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Abstract: Quantum entanglement is an essential ingredient for the absolute security of quantum
communication. Generation of continuous-variable entanglement or two-mode squeezing
between light fields based on the effect of electromagnetically induced transparency (EIT) has
been systematically investigated in this work. Here, we propose a new scheme to enhance the
degree of entanglement between probe and coupling fields of coherent-state light by introducing
a two-photon detuning in the EIT system. This proposed scheme is more efficient than the
conventional one, utilizing the ground-state relaxation (population decay or dephasing) rate to
produce entanglement or two-mode squeezing which adds far more excess fluctuation or noise
to the system. In addition, maximum degree of entanglement at a given optical depth can be
achieved with a wide range of the coupling Rabi frequency and the two-photon detuning, showing
our scheme is robust and flexible. It is also interesting to note that while EIT is the effect in the
perturbation limit, i.e. the probe field being much weaker than the coupling field and treated
as a perturbation, there exists an optimum ratio of the probe to coupling intensities to achieve
the maximum entanglement. Our proposed scheme can advance the continuous-variable-based
quantum technology and may lead to applications in quantum communication utilizing squeezed
light.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Continuous-variable (CV) quantum entanglement is an important resource which has been
paid great attention in modern quantum optics and quantum information sciences, possessing
many potential applications in quantum teleportation [1], quantum key distribution [2], quantum
communication [3,4], quantum information processing [5], etc. Carrying quantum information
onto the quadratures of optical fields, such as amplitude and phase, has higher tolerance
to dissipation during light propagation processes. In addition, CV quantum entanglement
can be realized in other degree of freedom of optical fields, for instance, the polarization
state of light has also been extensively studied in CV regime by transforming the quadrature
entanglement onto polarization basis [6—9], and the quadrature entanglement using quantum
orbital angular momentum with spatial Laguerre-Gauss mode has been discussed in experiment
[10]. Furthermore, CV entanglement light source is essential in quantum imaging [11-13], which
is an extension of quantum nature to transverse spatial degree of freedom. According to these
previous researches, it is believed that optical field in CV entanglement plays an ideal information
carrier, which is robust in quantum information sciences.

In order to generate entangled light, it is well known that using of optical nonlinear crystal
is a typical scheme to generate light sources in CV regime. In theory, quantum correlation
based on nondegenerate parametric oscillation was proposed [14]. Later, the generation of CV
entanglement with nondegenerate parametric amplification was first observed in experiment
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by Ou et al. in 1992 [15]. Recently, the CV quantum entanglement at a telecommunication
wavelength of 1550 nm had been realized using nondegenerate optical parametric amplifer
[16]. On the other hand, mixing two independent squeezed lights which are generated from
optical parametric amplifiers individually provides a practical method to generate quadrature
entanglement [17]. These studies above clearly indicate that there is a connection between
nonlinear optical processes and CV entanglement generation, so that the integration of all optical
elements on chip has been proposed in order to further approach the goal of implementation of
quantum computer in future [18].

Although the generation of quantum light sources from optical parametric processes, especially
using y? optical susceptibility of nonlinear crystal is popular, the light-matter interaction strength
is difficult to control. In contrast, the nonlinear optical processes based on the interactions
between fields and atomic systems can produce not only large amounts of quantum correlations
between intense fields, but also controllability with accessible physical parameters. Recent
decades, research reported on entangled light generation by four-wave mixing (FWM) has been
intensely studied in hot atomic vapors [19-25]. Moreover, it has some potential applications,
including the production of multiple quantum correlated beams [26], enhancement of the degree
of entanglement [27], quantum metrology [28], etc. Meanwhile, electromagnetically induced
transparency (EIT) [29] which is a coherent medium also plays an important role in atom-field
interactions. Some peculiar features such as low-absorption, slow-light [30] and quantum memory
[31-33] make EIT to be a promising ingredient in the development of quantum technologies. In
the scenario, quantum optical pulse propagation in EIT [34], quantum squeezing generation in
coherent population trapping media [35], large cross-phase modulation at few-photon level [36],
and quantum correlated light generation as well as multiple fields correlation have been actively
studied [37-46].

