexibly controlled by a fundamental Gaussian beam. In particular, we show that the attractive
interaction between Airy beams can be suppressed or become a repulsive one with an in-phase
fundamental Gaussian beam, or be strengthened with an out-of-phase Gaussian beam. Station-
ary bound states of breathing solitons of in-phase as well as out-of-phase beams were also
revealed with the help of nonlocality. We hope our theoretical results may motivate future ex-
perimental observations for the interactions between Airy beams in different physical settings
with nonlocal nonlinearity, such as lead glass [38] and nematic liquid crystals [52]. Our results
may have potential applications in optical interconnects, beam steering, and all-optical devices.
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