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Abstract: Considering matter wave bright solitons from weakly coupled Bose-Einstein
condensates trapped in a double-well potential, we study the formation of macroscopic non-
classical states, including Schrödinger-cat superposition state and maximally path entangled
N00N-state. We examine these macroscopic states by Mach-Zehnder interferometer in the
context of parity measurements, which has been done to obtain Heisenberg limit accuracy for
linear phase shift measurement. We reveal that the ratio of two-body scattering length to intra-well
hopping parameter can be measured with the scaling beyond this limit by using nonlinear phase
shift with interacting quantum solitons.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Nowadays quantum metrology has become one of the fascinating areas in modern quantum
physics, which deals with new approaches to the measurement, control, and estimation of physical
parameters for achieving ultimate accuracy and exploring all facilities of current quantum
technologies [1–9]. Apart from classical measurement theory, a quantum approach predicts the
so-called quantum Cramer-Rao (QCR) bound 〈(δφest )2〉φ ≥ [νF(φ)]−1 for estimating arbitrary
physical parameter φ within a set of ν trials through Fisher information F(φ) [3, 4]. In particular,
phase estimation requires high precision measurement, which can be realized both in optical
[10–12] and atomic systems [13, 14]. The existence of standard quantum limit (SQL) sets a
constraint on the linear phase shift (φ) measured with the error σφ ∼ N−1/2. Here, N is the
average number of particles.
Surpassing SQL in the phase measurement has been demonstrated experimentally with

two-mode systems, such as Mach-Zehnder interferometers (MZI), gyroscopes, and lithography
devises, where non-classical squeezed or correlated states are applied as the input states [15–19].
For the linear phase measurement, one can achieve the Heisenberg limit with the accuracy

σφ ≥ C0N−1, (1)

which gives the limiting case on QCR bound related to the single mode passing [5, 6], C0 is
some constant here. According to the Heisenberg limit approach with non-classical states such
as squeezed states, it is required a very large amount of squeezing. Hence, the generation of
squeezed states in optical [10–12,20] or atomic [21] physics domain represents one possible
solution to improve quantum measurements beyond SQL.

On the other hand, in theory it is proved that for arbitrary two-mode quantum interferometers
one can saturate the Heisenberg limit shown in Eq. (1) with maximally entangled N-particle
state, coined as N00N-state [18, 19, 22, 23]. The N00N-states with few photons have been
recently observed in quantum optics domain under the spontaneous parametric down conversion
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process [24–26]. Alternatively, circuit (or, cavity)-QED devices might be used for these purposes
cf. [27–29]. Indeed, atomic N00N-states with N = 2 atoms have been proposed cf. [29]. Notably,
these proposals are based on multi-step quantum state engineering protocols which are sensitive
enough to losses and decoherence.
As it is shown in [30–32], in the presence of losses which are modeled by fictitious two

beam splitters (BS) with transmissivities η1,2, the N00N-states are not optimal for approaching
Heisenberg limit. The optimal (two-component) state, and the N00N-state demonstrate approx-
imately equal measurement accuracy, only if η ≥ e−1/N , where η ≡ η1 is transmissivity of
BS in one of the arms; η2 = 1. Though in [30, 31] the authors proposed a specific model of
losses for photonic interferometers, the fragility problem of N00N-states because of the losses
become important for a very large particle number N . Thus, the preparation of efficient (robust)
mesoscopic N00N-states containing a relatively large number of particles and the exploration
of them for metrological purposes, are a great challenge and nontrivial task both in theory and
experiment [33].
In this work, we propose a method to create N00N-states, which are maximally entangled

states in path, by means of matter wave bright solitons in Bose-Einstein condensates (BECs).
The BEC phenomenon is already demonstrated for the systems in condensed matter and solid
state physics, see e.g. [34, 35]. Superfluid properties that occur due to the interaction between
condensate particles represent the important feature of the condensates that allows to keep for
some time coherence in macroscopically large system regardless of environment even in the
presence of weak dissipation [36].