CV quantum entanglement arising from atom-field interactions is a good platform to investigate
the connections between quantum coherence and correlations. Despite the fact that many papers
have discussed the quantum entanglement generation in EIT systems, a systematic understanding
of the physics behind the entanglement generation is still lacking. In this paper, we will discuss
about the following questions: how do the tunable physical parameters in EIT system, which are
photon-detunings, field Rabi frequencies, and atomic optical density, influence the entanglement
degree between interacting fields? And how is the entanglement affected by the “EIT degree",
which is related to ratio between two interacting field strengths. By solving the coupled equations
of atomic and field operators numerically, we are able to study these questions.

The paper has been organized in the following way. In Sec. I, we start from a standard analysis
of typical EIT interaction Hamiltonian, and derive the equations of motion for atomic operators,
as well as the propagation equations for two quantized fields. The results from numerical
calculation are given in Sec. III. Then, to reveal the underline physics, Sec. IV is concerned with
the analytical approach for the output entanglement. Finally, a conclusion is given in Sec. V.

2. Theoretical model

We consider a collection of atoms having the three-level A-type configuration as shown in
Fig. 1(a). Two ground states |1) and |2) are coupled to the common excited state |3) by probe and
coupling fields, respectively. The Rabi frequency of probe field Q,, is much weaker than that of
the coupling Q., and the whole system forms a standard EIT. The one-photon detuning of probe
and coupling fields are defined by A, = w, — w31 and A, = w, — w32, where w, and w, denote
the light frequencies of probe and coupling, and w,,, = (E, — E,)/h is the energy difference
between any two states |u) and |v). The two-photon detuning is an important parameter in EIT
system, defined by § = A, — A.. The decay rates from |3) to the two ground states are I'y and
I';, which are assumed to be the same in this work, so that we have I'j = I'; = I'/2, where I is
the total decay rate of |3). The damping rate from |2) to |1) is I'j;. In addition, due to some
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practical effects such as atom collisions, we have to introduce the dephasing rate between two
ground states, which is given by v,,.

()

entanglement
measurement

probe D
oupling 17 gtomic
ensemble

Fig. 1. (a) Atomic system configuration. (b) Probe and coupling are interacting with EIT
atomic ensemble, and the entanglement measurement is performed at output.

The system is arranged as shown in Fig. 1(b). Probe and coupling fields are propagating along
the same direction, illuminating the EIT atomic ensemble, which is cooled to several hundred
micro-Kelvin. Both probe and coupling fields are coherent states at input, and the entanglement
measurement is performed at output for the two fields after propagating though EIT ensemble. In
experiments, a closed three-level system in the A-type configuration is feasible. For example,
in the energy levels of rubidium-87 atoms, the two hyperfine ground states of 55,5, F = 1,
5812, F = 2, and the excited state of 5P3/», F' = 2 can form the closed three-level system.

Next, we start to study the system theoretically. We write the atom-field interaction Hamiltonian
H in the rotating wave approximation [34,35]

H = —h(A633(z,1) + 802(z, 1))

Oy(z1) Q.(z,1) (H

—-h ) 031z, 1) + > o0z, )+ H.cl,

in which Q,(z,7) = g,&,(z.1) and Q.(z,1) = g.Ec(z. 1), with g, = y13\/m and g, =
a3\ w./2€Vh, are the single photon Rabi frequencies of probe and coupling fields, respectively,
corresponding to two dipoAle transitions /13 and 3. Without loss of generality, we have assumed
that g, = g. = g, and &, and &, are dimensionless field operators, which satisfy bosonic
commutation relations given by [8,,, SZ] =1, u € p,c. According to the Hamiltonian in Eq. (2),
we can write down the Heisenberg-Langevin equations for atomic operators.

P 1 W 2 SO
5,031 =~ (5 + lAp) 031 — 5(0'11 —0'33)9;; - EQIO'H + F31, (2)
0 . '+, . R i . A A I s, o
5,032 =" ( 5t lAc) 03— 5(0'22 — 33)0f - 59;0'12 + F3, 3
. i N b i oA
5,021 = _(7+7p+16) o021 +§Qp0—23_§0—3IQC+F21’ C)]
0 511 = Ty6s3 + T1ad Lo O 4 L0 + F 5)
—o =6 o — =0 Q5
5,01 = 1033 + M0 — 50310 + 50,013 + iy,
5 ) R TP P
5,02 = 26733 = T2020 — 50-32Qc + EQCO'B + F, (6)
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A 1 N At oA ~
5,03 = —[33 + 503182 + 50'329 - ZQ;UB EQC' 23 + F33, (7
6 Flz ~ A l A A A~
EO'IZ =- (7 +Yp 15) 012 — 503280 + EQCO'B + F1, (8)
0 '+I'y, . . i A i, A .
—03 = — il | 023 + 5 (022 — 033)C + 02182, + Fa3, &)
ot 2 2
0 r . . i A i . A “
50'13 =-|35- iAy | 613 + 5(0'11 —033)Q) + 50'125% + Fi3, (10)

