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Abstract: With the conservation of power, a phase diagram defined
by amplitude square and phase of scattering coefficients for each spher-
ical harmonic channel is introduced as a universal map for any passive
electromagnetic scatterers. Physically allowable solutions for scattering
coefficients in this diagram clearly show power competitions among
scattering and absorption. It also illustrates a variety of exotic scattering
or absorption phenomena, from resonant scattering, invisible cloaking, to
coherent perfect absorber. With electrically small core-shell scatterers as an
example, we demonstrate a systematic method to design field-controllable
structures based on the allowed trajectories in this diagram. The proposed
phase diagram and inverse design can provide tools to design functional
electromagnetic devices.
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1. Introduction

With state-of-the-art nano-optical technologies, there are renewed interests on having an ef-
ficient way to manipulate and design nanostructures with unusual electromagnetic proper-
ties [1, 2]. In particular, resonant scattering [3–6], coherent perfect absorption [7–10], invisible
cloaking [11–16], subwavelength superscattering [17–19], and minimum-scattering superab-
sorbers [20, 21], are revealed in a single, isotropic, and multi-layered scatterer. These meta-
structures could be expected to serve as functional nano-devices with promising applications in
light harvesting [22–24], heat generation by metal nanoparticles [25, 26], optical nanocircuits
and nonlinear optical processes [27, 28].

To have exotic electromagnetic properties at subwavelength scale, a variety of specific condi-
tions are asked to be satisfied. Undoubtedly, a better understanding in the scattering coefficients
could provide an access to design nanostructures. In general, we need to consider information
about scattering limitation, power assignment, scattered radiation pattern, and robustness on the
corresponding extrinsic field response of real scatterers. For working frequency of interests, for
example, many metals are associated with a strong dispersion in the visible spectra, that intro-
duces real loss effects and suppresses desired functions [29, 30]. As possible mismatching in
physical parameters may occur, it is natural to seek optimized invisible cloaks or performance
boundary in a cloaked sensor with the consideration of intrinsic loss in reality [30].
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In this paper, we study the general relation between amplitude and phase in the scattering
coefficients for any passive electromagnetic scatterers. A phase diagram is introduced by im-
posing the power conservation on absorption cross section for each partial wave channel, which
acts as a universal map to design passive scatterers. Not only all physically allowed regions can
be defined to satisfy the intrinsic power conservation, but also all exotic electromagnetic prop-
erties in the literature can be illustrated in this phase diagram. Moreover, we take electrically
small core-shell scatterers as an example to illustrate a systematic way in designing the compo-
sition of subwavelength-structures with required scattering and absorption properties.

2. Phase diagram for a passive scatterer

We consider a linearly polarized plane wave with time evolution e−iωt at the angular frequency
ω , which is illuminating on a single spherical object. The object could be made of multiple
layers of uniform and isotropic media with complex permittivity and permeability, denoted as
ε = ε ′+ iε ′′ and μ = μ ′+ iμ ′′, respectively. Here, ε ′′ and μ ′′ are both assumed to be positive
real numbers for a passive medium. Without loss of generality, the surrounding environment is
taken as non-absorptive, non-magnetic, and free of external sources or currents, i.e., ε0 = μ0 =
1. In the following, we express the electric field �E and magnetic field �H in the environment
by two auxiliary vector potentials, i.e., the transverse magnetic (TM) and transverse electric
(TE) modes, which are respectively generated by two scalar spherical wave equations. Each
scalar functions can be built by an infinite series with unknown coefficients determined through
boundary conditions. By following the conventional notations, let the scattering coefficients be
CTM

n and CTE
n for the transverse magnetic (TM) and transverse electric (TE) modes in each

spherical harmonic channel labeled by the index n, respectively [31–34]. The corresponding
absorption and scattering cross-sections, σ abs and σ scat, defined as the total power absorbed
and scattered by a single scatterer with respect to the unit intensity of incident plane wave, can
be expressed as

σ abs ≡
∞

∑
n=1

σ abs(TE)
n +σ abs(TM)

n (1)

