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Abstract: Realizing the topological bands of helical states poses a challenge in studying
ultracold atomic gases. Motivated by the recent experimental success in realizing chiral optical
ladders, here we present a scheme for synthesizing topological quantum matter, especially the
quantum spin Hall phase, in the chiral optical ladders. More precisely, we first establish the
synthetic pseudo-spin-orbit coupling and Zeeman splitting in the chiral ladders. After analyzing
the band structure of the ladders exposed to the bichromatic optical potentials, we report the
existence of quantum spin Hall phase. We further identify a rich phase diagram of the bichromatic
chiral ladders, illustrating that our proposal features a large space of system parameters exhibiting
quantum phase transitions. Our scheme is within reach of the existing ladder optical lattices and
hence provides a new method to engineer the elaborate topological bands for cold atomic gases.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Identifying ways to search and probe topological optical lattices and thus topological quantum
matter is a quest of major relevance in ultracold atoms [1,2]. Over the past decade, much progress
has been witnessed in realizing the topological phases in cold atomic systems, ranging from the
Su-Schrieffer-Heeger model [3], the Hofstadter model [4-6] to the Haldane model [7]. Important
cases are the quantum spin Hall insulators (QSHIs) that arise in spin-orbit coupled systems, where
the existence of helical edge states produces a spin current along the edges of a strip. Realizing
the QSHI for ultracold gases was suggested in early theoretical works [8,9]. The QSHI would
be implemented by engineering the hyperfine structure of the ultracold atoms to synthesize the
non-Abelian gauge to mimic spin-orbit coupling [9]. On the experimental side, the only realized
examples are cases where independent quantum Hall (QH) insulators of opposite Chern number
have been paired to form a single system [5]. The system thereby is protected by a Z topological
index. Despite these advances, optical lattices featuring QSHI with spin-orbit interaction have so
far been lacking to our knowledge.

Along this line, chiral ladder systems for ultracold atoms constitute one of timely topics of
engineering the topological quantum matter with synthetic gauge and synthetic dimensions [10].
They represent a simple yet effective platform to study exotic quantum phases of ultracold atoms,
given that ultracold atoms in optical lattices naturally realize such a strip geometry [11]. Apart
from the ladder structure in the real dimension [11], the internal degrees of freedom of atoms
such as the hyperfine states [12,13] and clock states [14—16], and the external degrees of freedom
such as the momentum states [17,18] and lattice orbitals [19,20], can be exploited to fabricate
the chiral ladders in the synthetic dimensions. To date, an intense theoretical and experimental
investigation has revealed rich topological features of the chiral ladders [10]. For example, the
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chiral ladder systems in synthetic dimension have led to visualization of the chiral edge states
related to the QH phase [12,13].

Motivated by these recent experimental realizations of ultracold atomic ladders immersed in
synthetic gauge potentials [11-13], here we propose a chiral-ladder realization of the topological
bands of QSHIs. To be specific, we utilize the leg degree of freedom to synthesize the pseudo-
spin-orbit coupling and Zeeman splitting. By exposing it to a 1D bichromatic optical potential
along the direction of legs, we develop a model of bichromatic chiral ladder. We analyze the
energy bands of this bichromatic chiral ladder, revealing the quantum spin Hall phase. We further
highlight the emergence of distinct topological phases by varying the parameters of the ladder
systems. Our study is of direct experimental relevance for laboratories where ultracold gases in a
chiral ladder geometry are realized [11-13,15-20], hence providing a realistic way to achieve
topological quantum matter of ultracold atoms.

The rest of the paper is organized as follows. In Sec. 2 we construct the model of bichromatic
chiral ladder. In Sec. 3 we calculate the energy bands and investigate the topological properties
of the model, and finally summarize our results in Sec. 4.

2. Model of bichromatic chiral ladder

Our starting point is the ladder geometry of optical lattices for noninteracting spinless atoms that
has been synthesized experimentally [11]. The access of QSHE at first requires the identification
of two degrees of freedom representing the two spin states. We resort to a two-leg ladder threaded
by a uniform artificial magnetic field [11], the so-called chiral ladder, to encode the two degrees of
freedom and enable their mutual interactions. As sketched in Fig. 1(a), the chiral ladder consists
of a two-leg strip with intra- and inter-leg hoppings J and K. Each plaquette encloses a net gauge
flux 2¢. According to the Peierls substitution, the Landau gauge adopted here will imprint a phase
factor +i¢ on the hoppings along the legs (+ for the A- and B-legs, respectively). In addition, we
superimpose an energy offset 2A between the legs. Physically, this offset corresponds to a deep
double-well configuration oriented along the x direction. The overall ladder Hamiltonian in real
space reads:

_ i i —ig 7
H = —JZ (e"/’anrlAan +e "f’an’Bcn’B + h.c.)
n
T T
+ AZ (cn’Ac”’A - cn’Bcn,B) )
n

i i
- KZ (cn,Acn’B + cn,Bcn,A) .
n

Here the operator c;‘;,ﬂ (cpy,) creates (annihilates) a fermionic particle on site (n, ), where
u=(A,B).