Quantum features of solitons has been extensively studied in optics some times ago [37–44]. In
order, squeezing and quantum correlations effects for solitons in optical fibers were demonstrated.
However, solitons in such experiments contain huge number of photons (108 photons in
experiment described by S. Friberg et al [43]) which makes practically impossible to explore
them for N00N-states formation purposes in the presence of realistic fiber losses.
Remarkably, atomic condensates with negative scattering length might form bright solitons

with small number of particles (from several tens to thousands) that allows to treat them quantum
mechanically and to consider as suitable candidates for N00N-states formation, cf. [45]. The
atomic scattering length, that characterizes atom-atom interaction, might be tuned and enhanced
by using Feshbach resonance approach [46, 47].

Second, we suggest to use low branch (LB) exciton polariton BECs to produce photonic solitons
in quantum domain with the moderate number of photons for quantum metrology purposes. The
exciton polaritons are bosonic quasiparticles representing coherent superposition of excitons and
photons which occur under the strong coupling condition for a quantum matter-field interaction
in high quality semiconductor microstructures. Exciton polariton condensates emit photons at
the output of the sample with quantum state that exactly reflects polariton condensate properties.
Strong interaction between excitons provides large Kerr-like nonlinearity of polaritonic system
that several orders larger than in VCSELs. The number of photons in such solitons might
be several tens as is demonstrated in recent experiments with exciton polariton condensate
solitons [48]. Notably polariton-polariton interaction might be tuned by Feschbach resonance
approach as well [49]. This feature seems to be practically important for quantum measurement
applications even in the present of losses, cf. [30, 31].

Relying on the general form of Gross-Pitaevskii equation (GPE) in Heisenberg representation
for a condensate in a double-well potential [45], we describe the corresponding quantum field
model for coupled bright solitons occurring in two trapped condensates.
Noticing that two condensates admit well-defined relative phase and the total number of

particles N which have been examined in a number of experiments and described in the theory,
see e.g. [50–55] and cf. [56].
In the framework of quantum field theory [57] we derive the equations of motion for the
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condensate’s parameters, i.e., the relative phase and population imbalance between two solitons.
Then, we show that the ground state of the system can be a quantum superposition state
forming Schrödinger-cat or N00N-state. Utilization of these states focused on linear phase shift
measurements is revealed for quantum metrology.

Scaling beyond Heisenberg limit, referred as super-Heisenberg scaling, can be achieved in the
framework of interaction-based (nonlinear) quantum metrology [7–9, 58–60]. The saturation of
the linear Heisenberg limit is demonstrated for nonlinear relative phase parameter estimations for
coupled solitons. Our results provide some possible quantum metrology applications beyond
linear Heisenberg limit with entangled matter wave solitons.

2. Model for coupled quantum matter bright solitons

Let us consider two BECs, consisting of N particles, trapped in a double-well potential and weakly
coupled to each other due to the Josephson effect. This model has been applied for the studies of
several effects, i.e. quantum squeezing, entanglement, and related metrology applications for
continuous variables within the tight binding approximation [57,61–65]. Experimentally, such a
system can be implemented in atomic optics domain with the help of highly asymmetric potentials,
i.e., a cigar-shaped potential [66]. Without the loss of generality, the spatial distribution of the
condensates are denoted along z-direction. In addition to the atomic systems, exciton-polariton
condensates in the microcavity are also a possible platform for our model [48, 67].
The total Hamiltonian Ĥ for BECs in a double-well potential can be described by

Ĥ = Ĥ1 + Ĥ2 + Ĥint, (2a)

where Ĥj ( j = 1, 2) is the Hamiltonian for condensate particles in j-th well; while Ĥint accounts
for the inter-well coupling between two sites. In the second quantization form we explicitly have

Ĥj =

∫
dzâj(z)†

(
− 1

2M
∂2

∂z2 +
U
2

âj(z)†âj(z)
)

âj(z)

Ĥint = κ

∫
dzâ2(z)†â1(z) + H.C. (2b)

Here, parameter U characterizes two-body interactions, M = sgn[meff] = ±1 is used as the
normalized effective particle mass meff, and κ denotes the inter-well tunneling rate.

In practice bright matter wave solitons with M = 1, U < 0 are obtained for atomic condensates
with the negative scattering length that corresponds to attractive particles [46,47]. Contrary, if
M = −1 and U > 0 bright solitons might be formed by the assistance of 1D periodical potential
for condensate positive scattering length which is relevant to exciton polariton BECs, or to the
atoms with repulsive interaction between the particles [48, 66]. In this case we deal with the
negative effective mass of the particles that appear at the edges of Brillouin zone.
The corresponding annihilation (creation) operators of bosonic fields are denoted as âj (â†j )

with j = 1, 2, and obey the commutation relations:

[âi(z), â†j (z
′)] = δ(z − z′) δi j ; i, j = 1, 2. (3)

For Hamiltonian (2), we suppose that the ground state of this bosonic system is the product of
N single particle states [57]. Physically, this assumption is valid for BECs taken in equilibrium
at zero temperature. Thus, the collective ground state for the whole system can be written as:

|Ψ〉N =
1
√

N!