= −
∞

∑
n=1

(2n+1)λ 2

2π
(Re{CTM

n }+ |CTM
n |2 +Re{CTE

n }+ |CTE
n |2),

σ scat =
n=∞

∑
n=1

(2n+1)λ 2

2π
(|CTM

n |2 + |CTE
n |2), (2)

where λ is the wavelength of incident wave in vacuum. For a given radius of particle, de-
noted as a, the value of size parameter 2πa/λ determines how many terms in these two con-
vergent series to be dominant [32]. Here, we define the partial absorption cross section for

each spherical harmonic channel, labeled by n, as σabs(TE,TM)
n ≡ − (2n+1)λ 2

2π (Re{C(TE,TM)
n }+

|C(TE,TM)
n |2), for TE or TM mode. We further express the scattering coefficient as C(TE,TM)

n =

|C(TE,TM)
n |exp{iθ (TE,TM)

n }, where the magnitude |C(TE,TM)
n | is a positive real value and θ (TE,TM)

n

is the corresponding phase. Due to the conservation of power, these partial absorption cross-

sections would be equal or larger than zero in each spherical harmonic channel, σabs(TE,TM)
n ≥ 0.

By decomposing into partial waves, in terms of each spherical channel, we can have a univer-
sal phase diagram for any passive electromagnetic scatterers, as shown in Fig. 1. Interestingly,
even though we do not write down any exact formulas for the scattering coefficient, the range to

support physical values for the amplitude square only exists within 0 ≤ |C(TE,TM)
n |2 ≤ 1; while

the phase is bound within π/2 ≤ θ (TE,TM)
n ≤ 3π/2, as illustrated in Fig. 1. It is worth to remark
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Fig. 1. A phase diagram for each spherical harmonic channel, labeled by n, is generated
by imposing the power conservation on the partial absorption cross section, for TE or TM
mode separately. Marked numbers shown in the contour lines correspond to the values of

normalized absorption cross section in the individual channel: 2π
(2n+1)λ 2 σabs(TE,TM)

n . Col-
ored regions are physically allowed solutions; while uncolored regions represent forbidden
solutions. It is noted that the amplitude square is bounded within the range [0,1]; while

the allowed phase is within [π/2,3π/2]. The Green cross-marker, localed at (θ (TE,TM)
n =

π, |C(TE,TM)
n |2 = 0.25), indicates the maximum value, 0.25, in the normalized absorption

cross-section.

that the range to support allowable solutions of scattering coefficients results from the intrinsic
power conservation regardless of any specific scattering events. We depict the allowed solu-

tions in colors for passive cases, which correspond to σ abs(TE,TM)
n ≥ 0 and depict the forbidden

ones in white color for gain cases, which correspond to σ abs(TE,TM)
n < 0. Along this lossless

contour, there exist a family of solutions with the same value on σ abs(TE,TM)
n = 0, but with

different scattering coefficients in amplitude and phase. It is known that an ideally localized
surface plasmon in the subwavelength structure relies on lossless resonance condition [3, 5],

which corresponds to the point |C(TE,TM)
n |= 1 and θ (TE,TM)

n = π in our phase diagram. As for
invisible cloaks [11–16], one can look for the solutions near bottom of the phase diagram, i.e.,

|C(TE,TM)
n |= 0, for dominant channels.
Once the composited material in a scatterer has intrinsic loss, the scattering coefficients move

to reside inside the colored region. For each channel, the maximum value in the normalized ab-
sorption cross section is 2πσ abs

n /(2n+1)λ 2 = 1/4, i.e., the Green cross-marker shown in Fig.
1, corresponding to coherent perfect absorbers [7–10], but which is also associated with the
same amount of electromagnetic scattering power. The phase and amplitude of scattering co-
efficients to achieve a maximum absorption power is π and 1/2, respectively. Moreover, along
the contour for a constant absorption power, there exist a maximum and a minimum values in
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Fig. 2. Supported trajectories in the phase diagram are shown for different sets of the

parameters: α(TE,TM)
n and β (TE,TM)

n defined in Eq. (3). Here, trajectories with a con-

stant β (TE,TM)
n are shown in Blue dotted-dashed-curves; while trajectories with a constant

α(TE,TM)
n are shown in Red dotted-dashed-curves. Two contours for a constant absorption

power are also depicted in the Black color.

the scattering amplitude, both at the phase θ (TE,TM)
n = π . It implies that one may design a scat-

terer possessing the same absorption power, but with different scattering signals. As for seeking
an optimized “cloaking a sensor” [30], i.e., to have a better absorption efficiency with a con-
stant absorption power, in the phase diagram one can follow the constant absorption contour to

find the corresponding solution located at θ (TE,TM)
n = π (conjugate-matched condition) with a

minimum scattering amplitude.