A precise connection can be made between a spin-orbit coupled chain and the chiral ladder.
Following the interpretation of Ref. [21], one can think of Eq. (1) as a 1D optical lattice with
pseudo-spins represented by A- and B-legs. Keeping this in mind, we introduce the spinor
operator ¥, = (c,,,A, cn,B)T and rearrange our model in the spinor space as follows:

H =) W) [AG: - K] W,
n
3 2
—J) W €T, + he,

where &7; are the Pauli operators. Written in the momentum-space the resulted Hamiltonian is of
the form

H = —Z‘I’;M(ky)‘l‘ky 3)
ky
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Fig. 1. (a) Schematic representation of the two-leg ladder. This optical lattice has a
double-well structure in the x direction, while unlimitedly extends in the y direction. A and
B (the red and blue colors) label the two different degrees of freedom of legs, denoting the
two different pseudo-spin states. J and K are the hopping amplitudes along the legs and
rungs, respectively. An artificial magnetic flux 2¢ penetrates the plaquettes. An additional
potential difference 2A is imposed between the legs. (b)-(d) Band structures of the chiral
ladders for various K’s and A’s. Energy is set in units of 2J. The color of the lines specifies
the spin magnetization of the Bloch state. The magnetic flux is set as 2¢ = 0.67r. Other
parameters: (b)K =0, A=0()K=1, A=0,(dK=1, A=1.

with M(ky) = 2J cos ¢ cos(ky)do + [—A + 2J sin ¢ sin(ky)] b + K. 1t should be noted that the
1D Hamiltonian has no chiral symmetry because of the first term proportional to the identity
matrix. Besides that, we notice the absence of cosine term in the last two terms. This implies
H is topologically trivial. We computed the energy bands and the pseudo-magnetization (o)
for a fixed flux 2¢ and different values of inter-leg hopping K and energy offset 2A, shown in
Figs. 1(b)-1(d). Figure 1(b) corresponds to the band structure in the case of vanishing K and A.
Clearly, one can observe a positive (negative) shift of energy minimum for the pseudospin-up
(-down) particles. This evidences an effective spin-momentum locking derived from the nonzero
magnetic flux. Provided the inter-leg tunnelling K is turned on, as can be seen in Fig. 1(c), it
opens a gap and the states get increasingly spin-mixed. Thereby the 6 term in Eq. (3) brings
about a spin-flip. Further, in the case of the large offset A a spin separation is visualized from the
spin magnetization in Fig. 1(d). This term therefore indicates a pseudo-Zeeman splitting. In
total, the above proposed chiral-ladder geometry can be mapped onto a 1D spin-orbit coupled
lattice with spin flip and Zeeman field. It is necessary to stress that the pseudo-Zeeman term
involved here is associated with the double well, instead of the artificial magnetic field. This is
different from the electronic systems. As a result, it can give an independent control over the
ladder systems.

To realize the topological bands of chiral ladders, we propose to impose a bichromatic optical
superlattice V(y) = V, cosz(kpy) + V, cos?(k,y + 6) along the y direction. This can be created by
superimposing on a primary, deep lattice an auxiliary, weak lattice [22]. V,, and V, separately
denote the depth of the primary and auxiliary lattices. k, and k, are the two lattice wave numbers.
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The variable phase 8 accounts for the relative position of the lattices. The bichromatic modulation
is applied equally on the A- and B-legs (the shaded circle of Fig. 1(a)). When the primary
lattice depth is sufficiently large, the wavefunctions can be expanded by a set of Wannier states
w(y) of the lowest band of the unperturbed primary lattice [23]. In the tight binding limit, this
expansion leads to the onsite potential energies as follows V(n) = A cos(2n8n + 0) [22]. Here,
the modulation strength A is parameterized by the depth of the auxiliary lattice, 5 equals to the
ratio k,/k,, and 6 the phase offset. Summing up, the modulated optical ladder can be described
by a tight-binding Hamiltonian

Hip(n,0) == > Wi [Acos2rpn +0)] ¥,
+ D W [AG: - Koy W, @

= LIPSV, R
n

The first term describes the bichromatic modulation. In the second term A and K denote the
strength of Zeeman splitting and pseudospin flip specified above. And the last term contributes
to the spin-orbit coupling. In experiments, A and J can be controlled independently by varying
the depth of the primary and auxiliary lattice potentials. 6 can be tuned by the relative shift
between the two lattices. A and K can be freely altered by tilting the double-well. This setting of
optical lattices enables us to continuously tune the system among various topological regimes,
as is elaborated below. Hereafter, the chiral ladders with the bichromatic modulation will be
referred to as “bichromatic chiral ladders (BCLs)" for convenience.