[∫ ∞

−∞
dz

(
Ψ1â†1 + Ψ2â†2

)]N
|0〉, (4)

with |0〉 ≡ |0〉1 |0〉2 being a two-mode vacuum state. It is noted that the state vector shown in
Eq. (4) relates to the Hartree approach for bosonic systems [37, 38, 68], which is valid for a large
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number of particles N . If we apply the variational approach based on the ansatz Ψ1 ≡ Ψ1(z, t) and
Ψ2 ≡ Ψ2(z, t), with the unknown z-dependent wave-functions, one can have the corresponding
Lagrangian density in the form [69]:

L =

2∑
j=1

(
i
2

[
Ψ
∗
j
ÛΨj − ÛΨ∗jΨj

]
+

1
2M
Ψ
∗
j

∂2Ψj

∂z2 −
U
2

��Ψj

��4)
− κ

(
Ψ
∗
1Ψ2 + Ψ1Ψ

∗
2
)
. (5)

In the limit of vanishing coupling constant κ = 0, Eq. (5) leads to the well-known GPE, which
supports bright soliton solution when MU < 0, i.e.,

Ψj =
Nj

2
√
|U |sech

(
Nj |U |

2
z
)
eiMθ j . (6)

Here Nj is the number of particles in the j-th well and θ j is the phase, respectively. Below, we
take the soliton solutions given in Eq. (6) as our variational ansatz, but imposing time dependent
parameters for Nj and θ j when a weak coupling between the condensates is nonzero. Then, we
can obtain the effective Lagrangian by integrating the Lagrangian density (5):

Ł =
∫ ∞

−∞
Ldz = −M

(
N1 Ûθ1 + N2 Ûθ2

)
(7)

+
U2

24M

(
N3

1 + N3
2

)
− 4κN1N2

N
I(p) cos [θ] .

Here, we have defined p = (N2 − N1)/N and θ = θ2 − θ1 as a population imbalance and phase
difference between solitons, respectively. The total number of particles is denoted by N = N1+N2.
Moreover, we also introduce

I(p) =
∫ ∞

0

dz′

cosh2 (z′) + sinh2 (z′p)
. (8a)

It is important for analytic analysis that integral defined in Eq.(8) can be approximated by a
parabola

I(p) ≈ 1 − αp2 (8b)

with α = 0.21. The direct comparison of (8a) and (8b) with p ∈ [0; 1] has revealed that the
maximal relative error of the approximation is about 0.7% for p = 0.9.

Basing on Eq. (7) we derived the equation of motions for the population imbalance and phase
difference, i.e., p and θ in the form,

Ûp = − 1
M

(
1 − p2

) (
1 − α p2

)
sin [θ], (9a)

Ûθ = Λp +
2p
M

cos [θ]
[
1 + α − 2α p2] . (9b)

Here, the dots denote the derivative with respect to the dimensionless time t ′ = 2|κ |t. In Eqs. (9),
the dimensionless parameter Λ = U2N2

16 |κ | is also introduced, which defines various regimes for
BEC behavior in double-well trap.

Two sets of nontrivial stationary solutions can be found for Eqs. (9). For the first set we have

p2
0 =

1
2α

[
1 + α − Λ

2

]
, (10a)

cos(θ0) = −M; (10b)
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and for the second set

p2
0 = 1, (11a)

cos θ0 = −
MΛ

2(1 − α) . (11b)

The first set of nontrivial solutions given in Eqs. (10) is similar to the one obtained under
two-mode approximation, and relevant to the tight binding model [57]. However, a vital parameter
of system Λ that we have introduced above is proportional to N2 instead of N which occurs in
two-mode limit, cf. [65]. This fact seems to be very important in practice when we consider the
limit of the large particle number N , cf. [63]. In the following, we show that this set of solutions
can be used to construct Schrödinger-cat state with solitons.
As for the second set of solutions given in Eqs. (11), there is no analogy from the results

obtained under two-mode approximation [57, 61–64]. Physically, such a set of solutions implies
the formation of N00N-state from coupled solitons.
As for the imbalance parameter 0 ≤ |p| ≤ 1, the corresponding Λ parameter lies between