in which F, v is the corresponding Langevin noise operator, satisfying the fluctuation-dissipation
theorem. I'y> is the ground-state population decay rate, and v, is the ground-state decoherence
rate, both of which can produce entanglement in very similar ways. For simplicity, we set y, = 0
and call I, as the ground-state relaxation rate in this work. The field propagations follow the
Maxwell-Schrédinger equations given by

10 0\ A Fa
10 0\ A T'a
(c8t+3_z)g (2L)”23’ (12)

where L is the medium length, and o = 4g>NL/cT is the optical density of atomic medium. N is
the total atomic numbers in the ensemble.

Together with atomic equations in Egs. (2)—(10) and field equations in Eqgs. (11) and (12), we
have a set of coupled equations between atomic and field operators. To calculate entanglement
properties between two fields, we apply the mean-field approximation, dividing each operator
A into two parts, i.e., A = A + &, where A represents the mean-field value and & corresponds
to the quantum fluctuation operator. Thus, we can decompose atomic and field operators as
Opy = Oy + 8y, v €1,2,3,and 8# =&y +ay, u € p,c, where 5, and 4, are dimensionless
atomic and field fluctuation operators, respectively. The detail derivations are given in Appendix.

In order to quantify the entanglement between two fields, we use Duan’s inseparability [47-49],
which is a sufficient condition for continuous-variable entanglement demonstrated by many
experiments, i.e.,

V(6) = A? (f(p + X) (6) + A? (f/,, - Y) (6)<4, (13)
where X, = a, e + &(T,eie and Y, = —i(age™ — &f,eig) are the two quadrature operators of

fields a., o € p, ¢, with the quadrature angle 6. Expressing V(6) in terms of field operators, we
have '
V(o) = 4 [1 + (@) + (@lac) + 2Re ((&l,aC)e*zl")] . (14)

By scanning all quadrature angles, one can find an optimum quadrature angle 6y, Which
minimizes the entanglement quantity V. The entanglement quantity V() at 6 is given by

V=4 [1 +(@lay) + (@l =2 | (apac) |], (15)

while 0o = (Arg [(@pac)| £ nr) /2, and n € odd.

The entanglement degree depends on some tunable parameters. In Sec. III, we will show
the results of entanglement under various physical quantities, and compare the corresponding
entanglement degree.
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3. Numerical results

According to the theoretical model in Sec. II, we know that the entanglement is the function
of optical density (@), two-photon detuning (), input Rabi-frequency of two fields (Q, ), and
ground-state relaxation rate (I'j2), which are measurable physical quantities in experiments. For
simplicity, we consider asymmetric one-photon detuning, which is arranged as A, = —A. = 6/2.
In this section, we will compare the two entanglement generation processes: one is by ground-state
relaxation rate, and the other one is by two-photon detuning. All the results in this section are
obtained numerically.

In Fig. 2(a), we have shown the relation between entanglement quantity V and a ground-state
relaxation rate I'j>. For given optical density a and input Rabi frequencies of probe and coupling
fields €, ., we can find an optimum ground-state relaxation rate I'12 o, to maximize the output
entanglement (the minimum value of V, i.e., Vopr,). If we give an optical density and a
ground-state relaxation rate, there exists the optimum input Rabi frequency of coupling field
Q.opt» such that the output entanglement is maximum (Vop,0,), as shown in Fig. 2(b). EIT
condition in Fig. 2 has been used by setting €2, = 0.1Q., and we consider on-resonance case, i.e.,
two-photon detuning 6 = 0.

4
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Fig. 2. (a) Entanglement versus ground-state relaxation rate under the parameters given
by @ = 1000 and Q. = 1T". (b) Entanglement versus input coupling Rabi frequency with
parameters given by @ = 1000 and I'j = 0.01I". The input Rabi frequency of probe field is
used by setting Q;, = 0.1Q., and 6 = 0 for the two figures.