3. Quantum spin Hall phase and topological phase diagram

In order to identify the topological nature of the BCL structure, we now establish the connection
of the 1D BCL to a 2D spin-orbit coupled square lattice pierced by a magnetic field. The 2D
Hamiltonian can be found by using the approach of dimensional extension [24-28]. To be specific,
given the parameter 6 is cyclically varied in [0, 27], it can be regarded as a quasi-momentum k;
along a virtual coordinate z. After making the substitutions of J — t,, 8 — k;, and A — 2t, and
relabeling the spinor as ‘Pn,k,’ the present 1D model can be converted into a 2D Hamiltonian in a
mixed momentum-position }epresentation (n, k),

Hop(n, k) == )W, (21 cos2rpn + k)] W,
n.k;
+ Z \PZ’,{Z (A6, — K] W, )
n.k
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Performing the inverse Fourier transform, ‘I’n,kZ = >n e"'kzm‘{‘,,’m, gives the real-space 2D
Hamiltonian '
Hop(n,m) = —t, Z Byt Yym + h.c.

nm+1
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This Hamiltonian exactly describes a spinor moving on a square lattice defined in the y — z plane
(y = n,z = m), which is threaded by a uniform magnetic flux 3 per plaquette. Based on the
analogy between our 1D system and the 2D system, this allows us to define the topological
properties of the BCL. That is the topological origin of our model. We should emphasize that,
different from the conventional Harper-Hofstadter model [29,30], the terms associated with the
spin-orbit coupling, spin flip, and Zeeman splitting are involved in the Hamiltonian Eq. (6).

Having precisely mapped the 1D BCL onto the analogous 2D system, we at this point move
to the topological phases of the BCLs. Herein, we assume a rational 3, i.e., 8 = p/q with p, ¢
being coprime integers. The length of unit cell of the ladder turns out to be g. Inserting the
Bloch waves ¥, = MW in Eq. (4) yields the band structures E = E(ky, 0) of the modulated
ladder, together with the associated eigenvectors, that are defined by 6. Figure 2(a) displays the
energy bands for 8 = 1/3. To quantify the topological properties of our system, we calculate
the spin-up (spin-down, respectively) gap Chern numbers defined in the parameter space (ky, 6).
In Fig. 2(a) we have labeled the spin gap Chern numbers. We note that for the middle gap the
Chern numbers are given by (Cy, C}) = (-1, +1). This leads to the nontrivial topological index
%(C 1 — C}) = —1 which signals the emergence of QSHI. It should be noted that the time-reversal
symmetry is broken in the analogous 2D Hamiltonian, and thus this phase corresponds to the
time-reversal-symmetry-broken QSHI phase [31]. In the meanwhile, the Chern numbers of the
first gap are (C7, C}) = (0, —1). This indicates a spin-filtered QH phase [32,33]. A similar
result holds for the third gap, but with (Cy, C|) = (+1, 0).
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Fig. 2. Energy spectrum for 2¢ = 0.6nr, A = 1.5, 8=1/3,A = 1, and K = 0.1. The energy
is set in units of J. (a) Energy spectrum E = E(ky, 6) for the infinite BCL. The integers near
the graph label the spin Chern numbers of different bandgaps. (b) Energy spectrum obtained
from a finite ladder. As a function of 6, the spectrum is composed of the bulk bands (solid
lines) and dispersion curves that traverse the gaps (dashed lines). B (e) is the markers for
the states at the same Fermi energy.