2(1 − α) and 2(1 + α), resulting in the first set of solutions existing only in 1.58 ≤ Λ ≤ 2.42.
However, for the phase difference 0 ≤ | cos θ0 | ≤ 1, the second set of solutions can exist for
0 < Λ ≤ 1.58 only. One can see that there is a critical value for Λcr = 2(1 − α) ≈ 1.58, at which
we have the state with p2 = 1 and cos(θ0) = −M. To be more specific, thereafter, we assume
M = 1.

3. Superposition states of quantum solitons

3.1. Schrödinger-cat state (SC-state)

The SC-state exist at 1.58 ≤ Λ ≤ 2.42. The state vector of solitons (4) corresponding to Eqs. (10)
has the form

|Ψ(±)〉 = 1
√

N!

[∫ ∞

−∞
dz

(
Ψ∓â†1 − Ψ±â†2

)]N
|0〉, (12a)

with

Ψ± =

√
NU
4
(1 ± |p0 |)sech

(
NU
4
(1 ± |p0 |)z

)
, (12b)

and |p0 | =
√

1
2α (1 + α −

Λ
2 ). By defining macroscopic superposition of states from Eqs. (12), we

can construct Schrödinger-cat state (SC-state) from coupled solitons, cf. [57]:

|Ψ〉 = C
(
|Ψ(+)〉 + |Ψ(−)〉

)
. (13)

Here, C = [2(1 + XN )]−1/2 is a normalization factor, and X =
1−p2

0
2

∫ ∞
−∞

dx
cosh [x]+cosh [p0x] ≈(

1 − p2
0
) (

1 − αp2
0
)
with the same α = 0.21. Notice that the modes of SC-state (12) are not

orthogonal to each other, but follow the relation:

ε = 〈Ψ(±) |Ψ(∓)〉 = XN . (14)

Physically, the size of the cat can be defined by 1/ε (see Fig. 1(a)). For macroscopic SC-state,
we require ε � 1, which implies the maximally achievable cat size obtained with |p0 | → 1 and
X → 0.
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Fig. 1. (a) The dependence of the “cat size" 1/ε (14) on the population imbalance |p0 | for
different numbers of particles N . One can see that “cat size" tends to infinity when |p0 | tends
to 1. Also 1/ε ≈ 0 when |p0 | ≈ 0. Infinite “cat size" corresponds to macroscopic SC-state
and can be approximately taken as a N00N-state. Zero “cat size" corresponds to microscopic
SC-sate which means almost no entanglement. (b) Illustration of the precision measurement
of the phase shift, based on a Mach-Zehnder interferometer (MZI). Here, QSPD denotes a
quantum state preparation device, φ1 and φ2 are two resulting phases accumulated at the
arms of interferometer, BS is a beam splitter, and D is a parity detector that runs in the
particle counting regime.

3.2. N00N-state

The N00N-state exist at 0 < Λ ≤ 1.58. The second set of solutions given in Eqs. (11) presumes
the state vector of solitons (4) in the form

|Φ(±)〉 = 1
√

N!

[∫ ∞

−∞
dz

(
Φâ†2,1

)]N
|0〉, (15a)

with

Φ =

√
NU
2

sech
(

NU
2

z
)
. (15b)

Here we have replaced in notation |Ψ〉 → |Φ〉 just for simplicity of the reader’s perception.
Also the sign ± here determines modes for p0 = ±1. The superposition state constructed from
Eqs. (15) is:

|Φ〉 = 1
√

2

(
|Φ(+)〉 + e−iθN |Φ(−)〉

)
, (16)

which clearly gives us a N00N-state of solitons. Here, we also introduce θN = Nθ0 =

N arccos
(
− Λ

2(1−α)

)
.

At the critical value of Λ = Λcr = 1.58, the SC-state shown in Eq. (13) transformes into the
N00N-state described by Eq. (16), with θ0 = π phase difference between two solitons.