3. From the trajectory in the phase diagram to design passive scatterers

Through above examples, the phase diagram provides a universal map to display all possible so-
lutions for any passive scatterers. In principle, without knowing the composition in a scatterer,
one can also have the same scattering coefficients. In this way, one may design specific scatter-
ers with the required scattering and absorption properties by the choice of allowed trajectories
in the phase diagram.

In the following, we introduce a systematic way to do the inverse design for the scatterer by
specifying the required scattering or absorption properties. For a scatterer with N layers made
of isotropic and homogeneous media, the corresponding scattering coefficient can be expressed
in a compact form:

C(TE,TM)
n =

−1

1+ i V (TE,TM)
n

U(TE,TM)
n

≡ −1

1+ i[α(TE,TM)
n + iβ (TE,TM)

n ]
, (3)
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Fig. 3. Absorption and scattering cross sections correspond to the contour shown in Fig.
2, which are depicted in terms of the parametric variable t defined in Eqs. (4)-(5). Here,
a constant absorption power is requested by setting qTM

1 = 0.2; while there is a degree of
freedom in the scattering power. The insect illustrates the core-shell scatterer used as an
example to design a passive electromagnetic devices with the constant absorption power.

where U (TE,TM)
n and V (TE,TM)

n are determinants of a 2N × 2N matrix constituted by spherical
harmonic functions [5,11,15,24]. Here, we also rewrite this scattering coefficient by introducing

two auxiliary real numbers: α(TE,TM)
n and β (TE,TM)

n in Eq. (3). By substituting Eq. (3) into the
scattering coefficients, one can have different trajectories in the phase diagram, as illustrated

in Fig. 2. Supported trajectories for the parameter sets with a constant value of α(TE,TM)
n or

β (TE,TM)
n are plotted in Red dotted-dashed- and Blue dotted-dashed-curves, respectively. The

ranges to support allowable scattering solutions for passive scatterers on these numbers would

be α(TE,TM)
n = [−∞,∞] and β (TE,TM)

n = [−∞,0].
In particular, for the contour with a constant absorption power in the phase diagram, as shown

in the Black color in Fig. 2, one can use the parametric representation of the curve to describe

this supported trajectory. The corresponding parameter sets of α(TE,TM)
n and β (TE,TM)

n can be
found as

α(TE,TM)
n (t) =

√
1

4[q(TE,TM)
n ]2

− 1

q(TE,TM)
n

sin(t), (4)

β (TE,TM)
n (t) = [1− 1

2q(TE,TM)
n

]+

√
1

4[q(TE,TM)
n ]2

− 1

q(TE,TM)
n

cos(t). (5)

Here, the independent variable, t, is used for the parametric equation, which is also

bounded within the range t = [0,2π]. For a given normalized absorption power, q(TE,TM)
n ≡

2π
(2n+1)λ 2 σ abs(TE,TM)

n in each channel, from Eqs. (4)-(5) one can see that the trajectory of

α(TE,TM)
n and β (TE,TM)

n in the phase diagram is following the request for a constant absorp-
tion power.
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As an example, we consider a passive scatterer in the configuration of a core-shell sphere, as
illustrated in the insect of Fig. 3, which is composed by two concentric layers of isotropic and
homogeneous materials. The geometrical parameters and material properties for this core-shell
scatterer are the radius of core, ac, the radius of whole particle, a, and εs(μs)/ εc(μc) for the
permittivity (permeability) in the shell/core regions, respectively. We limit our system to non-
magnetic case, so μs = μc = 1. If the electrically small approximation is satisfied for such a
core-shell scatterer, it is known that the main contribution dominantly comes from the electric
dipole-wave scattering, i.e., n = 1 and TM mode. We choose the constant absorption power

with q(TM)
1 = 0.2 in Eqs. (4)-(5). For such a two-layered scatterer, the corresponding scattering

coefficients are conducted from a 4×4 matrix by tracking TE and TM modes. By applying the
continuity of electric and magnetic fields established at the two boundaries of shell-environment
and core-shell, one can approximately express the term VTM