Similarly, we consider how the two-photon detuning influences output entanglement. As
shown in Fig. 3(a), we can obtain the maximum entanglement by scanning two-photon detuning ¢
for given optical density and input Rabi frequencies of probe and coupling fields. It is shown that
one can find the optimum two-photon detuning Jop; and the corresponding entanglement quantity
Vopt,s- With the same process, there exists an optimum Q. to maximize output entanglement,
which is Vop 0. for given @ and 6, as shown in Fig. 3(b). As Fig. 2, we have set Q, = 0.1€Q. in
order to satisfy EIT condition, and we let I'j2 = O to ensure that the entanglement is coming from
the fact of §.

From Fig. 2(a) and Fig. 3(a), we can find that no entanglement is generated at output when
I'; = 0 = 9, and entanglement between two fields is generated in the presence of '}, or 6.
Compared with the entanglement generated by the two processes, it is clear to see that the
entanglement degree is larger and more efficient in two-photon detuning scheme. In addition to
the factors of I'1,, 0, and ., entanglement also depends on the optical density, which is tunable
and available in experiments. We are interested in maximum entanglement at different values of
a. Figures 4(a) and 4(b) show the results based on the scheme by using I'j5, and the results of §
scheme are depicted in Figs. 4(c) and (d) under various a’s. Figure 4(a) illustrates Vop 0, as a
function of I'j>, and the values of Vi o, are insensitive to I'1». For different values of optical
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Fig. 3. (a) Entanglement versus two-photon detuning under the parameters given by
a = 1000 and Q. = 1I'. (b) Entanglement versus input coupling Rabi frequency with
parameters given by @ = 1000 and ¢ = 0.01I". The input Rabi frequency of probe field is
used by setting Q, = 0.1Q,, and ', = 0 for the two figures.
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Fig. 4. Optimized entanglement at different a’s for the two different processes: by ground
state population damping (a) and (b), and by two-photon detuning (c) and (d). Black dotted,
green dashed-dotted, blue solid, and red dashed lines represnt ’s values of 100, 300,
1000, and 3000, respectively. (a) The minimum value of entanglement quantity obtained
by scanning all input Rabi frequencies, Vop . as a function of ground state population
damping I'15. (b) The minimum value of entanglement quantity obtained by scanning all
ground state damping, Vopiry,, as a function of input Rabi frequency Q.. (¢) The minimum
entanglement quantity obtained by scanning all input Rabi frequencies, Vopt,q, , as a function
of two-photon detuning . (d) The minimum entanglement quantity obtained by scanning
all two-photon detunings, Vopt,s, as a function of input Rabi frequency Q.. Q) = 0.1€ is
used in all the figures.
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densities, it shows that the entanglement values do not have significant changes . Similar tendency
has been found in V. r,,, which is insensitive to . and «, see Fig. 4(b). The entanglement
values are around 3.7, just a little smaller than the upper bound value 4. In contrast, Figs. 4(c)
and 4(d) illustrate Vyp.0. and Vips as the functions of ¢ and €., respectively. The values of
V’s are also insensitive to the corresponding variables, but change significantly with a’s. The
black dotted, green dashed-dotted, blue solid, and red dashed lines represent the values of @’s
given by 100, 300, 1000, and 3000, respectively. From Figs. 4(c) and (d) , it manifests that
the entanglement degree increases when optical density is increasing. The optical density can
enhance the output entanglement in the two-photon detuning scheme.

Since the entanglement degree is much larger by using two-photon detuning scheme, we focus
on the results of Figs. 4(c) and (d). We can see that the value of optimum entanglement, V0,
and Vo6, under a given optical density « is almost a constant.

In Fig. 5, we have numerically plotted the contour plot of entanglement quantity V with respect
to Q,, and ¢ under three different Q.’s, which are 0.85T", 1.2I', and 1.7T’, respectively. As shown
in the three plots, we can see that the values of V are the same, but with different ranges of 2,
and 6. The positions of Q, corresponding to the same values of V is clearly proportional to
Q.. Similarly, the positions of § is proportional to Q2. Tt implies that there exists a relationship
among entanglement quantity V and the ratios of ,/Q. and ¢/ Q2. The deeper understanding to
the results in Fig. 5 will be discussed in Sec. IV.
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Fig. 5. Contour plot of entanglement quantity V versus €, and ¢ under different Q.’s: (a)
Q. =0.85T, (b) Q. = 1.2I', and (c) Q. = 1.7T". For the three plots, optical density is set to
be 1,000. Please note that the ranges of €, and ¢ are different in the three plots.

