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Symmetry-breaking instabilities of generalized
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Elliptical solitons in 2D nonlinear Schédinger equations are studied numerically with a more-generalized
formulation. New families of solitons, vortices, and soliton rings with elliptical symmetry are found and in-
vestigated. With a suitable symmetry-breaking parameter, we show that perturbed elliptical solitons tend to
move transversely owing to the existences of dipole excitation modes, which are totally suppressed in circu-
larly symmetric solitons. Furthermore, by numerical evolutions we demonstrate that elliptical vortices and
soliton rings collapse into a pair of stripes and clusters, respectively, revealing the experimental observa-
tions in the literature. © 2008 Optical Society of America

OCIS codes: 190.3270, 190.4420, 190.6135.

Symmetry-breaking instabilities residing in a nonlin-
ear system govern the formation of solitary waves in
various areas of physics and manifest the nature of
most nonlinear wave systems. One example is the
transverse instabilities of spatial optical solitons in
nonlinear Kerr media [1], associated with the growth
of transverse modulations of quasi-one-dimensional
bright and dark soliton stripes for both focusing [2]
and defocusing [3] nonlinearities. In general, a 2D
optical soliton system is modulationally unstable [4].
For optical solitons in silica fibers, the modulation in-
stabilities were studied for different radial dimen-
sions of the fiber core [5]. Then, circularly symmetric
vortices are investigated by their azimuthal instabili-
ties for both Kerr [6] and saturable nonlinearities
[7,8]. In particular, this kind of symmetry-breaking
instability turns a circular soliton to collapse and vor-
tices to shrink or become soliton clusters, depending
on the vortice power and the saturation power [8].
Elliptical symmetry, in contrast to the degenerated
circular one, is more generalized and flexible in the
real world, where perfect circular symmetry is rarely
achieved. Optical waves within elliptical shapes are
obtained in a laser cavity with a special designed cav-
ity [9] that supports exact cavity modes as a Ince—
Gaussian mode rather than a typical Hermite—
Gaussian mode. Recently, elliptical solitons are
proposed in strong nonlocal media [10,11], a fact that
supports similar solutions, such as linear Ince—
Gaussian beams [9]. Experimental observations of el-
liptical solitons are also reported not only in noncon-
ventionally biased photorefractive crystals [12] but
also in nonlinear media with thermal-induced nonlo-
cality [13]. Here we further study solitons in Kerr
nonlinear media with a more-generalized formula-
tion and analyze the corresponding modulation insta-
bilities for families of elliptical solitons, soliton rings,
and vortices. In additional to radial symmetric
modes, we show that the dipole excitation mode be-
comes a dominant component in the elliptical modu-
lation instability spectrum and tends to move ellipti-
cal solitons transversely, instead of circularly.
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Evolution of elliptical shaped soliton-rings and vorti-
ces reveals interesting nonlinear dynamics and
shows the evidence that elliptical solitary waves play
an significant transition between Laguerre and
Hermite soliton clusters [14].

We consider the propagation of an optical beam in
a Kerr nonlinear medium described by the normal-
ized 2D nonlinear Schriodinger equation (NLS) in el-
liptical coordinates (u,60,z) [9], iV /dz+1/2A ¥
+|V2¥=0, where u=0 and AC[0,27] are radial
and angular elliptical variables, ie., A,
=1/1%(cosh?(u) —cos?())[ 2/ du? + */ 9], with the
slowly varying electric-field envelope function, ¥
=W(u,0;z), and the semifocal separation of elliptical
cylinder coordinate, [. If [— 0, the elliptical coordi-
nate is reduced to a cylindrical symmetric one; while
[ — o, the elliptical coordinate turns into a Cartesian
one. We employ separation of variables and a varia-
tional approach [6,15] to obtain the soliton solution
with the ansatz V=U(u)V(6)exp(iBz), where U(u) is
a localized radial function subjected to U()=0 and
V(6)=V(27+ 0) is an angular function. A set of nonlin-
ear equations can be derived by minimizing the aver-
aged Lagrangian of NLS as

f2(0) a | f3(0) vV
—[ﬁf1(0)+7]v+59 2 28 +f4(O|VPV =0,
(1)
8a2(p) d | gs(p) dU )
—[ﬁgl(ﬂ)+ 2 ] +a 5 o +24(w|UPPU
=0, (2)

where g;(w), fi(6),i1=1,2,3,4 are functions of integral
parameters depending on the selection of solution
pair, U(u) and V(#6). By solving Egs. (1) and (2), a self-
consistent solution of elliptical solitons can be ob-
tained. Figures 1(a) and 1(b) show the radial function
U and the angular function V for a fundamental soli-
ton in an elliptical coordinate with [/=0.05 (solid
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Fig. 1. (Color online) (a) Radial function U(u), (b) angular
function V(6), and (c) bifurcation curves of elliptical soli-
tons at B=0.5 for different semifocal separations: /=0.05
(solid curve), [=0.7 (dashed curve), and [/=1.4 (dotted
curve). The corresponding wave functions ¥ are given
separately in (d) for [ = (d) 0.05, (e) 0.7, and (f) 1.4.

curve), [=0.7 (dashed curve), and [=1.4 (dotted
curve) at $=0.5. The corresponding soliton solutions
¥ are plotted in Figs. 1(d)-1(f). Clearly, it is seen that
a larger semifocal separation [ makes the radial func-
tion more localized and strengthens the modulation
depth of the angular function, with the peak value
situated in #=7/2 and 37/2. Additionally, the bifur-
cation curves illustrated in Fig. 1(c) also demonstrate
that elliptical solitons increase their power P as the
semifocal separation increases. It is also seen that
when [ approaches zero, solitons degenerate to
circular-symmetric ground state, which is located at
the stability border of the 2D NLS [4]; the elliptical
ones are excited states that are expected to be un-
stable.