1 /UTM
1 as

V TM
1

UTM
1

=
3λ 3

2(2πa)3

2γ3(1− εs)(εc − εs)− (2+ εs)(εc +2εs)

γ3(εs − εc)(2εs +1)+(1− εs)(εc +2εs)
, (6)

where γ is defined as the ratio between the core radius to the whole particle radius, γ ≡ ac/a. If
one replaces ε by μ , then we can obtain the other term VTE

1 /UTE
1 . However for non-magnetic

media it is automatically zero for μ0 = μs = μc = 1. By taking γ = 1 or εs = εc, above result
can be reduced to the electric dipole equation for a solid sphere.

Now, for our core-shell system with the geometric size fixed, we provide a systematic way
to find out the corresponding material properties with a constant absorption power, as specified
by the contour in the phase diagram shown in Fig. 2. To give a clear illustration, first, one may
fix the material property in the shell or in the core region. If we assume that the composition for
the shell region is given, i.e., εs is fixed, then, based on Eqs. (4)-(6), the corresponding solution
for the permittivity in the core region is found to satisfy:

εc = εs
3(−2εs −4−2γ3 +2γ3εs)−2(αTM

1 + iβ TM
1 )(2πa/λ )3(2−2εs +2εsγ3 + γ3)

3(εs +2+2γ3εs −2γ3)+2(αTM
1 + iβ TM

1 )(2πa/λ )3(1− εs −2εsγ3 − γ3)
. (7)

Solutions obtained from the analytical formula in Eq. (7) are shown in Figs. 4(a) and 4(b) for
the real and imaginary parts of the permittivity in the core region, respectively. In terms of the
parametric variable, t, we can have a wide rang in selecting core materials, and all of them have
the same absorption power. Moreover, based on these found parameters, the corresponding
absorption and scattering cross sections would satisfy our request for a constant absorption
power, as shown in Fig. 3. From the comparison between Fig. 3 and Figs. 4(a)-4(b), we find
that when t = π/2 the scattering power reaches a maximum value; while the ε ′′c for the required
material has a minimum value, due to the reason that dissipative loss is proportional to the local
electric field. In this scenario, with the help of a strong electric field, it becomes possible to
maintain the same absorption power simultaneously.

On other hand, if the material property in the core region is specified, based on Eqs. (4)-
(6) the corresponding solutions for the permittivity in the shell region εs to support a constant
absorption power are governed by

ε±s =
−g±

√
g2 −4 f h

2 f
, (8)

with the shorthanded notations:

f = 2(1− γ3)[3−2(αTM
1 + iβ TM

1 )(2πa/λ )3], (9)

g = 2(αTM
1 + iβ TM

1 )(2πa/λ )3[γ3(1−2εc)+2− εc]+3(2γ3 +2γ3εc + εc +4), (10)

h = εc(1− γ3)[6+2(αTM
1 + iβ TM

1 )(2πa/λ )3]. (11)
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Fig. 4. The permittivities to support a constant absorption power are shown as a function
of the parametric variable t. For a given material in the shell region, εs = 3.12, found
solutions for the real and imaginary parts of the permittivity in the core region are shown
in (a) and (b), respectively. For a given material in the core region, εc = 5, two families
of found solutions shown in Eq. (8) are denoted as ε+s and ε−s for the shell region, with
the corresponding real and imaginary parts of the permittivity shown in (c, e) and (d, f),
respectively. Results obtained from analytical formulas are depicted in solid-curves; while
exact solutions from scattering theory are depicted in dashed-curves. In all cases, the core-
shell geometries are fixed with a = 1/24λ and γ = 0.9.
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Derivations to have solutions in Eqs. (7) and (8) are shown in Appendix.
From Eq. (8), there exist two families to support the materials in the shell region, denoted

as ε±s . We show the real and imaginary parts of the permittivity in the shell region for these
two families in Figs. 4(c)-4(d) and 4(e)-4(f), as well as the exact solutions in dashed-curves,
respectively. We reveal a good agreement between our analytical solutions and the numerical
ones obtained by the exact scattering theory. Again, based on these results, the corresponding
absorption and scattering cross sections would satisfy our request for a constant absorption
power, as shown in Fig. 3. It is surprised to find that there exist a variety of choices for the
material properties even a specific scattering or absorption property is given in the beginning.
Without the introduction of this phase diagram and the inverse design, it is not only difficult to
find out the required material properties, but also complicated to recognize the power competi-
tion and limitation among these cross sections for each channel.