4. Discussions

Generation of CV quantum entanglement between probe and coupling fields using atomic EIT
system is the key point of this paper. We have proposed a theoretical model in Sec. II, deriving
equations of motion for atomic and field operators, and showing the numerical simulation results
in Sec.IIL. In order to understand the physics behind these results thoroughly, in this section we
study the system analytically from the framework given in Sec. II. Using Egs. (2)—(12), one can
obtain

&a,, = P1dy + Q1) + Riac + S1af + iy, (16)
&ac = P2dy + 02l + Rodi + SHa) + e, 17)

where { = z/L is the dimensionless length, and 7, and i are the corresponding Langevin noise
operators. P;, Q;, R;, and S; (i = 1,2) are the coefficients. For two-photon detuning scheme, i.e.,
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I'12 = 0, we have

P, ~ iae - 2a€’, Q) ~ —2iaer’e®Ke,

Ry ~ —icere®? | S| ~ —iaere™®?,

Py =~ —icere K¢ | 0y ~ —jaere®?,

Ry ~ iaer’ , Sy = 2iaer2,

(18)

where r = [Q,/Q.|, which is much smaller than 1 under EIT condition i.e., r << 1. We also have
e=To/ Q% and K = ae, where the latter one is the extra phase from probe field. In our analytical
study, we assume that the amplitudes of probe and coupling fields are unchanged. It means that r
is a constant. Moreover, we don not consider the phase of coupling field because the phase change
is very small. Thus, Q. is real in our case. On the contrary, we have to take the probe field phase
into account. The phase of probe field is @e, which can be caught from the phase term K in
coefficients shown in Eq. (18). The phase term can be eliminated by transforming field operators
into a new rotating frame by defining O — Oe’*¢, where O represents ap, al, 7, and ﬁ;

Now we turn to consider the entanglement between probe and coupling fields. From Eq. (18),
it is clearly to see that the terms of R; and S| link coupling field operators (a., aji) and probe
field operators (&, a},); while P, and O, make the correlation between probe field operators and
coupling field operators. On the other hand, the coefficients of P;, Q;, R», and S, correspond
to the self-interaction processes for each field. Let’s discuss the physical meaning of these
coefficients. First, if there only exists the coefficients of S; and Q,, we can obtain an ideal
entangled state, which is coming from two-mode squeezed state formed by &, and a., and the
output entanglement is given as V = 4e251¢ where |S;| = |Q2] = S. Second, the physics
of the terms of R; and P; is the cross-phase coupling, which can’t produce entanglement at
output. Then, when we only consider the coefficients of Q; and S, which correspond to the
single-mode squeezing processes, we can obtain the two independent squeezed lights, for which
the entanglement is given by V = 4 cosh(2|Q|{). Finally, the coefficients of P and R, are
related to self-phase or damping/amplification processes, which also do not have the abilities to
produce entanglement.

In order to obtain the analytical expression for entanglement, we consider the coefficients
coming from the 0™ and 1% order terms of r, i.e., P;, Ry, S, P2, and 0», as well as the Langvin
noise contributions from 7, and /.. We yield a form as follows.

iy B o
1+ﬂ2(e +21 ])—Z,u(] e )]’ (19)

V=4
! 22 1

in which u = aer, and 1 = 2a€? is the damping of probe field. When A — 0, the main
contributions are coming from R, Si, P>, and O, resulting in the entanglement given by
Vi=4(1+ 2u® 2p), which only depends on y. It implies that Vieqt = 2 when p = 1/2, which
means the entanglement degree is independent of r as long as the condition u = 1/2. It is quite
different from the case of the entanglement by two-mode squeezing, which can approach to an
ideal entangled state as y — oo.

According to Fig. 5, we can plot the entanglement quantity V with respect to r and €. After
plotting with the new variables, we can find that the three plots of Figs. 5(a)-(c) correspond to
the same result shown in Fig. 6. It implies that V depends only on two independent parameters
of e and r, i.e., as long as € and r are given. Any combination of &, Q., and €, results in the
same value of V. One can clearly see that in the plot the condition of u = 1/2, represented by the
dashed line of a hyperbolic function, crosses the minimum or optimum value of V.

However, u = 1/2 is not a sufficient condition to find the optimum entanglement, and Eq. (19)
can’t explain our results completely. The main reason for this problem is that the higher order
terms of » become important when r is getting large. Thus, we have to consider the terms of
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Fig. 6. Contour plot of entanglement quantity V versus r and €. The optical density is given
by a = 1,000. The black dashed curve is plotted with the condition of u = aer = 1/2.