4. Quantum measurements with superposition states

In this section we propose a precision measurement experiment with SC-state and N00N-state.
The Mach-Zehnder interferometer (MZI) is illustrated in Fig. 1(b). The device coined as
a quantum state preparation device (QSPD) represents the medium with two coupled BECs
producing entangled soliton states (may be the superposition state, SC-state or N00N-state) into
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the input of a MZI. The measured parameter is a linear phase shift φ = φ2 − φ1 accumulated in
the arms of MZI.
Experimental realization of the scheme in Fig. 1(b)with atomic condensates is based on the

so-called method of nonlinear Ramsey interferometry that is performed in time domain, cf. [14].
First the method implies the formation of two entangled solitons composing N00N-state in our
case. Then, the total state undergoes free evolution. BS combines modes for the readout by
applying π/2 microwave pulse to atomic cloud which couples two internal atomic states.
As it is demonstrated in [70], the current micro- and nanotechnologies allow to design

semiconductor based MZI operating with exciton polariton condensates and possessing optically
controlable phase shift, polarization, output intensity that opens the door for quantum optical
metrology purposes being under discussion.

The sensitivity of the phase parameter φ for the scheme in Fig. 1(b)is determined by (cf. [71])

〈(∆φ)2〉 =
〈
(
∆P̂

)2
〉��� ∂〈P̂〉∂φ

���2 , (17)

where, P̂ is a Hermitian operator suitable for the measurement of the phase φ. We propose
to use a parity detection procedure with the operator taken for the second mode: P̂ ≡ P̂â2 =

exp
[
iπ

∫ ∞
−∞ â†2 â2dz

]
. For this purpose, for parity measurement shown in Fig. 1(b), two matter

waves are combined at the BS after phase-shifting operations, and then one of the detectors
counts the even or odd number of particles.

Though, at present, parity measurement experimentally represents a non-trivial task requiring
high efficiency particle-number counting (resolving) detectors, it is absolutely imperative to
achieve Heisenberg scaling by phase measurement in our scheme, cf. [73]. Notably, in the recent
experiment it was demonstrated that super-resolution phase measurement was 144 times better
than the Rayleigh limit for coherent photonic states in MZI, obtaned by measuring photon number
parity as a readout [74]. To describe the parity measurement, one may introduce the following
spin operators

Ŝ0 =
1
2

∫ ∞

−∞

(
â†1 â1 + â†2 â2

)
dz, (18a)

Ŝ1 =
1
2

∫ ∞

−∞

(
â†1 â1 − â†2 â2

)
dz, (18b)

Ŝ2 =
1
2

∫ ∞

−∞

(
â†1 â2 + â†2 â1

)
dz, (18c)

Ŝ3 =
i
2

∫ ∞

−∞

(
â†2 â1 − â†1 â2

)
dz. (18d)

These operators obey SU(2) algebra and to commutation relations: [Ŝi, Ŝj] = iεi jk Ŝk , with
i, j, k = 1, 2, 3. Having Ŝj operators we can define unitary operators for the transformations of
quantum state in the beam splitter and phase shift, i.e., ÛBS = exp

[
i π2 Ŝ2

]
and ÛPS = exp

[
−iφŜ1

]
,

respectively. Then, the action of MZI on initial quantum state can be described by MZI-operator,
i.e., ÛMZI = ÛBSÛPS = exp

[
i π2 Ŝ2

]
exp

[
−iφŜ1

]
. The parity operator P̂a2 in this formalism has

the form:
P̂â2 ≡ exp

[
iπ(Ŝ0 − Ŝ1)

]
. (19)

Thus, for the scheme shown in Fig. 1(b), the resulting expectation value of parity operator P̂a2

can be calculated as

〈P̂â2〉 = 〈Û
†
MZI P̂a2ÛMZI 〉 = 〈eiπŜ0 eiφŜ1 eiπŜ3 e−iφŜ1〉. (20)
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It is also more convenient to use the angular momentum state representation instead of the
particle number representation. Here, we consider the following substitution |N1, N2〉 → | j,m〉,
where N1, N2 are numbers of particles in the first and second wells. The quantum numbers for
angular momenta j and m are introduced as j = N/2 and m = (N1 − N2)/2, respectively. The
states | j,m〉 are eigenstates of the spin operators Ŝ0,1 with the conditions Ŝ1 | j,m〉 = m| j,m〉;
Ŝ0 | j,m〉 = j | j,m〉and exp [iπS3] |N1, N2〉 = exp [iπN1] |N2, N1〉.
In terms of the angular momentum we can rewrite SC-state in Eq. (13) and N00N-state Eq. (16)

as

|Ψ〉 = C (| j,−m〉 + | j,m〉) , (21a)

|Φ〉 = 1
√

2

(
| j,− j〉 + e−iθN | j, j〉

)
. (21b)