Before concluding, we remark that when the electrically small approximation is not valid,
multiple channels for TE and TM modes may be excited as expected. In this scenario, one can
also apply our phase diagram, but not for a single channel only. By embedding multi-layered
coatings to excite multiple channels, the intrinsic single channel limitation can be broken to
generate superscattering or superabsorber phenomena [17–21,29]. Scattering coefficients from
several dominant channels are just a natural extension by considering all of them onto the phase
diagrams simultaneously. In addition, although the proposed phase diagram is based on the
well-known scattering formulas for symmetrically spherical scatterers, the concept of our phase
diagram can be applied to non-spherical scatterers as well. Although in our example of inverse
design we use well-known electric dipole formulas for core-shell systems, our approach to find
out the corresponding materials for a given request on the scattering and absorption properties
is always non-trivial. Through this universal phase diagram, one can have a systematic way to
design functional passive electromagnetic scatterers.

4. Conclusion

In summary, we introduce a phase diagram as a compact tool to link the scattering and ab-
sorption powers for each spherical harmonic channel. Intrinsically, the power conservation for
any passive scatterers gives the physically allowable solutions in the scattering coefficient. Not
only the known exotic scattering and absorption phenomena can be illustrated in this diagram,
but supported trajectories are also demonstrated to design extrinsic-field-controllable scatterers.
With the core-shell scatterers at the subwavelength scale as an example, we reveal a systematic
way to find out a variety of solutions in the composited materials to possess the same absorption
power. In general, one can easily extend this methodology to go beyond the small particle size
limitation, by considering interferences from several channels in the map. With the analogy
among wave phenomena, the concept of this phase diagram and our inverse design method can
be ready applied to acoustic systems as well as quantum scattering system.

Appendix

In this Appendix, we provide the formula to derive Eqs. (7) and (8) in detail. When the elec-
trically small condition (quasi-static limit) is satisfied in a non-magnetic core-shell structure,
the dominant scattered wave can be approximated by Eq. (6) [5, 11, 15, 24]. Then, by defining
ZTM

1 ≡ αTM
1 + iβ TM

1 as a shorthanded notation, Eq. (6) becomes

V TM
1

UTM
1

= ZTM
1 =

3
2
(

λ
2πa

)3 2γ3(1− εs)(εc − εs)− (2+ εs)(εc +2εs)

γ3(εs − εc)(2εs +1)+(1− εs)(εc +2εs)
. (12)
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With the help of Eq. (12), one has

εc{2(
2πa
λ

)3ZTM
1

[−2εsγ3 − γ3 +1− εs
]−3

[
2γ3 −2γ3εs −2− εs

]} (13)

= 3
[−4εs −2ε2

s −2γ3εs +2γ3ε2
s

]−2(
2πa
λ

)3ZTM
1

[
γ3(2ε2

s + εs)+(2εs −2ε2
s )
]
,

which gives us the result in Eq. (7). Similar process can be applied to derive Eq. (8) by expand-
ing every terms and collecting coefficients of εs, i.e.,

ε2
s (2γ3 −2)

[
2(

2πa
λ

)3ZTM
1 −3

]
+

[
2(

2πa
λ

)3ZTM
1 εc(1− γ3)−6εc(γ3 −1)

]
(14)

+εs

[
2(

2πa
λ

)3ZTM
1 (γ3 −2εcγ3 +2− εc)+3(2γ3 +2γ3εc +4+ εc)

]
= 0.

Finally, with the shorthanded notations introduced in Eqs. (9)-(11), we have

f ε2
s +gεs +h = 0. (15)

As a result, one can easily solve εs in Eq. (15), which gives the solutions shown in Eq. (8).
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