Q1 and S,, which are related to the single-mode squeezing coefficient. According to Eq. (15),
one can see that the entanglement degree depends on the average photon numbers of probe
and coupling fields. For single-mode squeezed state of probe and coupling, the average photon
numbers are sinh?(|Q;]¢) and sinh?(|S»|¢) rather than 0. As a reason, we can naively modify
output entanglement by considering the external photon numbers coming from the single-mode
squeezing terms, but without introducing the corresponding extra noises. Thus it reads as

V =~ V; + 8sinh? 2Qur). (20)

For the case 1 < 1, we can expand V| to O(1). With these approximations, we can obtain a
closed form of output entanglement shown below:

Vv~ 4(1 + 22 —2;4) +apd (1= 4u/3) + 8(2ur). Q1)

From Eq. (21), we can obtain the optimum entanglement by substituting u = 1/2, and express
V as the function of a, €, and r by using A = 2ae?. Tt will be

4
Vopt = 2+ gaé + 812, (22)

According to Eq. (22), we can find the best entanglement by using Lagrangian multiply with
the constraint condition given by u = 1/2. It shows that

€opt = (3/2) /474, (23)

Toest = (24a) ™14, (24)

From Eqgs. (23) and (24), we can see that &, and ryes; are constants when « is given. Under
these conditions, the best entanglement value is

Viest = 2 + (32/3)7 12071/, (25)

which only depends on optical density . The result reflects the fact that the value of log,,(V —2)
would decrease 0.5 with the increment of an order of magnitude in optical density. It quantitatively
matches the results shown in Figs. 4(c) and (d) .

In comparison with the entanglement generation from ground-state dephasing or population
decay, we have seen that the scheme of two-photon detuning is more efficient from Fig. 4.
The physics behind the result can be understood as follows. For the scheme of ground-state
dephasing or population decay, the entanglement coefficients are |S1| = |Q»| = asre™*¢¢, where
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£ = I'T12/(2|Q.|?). Since the probe field suffers strong dissipation from I'j», the entanglement
coefficient decays exponentially. However, the depletion rate of probe field due to two-photon
detuning is exp (—Za/ezg“ ), which is much smaller than that of probe field due to ground-state

dephasing or poluation decay, and the entanglement degree |S;| = |Q»| = aere 7€’ ~ ger.
The result implies that the entanglement degree can be enhanced by optical density in two-photon
detuning scheme. In contrast, the entanglement degree in ground-state dephasing or population
decay scheme is insensitive to optical density, as shown in Figs. 4(a) and (b).

The existence of the optimum ratio 7 is coming from the competition between dissipation
and single-mode squeezing. From Eq. (22), we can rewrite the optimum entanglement as
Vopt = 2 + (3a)™'772 + 872, from which it is clearly to see that the second and the third terms
are attributed to fluctuation noise and single-mode squeezing term, respectively. When r is
small, the extra noise dominates the output entanglement value, while the effect of single-mode
squeezing term becomes important when r is getting larger. As a result, there exists an optimum
value of r to minimize entanglement value V. On the other hand, for given optical density «, the
optimum entanglement is given by Vop = 2 + (4a/3)e” + (2/a?)e~2. It implies that there exists
a best entanglement when the sum of extra noise from dissipation and single-mode squeezing is
minimized. Generally, two-mode squeezing (S;, (>) and the cross-coupling terms (R, P») limit
the best entanglement to be 2, which is 50% of ideal entangled state. The presence of the probe
dissipation Py will introduce extra noise fluctuation which is proportional to 72, and degrade the
output entanglement in the region of r < 1. In contrast, the single-mode squeezing, O, and S,,
will degrade the entanglement degree with extra term being proportional to 72, which destroys
entanglement when r is getting larger. Similarly, we also have optimum € from the condition of
u = 1/2. As aresult, we can find the best strength ratio r and detuning-coupling field ratio € to
minimize the output entanglement.