Then the resulting average value 〈P̂a2〉 for initial SC-state and N00N-state, respectively, have the
form:

〈Ψ|P̂â2 |Ψ〉 = (−1)N cos
[(
φ − π

2

)
N |p0 |

]
, (22a)

〈Φ|P̂â2 |Φ〉 =
{
(−1) N2 cos [φN + θN ] ; N is even
(−1) N+1

2 sin [φN + θN ] ; N is odd
(22b)

with the variation 〈(∆P̂â2 )2〉:

〈Ψ|(∆P̂â2 )2 |Ψ〉 = sin2
[(
φ − π

2

)
N |p0 |

]
, (23a)

〈Φ|(∆P̂â2 )2 |Φ〉 =
{

sin2 [φN + θN ] ; N is even
cos2 [φN + θN ] ; N is odd

(23b)

From the results above, we can see that quantum interference effects arise in the paritymeasurement
scheme depending on the even or odd particle numbers N . As for the sensitivity of interferometer,
we immediately obtain from Eq. (17)

〈Ψ|(∆φ)2 |Ψ〉 = 1
N2 |p0 |2

, (24a)

〈Φ|(∆φ)2 |Φ〉 = 1
N2 . (24b)

One can see that the Heisenberg limit is achieved for a maximally entangled N00N-state and the
precision for SC-state has an extra 1/|p0 |2 factor. In Fig. 2(a), we plot a normalized error in the
phase measurement σφ =

√
〈(∆φ)2〉 as a function of particle number N for SC-state. The value

σφ = N−1/2 characterizes SQL of the phase measurement with classical states, which can be
achieved without QSPD. One can see that the accuracy of measurement tends to the Heisenberg
limit as the cat size grows and is saturated by |p0 | = 1 at the input (the yellow curve in Fig. 2(a)).
On the contrary, a microscopic SC-state obtained when |p0 | → 0 is not suitable to perform the
measurements.

5. Measurements beyond the Heisenberg scaling

The accuracy of measurement can be improved even more by using parameters with nonlinear
particle number dependence. In the framework of nonlinear interferometry, the arbitrary Θ-
parameter measurement procedure uses transformation |Ψ〉Θ = exp(iΘG)|Ψ〉 for input state
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a)
b)

Fig. 2. (a) Reduced phase uncertainty
√

Nσφ against total particle number N , for an initial
SC-state used in the measurement procedure. The value

√
Nσφ = 1 corresponds to SQL

limit. (b) The dependence of σΘ on Θ demonstrating a second-order like phase transition
from the state possessing non-zero σΘ beyond the linear Heisenberg limit (gray area) to the
state nonapplicable for such measurements. The number of particles N = Nc = 6000 is
taken for Lithium atomic condensates with negative scattering length, as example.

|Ψ〉, where G is the generator of transformation that describe nonlinear phase dependence, cf.
[7–9, 58, 60].
In the general case for G = Nk the ultimate sensitivity of the Θ-parameter measurement in a

nonlinear interferometer is bound by the value σΘ ' 1/Nk , which corresponds to the so-called
super-Heisenberg limit for the phase measurement in quantum metrology, cf. [59].
To be more specific, we focus on so-called interaction-based quantum metrology approach

where we use light-matter (nonlinear) quantum interface for quantum noise-limited interactions,
cf. [59]. The Θ-parameter that characterizes relative strength U of nonlinear inter-particle
interaction in each well with respect to the linear inter-well coupling coefficient κ is the subject
of high precision measurement beyond Heisenberg limit: Θ = Λ

N2 =
U2

16 |κ | . Noticing that Θ
does not depend on number of particle N which means resistance of such experiment to particle
losses. The Θ- parameter measurement can be performed in the same way as for phase-shift φ
measurement in Fig. 1(b) by accounting only soliton phase difference

θN = N arccos
(
− ΘN2

2(1 − α)