The definite topological property in a finite system is the emergence of gapless edge states
as the phase 6 varies. In Fig. 2(b), illustrating the spectrum of a finite ladder, the dispersion
curves of the additional states (dashed lines) are clearly superimposed on the bulk bandgaps. At
a given Fermi level Eremi = 0, gapless states, labeled as A, B, C and D, emerge in the middle
bandgap. States A and C are localized near n = L, while B and D are localized near n = 0
(Figs. 3(a)-3(d)). The slope of dispersion curves in Fig. 2(b) determines that the two states
A and C are counterpropagating in the analogous 2D square lattice. Meanwhile, states A and
C are almost fully spin-down and spin-up polarized, respectively (Figs. 3(a), 3(c)). Therefore,
these two pair of mid-gap states form the helical edge states, indicating the QSHI phase of the
middle gap. On the other hand, when the Fermi energy is adjusted inside the lowest gap, two
propagating states traverse the bulk gap (E and F in Fig. 2(b)). E and F are characterized by
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the single spin-component which are localized at the opposite edges (Fig. 3(e), 3(f)). In the
analogous 2D system the excitations E and F constitute a pair of chiral edges states with single
spin-component. This is associated with the spin-filtered QH phase [32,33]. We emphasize that
the pseudospin components in our proposal are manifested as the leg degree of freedom. As a
result, these edge states are localized at the extremities of the left- and right-legs, respectively.
This will give convenience to the direct observations of the topological phases.

1.0 : . 1.0
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Fig. 3. Mode amplitudes of the gapless states in Fig. 2(b). (a-d) correspond to the states
marked by B, while (e,f) to the states o. The spin component ‘¥,,1 (respectively, '¥,,|) is
represented in red (respectively, blue).

To further show the rich topological phases in the BCL, we explore the phase diagram through
tuning the synthetic Hamiltonian. Since changing the energy offset between legs is readily
accessible to the experiment, we compute the phase diagram as a function of the A. Figure 4
illustrates the diversity of the topological phases. The bulk is insulating in the white regions
and classified into distinct phases: QH (C; = -1,C; = =1) or (Cy = +1,C| = +1), QSH
(Cr = -1,C| = +1), spin-filtered QH (C; = £1,C| = 0) or (Cy = 0,C} = «£1), and ordinary
insulator (Cy = 0, C| = 0). Take Epermi = 0 and Eferm = —1 for example. With the increase of
A the excitation of Epermi = 0 will undergo the regimes of metal, QSH insulator, and ordinary
insulator successively. On the other hand, for the Epermi = —1 the energy offset can turn a QH
phase into a metal, and then a spin-filtered QH phase. Therefore, by manipulating A and Eermi
the BCL can host rich topological phases.
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Fig. 4. Egermi-A phase diagram. Here, the bandgaps (bands) are designated by the white
(shaded) regions, respectively. The pairs of integers indicate the Chern numbers of the
bandgaps for spin up and down, distinguishing the topological regimes of the model.

4. Discussions and conclusions

One of the key features of our scheme is that the spinless ultracold atoms are utilized and the
synthetic spin-orbit textures are built from the leg degree of freedom which is coupled to the
Abelian gauge field. Neither internal states (e.g., hyperfine states) nor a non-Abelian gauge is used
in our setting. Besides that, since the “spin" itself is synthesized in real space [11], our method
allows for a real-space-resolved detection of the topological phases, instead of spin-resolved
techniques. This character will facilitate greatly the direct observations of the spin-orbit coupled
topological phases. On the other hand, due to the versatility of the optical ladders, we remark
that our results are also applicable to the structures prepared in the artificial dimensions [12-20].

As an alternative to access the higher-dimensional Hamiltonians that host topological phases,
the topological pumping in lower dimensional systems provides an additional avenue towards
studying topological states of matter [24,34-38]. The pumping experiments of ultracold
atoms have been demonstrated in optical superlattices [35,36]. Therefore, by adiabatically and
periodically varying a set of BCLs’ parameters, e.g., the relative phase of the bichromatic lattices,
one can drive versatile quantized transports during each cycle, such as charge [34] and spin
pumping [39]. The implementation of pumping in our BCL system will arouse the interest from
the experimental side.

In conclusion, we have proposed a system of bichromatic chiral ladder for studying the
topological bands for ultracold atoms, utilizing the concepts of synthetic spin-orbit coupling
and Zeeman splitting. We have demonstrated that the quantum spin-Hall phase can emerge
within this setup. In the meanwhile, the bichromatic chiral ladders can produce rich topological
phases via tuning the system parameters. We conclude that the bichromatic chiral ladders hence
constitute a surprisingly simple yet versatile scenario to explore synthetic topological quantum
matter for the ultracold atoms. Our proposal to engineer topological quantum matter is of direct
experimental relevance in ultracold atoms [11-13,19]. Taking this work as a basis, we believe
that turning on the interactions will trigger the studies on the exotic topological many-body states
in atomic chiral ladders [40-42].
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