5. Conclusion

In the present work, we have discussed the generation of quantum entanglement between probe
and coupling fields under EIT condition. We compare the entanglement degree arising from
two different mechanisms, which are ground-state relaxation rate and two-photon detuning.
Our study has identified that it is more efficient to obtain higher output entanglement degree
by introducing two-photon detuning. Furthermore, we have numerically studied the influence
of the EIT parameters, which are two-photon detuning, field Rabi frequencies, and optical
density to entanglement degree. Also, the conditions of the corresponding parameters for
obtaining the optimal entanglement have been found from theoretical analysis. It shows that
the two-mode squeezing and cross-coupling terms give us a constraint for the parameters to
obtain the best entanglement, i.e. u = 1/2. The noise fluctuation from probe field dissipation
and the single-mode squeezing from probe and coupling fields will reduce the entanglement
degree. The optimum condition of 7 and € for the best entanglement have been found. The study
contributes to our understanding of the origin of entanglement induced by atom-field interaction
in EIT system, as well as a deeper connection between quantum coherence and entanglement.
The work can be further extended to more complicated atomic systems, which have possibilities
to produce higher entanglement degree, conducing the progresses in the development of CV
quantum information sciences.

Appendix

In this Appendix, we will derive the equations of motion for quantum fluctuations of atomic
operators given by Egs. (2)—(10) as well as the field fluctuations given in Egs. (11) and (12).
By using the mean-field approximation, we can decompose an operator into two parts, which
are mean-field part and the corresponding quantum fluctuation part, and one can obtain linear
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equations for fluctuation operators by ignoring the higher-order fluctuation terms. In the following,
we have shown the linearized equations of atomic fluctuation operators.
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where §,,, = Sj,ﬂ, u,v € 1,2,3. Since we are interested in the steady-state solution for output
field operators, we can set the time derivative to be zero. Thus, we can express Eqs. (27)—(34)
in the matrix form as Mj y + Mz u + r = 0, where yT = (831,532,521, 811, 822, 833, 8§12, 523, 513)
gives the fluctuations of atomic operators, al = (&p, &;, ac, &Z) denotes the fluctuations of field

operators, and rl = (F31,ng,F21,Fll,ﬁzz,ﬁgg,ﬁn,ﬁg,f?m) is the corresponding Langevin
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noise operators, respectively. The matrices M and Mj are 9 by 9 and 9 by 4 matrix. We have

shown the matrix expression as follows.

. Q Q Q,
—¥i3 0 —17 —17 0 17 0 0 0
. QL Q Q,
(:2 —¥33 0 0 —i > i > —17 g(;* 0
c ~s% TP
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0 1073 —i03] 0
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in which y13 = I'/2 - iA,, 723 = (U +T'12)/2 = iA., and 12 = (['12/2 + y,) — i6. The
atomic fluctuation operators can be easily expressed in terms of filed operators by solving
y = —Mf (Mza +r).

On the other hand, the field fluctuation equations under steady-state regime are given by

0o, (Ta),
a—évap —l(zg)m, 37
o . A(Ta) .
a—gac —Z(E)Szg). (38)

where ¢ = z/L, which is the normalized distance.
The source terms on right-hand side coming from the atomic coherence operators, which

can be directly replaced by field fluctuation operators, i.e. 513 = 313 (&p,&;,&c,&z), and
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$23 = 823 (&p, &;, ac, aj). The general expressions of 513 and §,3 are given as

$13 = Ay, + Bty + Cuite + Dyt + fis, (39)
$23 = Aol + Boith + Caite + Dail, + fos. (40)

where fi3 and f>3 are the effective Langevin noise operator from Langevin noise operators £ w’S
given in Egs. (27)—(34).
The compact form is given as follows.

0
6—53 =Ca+N 41)

In which aT = (Ezp, a},, ac, &I), and the two matrices of C and N have the explicit form as

A By C D Pr 01 R S
B R e B R I R
2 A B G D P, O R &
5 4 0 G e oS R
Ta /. A N T
N=l¥(fl37_fr3af23a_f;3 ) - 43)

The correlations between two field fluctuation operators can be calculated from Eq. (41). It is
straightforwardly to have the form as follows.

9 i
a—fS =CS+SC' +Z. (44)

Here, S = (aaT>, and the matrix Z shows the correlations of Langevin noise operators, denoted

(NNT). That is

Z = (NN') = %“ (V@VT) : 45)

Here, we have to consider the correlations of any two Langevin noise operators, i.e., (¥ ,,f",) =
D,y ¢/(NL), in which D,,,, is the diffusion coefficient obtained from general Einstein relation.
By solving Eq. (44), one can calculate the entanglement degree based on Eq. (15) with the matrix
elements of S:

V=4(1+82n+84-2[S1l). (46)
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