)
, (25)

for prepared initially N00N-state, see Eqs. (16, 17).
For a sufficiently small Θ, which implies large value of N , we can apply the Taylor expansion

θN =
π

2
N +

N3

2(1 − α)Θ +O(Θ3), (26)

which is valid as long as we take into account only a linear dependence on Θ. Setting φ = 0 for
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neglecting unimportant phase shift, we have for the N00N-state at the input of the MZI:

〈Φ|P̂â2 |Φ〉 =
{
(−1) N2 cos [θN ] ; N is even
(−1) N+1

2 sin [θN ] ; N is odd
(27a)

〈Φ|(∆P̂â2 )2 |Φ〉 =
{

sin2 [θN ] ; N is even
cos2 [θN ] ; N is odd

(27b)

for the average value of P̂a2 and the corresponding variance, respectively. The resulting sensitivity
of Θ can be found to be:

〈(∆Θ)2〉 = 4(1 − α)2
N6 . (28)

FromEq. (28), the error inΘ isσΘ =
√
〈(∆Θ)2〉 ∼ N−3 that looks quite promising for improving

measurement sensitivity which currently achieved with atomic condensates, cf. [59, 65, 66].
In Fig. 2(a)), we show the dependence of σΘ as a function of measured Θ-parameter, for

different particle numbers N . The blue dashed-curve in Fig. 2(a)corresponds to the ultimate
measurements with one particle. The shadowed region in Fig. 2(a))reveals the capacity for
the measurements with particle number 1 ≤ N ≤ 6000. The maximal number of particles in
the condensate is limited by the number Nc that corresponds to particle number in collapsing
condensate possessing negative scattering length, cf. [45]. Obviously, for N > Nc the system
become dynamically unstable especially for macroscopic quantum states superposition discussed
in the paper.

6. Conclusion

In summary, accepting a quantum field theory approach to the problem of bright matter wave
soliton formation in weakly coupled double-well potentials, we reveal the ground states in
the Schrödinger-cat superposition state (SC-state) and maximally path entangled N00N-state.
With the variational method, we derive the equation of motions for SC-state and N00N-state.
Then, within the Mach-Zehnder interferometer we examine quantum phase measurement with
these superposition states, in order to have the accuracy beyond the standard quantum limit and
the linear Heisenberg limit. We perform the P̂â2 operator measurements by applying a parity
measurement procedure. Heisenberg-limited phase shift measurements are demonstrated to be
saturated for maximally path entangled state containing N particles. A vital combination of
condensate parameters Θ = U2

16 |κ | is shown to surpass the linear Heisenberg limit in terms of the
nonlinear metrology approach, when scaling is proportional to N−3. These results applied to
atomic N00N-states represent a promising tool for atomic clocks and atomic gyroscopes [65,66].

Notably, decoherence effects play an important role for the schemes operating with SC-states
and/or N00N-states, cf. [72]. From the practical point of view it is more important to identify
characteristic time scales when superposition states and – more generally – two component
macroscopic condensates might be implemented for quantum operations. Contrary to standard
(single particle) qubits, as it is shown in [75], the required time of gate operation in condensates
for producing entanglement is inversely proportional to the particle number N . This enhancement
is achieved due to bosonic stimulation effect and implies a fast quantum gate operation. Obviously,
decoherence effects occurring in condensate macroscopic states should appear at longer time.
Remarkably, condensate quantum solitons pose some specific peculiarities during their

propagation in the presence of decoherence, via one-, two-, and/or three-body losses cf. [76]. In
the paper we are examining bright solitons at rest. Obviously, the analysis of motional degree
of freedom seems to be important due to the uncertainty relation for soliton momentum and
position [37,38]. One of the possible realizations of the scheme represented in Fig. 2 is connected
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with exciton-polariton bright solitons propagation in high-Q semiconductor microcavities [48,70].
The lifetime of solitons is several tens of picoseconds that is large enough as compared to the
possible quantum operation. Moreover, recently there were proposed by Y. Sun et al. in [77]
few hundred picoseconds lifetime for LB exciton polaritons in semiconductor microstructures.
This enables to avoid decoherence and undesirable spreading effects for characteristic long
lifetimes [37, 38, 76]. In other words, long-lived exciton polariton condensates can be a new
platform for designing maximally entangled states with moving solitons. These problems will be
a subject of intensive study both in theory and experiment in forthcoming papers.
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