The modulation instability of elliptical solitons is
investigated through standard linear-stability analy-
sis, with the introduction of perturbed solution in the
form of W=eP[U(u)+eAU(u;2)|[V(0)+eAV(1;2)],
where U and V are the stationary solutions of Egs.
(1) and (2), e< 1 is a small perturbation parameter,
and AU(w;z) and AV(6;z) are perturbed envelope
functions.

In Fig. 2, we define the elliptical modulation insta-
bilities as the field growth rate with respect to the
semifocal separations /, which is related to the eccen-
tricity of the soliton solution by the preconditions
[16]. For a fixed wave vector, 8=0.5, we show that the
modulation instabilities of a 2D elliptical soliton are
excited by three unstable eigenmodes. These excita-
tion modes are identified as a radial symmetric and
two dipole modes, corresponding to solid (A), dashed
(B), and dashed-dotted (C) curves, respectively. From
the modulation instability spectrum, we find that one
can suppress the instability of radial symmetric
eigenmodes when preconditioned with a cutoff semi-
focal separation at /=1.7 and can distinguish the re-
gion where radial modes or dipole modes become
dominant. Moreover, elliptical solitons perturbed by
unstable dipole noise are driven to the direction in
which the dipoles are aligned as it evolves and even-
tually collapse at the location apart from the origin,
as shown in Figs. 2(b)-2(e). At /=1.2, simultaneous
perturbation of two unstable modes causes the soli-
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Fig. 2. (Color online) (a) Modulation instabilities of ellip-
tical solitons for different semifocal separations, [. A, B,
and C indicate three different eigenfunctions that are
shown in the second row with /=1.3. Snapshots of propaga-
tion of the fundamental elliptical soliton simulated by the
NLS are shown at z= (b) 0, (¢) 0.5, (d) 2, and (e) 10, with the
semifocal separation [=1.7.

ton to collapse and shortens the transverse displace-
ment.

On the basis of the generalized method developed
in this work, another two families found in these el-
liptically preconditioned equations [Eqgs.(1) and (2)]
are a vortex solution that completes a 27 phase
change in the azimuthal direction and a ringlike soli-
ton solution with an uniform azimuthal phase. In
Figs. 3(a) and 3(b) we show the radial and angular
functions of elliptical vortices for different semifocal
separations. Similar to the fundamental elliptical
solitons, the radial functions are more localized, and
the corresponding angular function experiences a
stronger modulation depth as [/ increases. Yet the ra-
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Fig. 3. (Color online) (a) Radial function U(ux) and (b) an-
gular function V(6) (black for envelopes; the diagonal line is
for phases) of an elliptical vortice at 8=0.5 for different
semifocal separations: /=1 (solid curve), [=5 (dashed
curve), and /=30 (dotted curve); evolution of elliptical vor-
tices for (c)—(f) /=1 and (g)-(i) [=30 at the corresponding
distances z=0, 1, 4, and 6.7.
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Fig. 4. (Color online) Radial function U(u) (a) and angular
function V() (b) of elliptical soliton rings at f=0.5 are
shown in solid, dashed, and dotted curves for /=1, 5, and 7,
respectively. Evolution of elliptical soliton rings given /=1
[(e)-(D], I=5 [(g)—(1)], and [=7 [(j)—(n)] in a window of size
40 % 40 are plotted at z=0, 1.5, 3, and 4.5.

dial functions are pushed to w~0, and the corre-
sponding angular function has its pinnacles at =0
and 7.

To see the nonlinear dynamics and modulation in-
stability of elliptical vortices, we study numerically
the evolution of elliptical vortices described by NLS.
Figures 3(c)-3(i) compare the modulation instability
of elliptical vortices with a fixed propagation constant
B=0.5 but different semifocal separations (/=1 and
[=30). We observe that at z=4, Fig. 3(i), the strong
elliptical instability tears the vortex with /=30 into
two curved stripes, similar to the “two half-moons”
observed experimentally by Anastassiou et al. [8],
who attributed the phenomenon to the anisotropy of
photorefractive crystal. Our work further reveals
that the phenomenon is strongly related to the geom-
etry of prepared vortices, even in perfect material
isotropy. In reality, it should be easier to generate el-
liptical vortices, owing to imperfection induced natu-
rally by symmetry breakings. Then, when this ellip-
tical vortex comes to z=6.7, Fig. 3(j), clusters riding
on each stripe are formed as a result of transverse in-
stability [2]. In contrast, an elliptical vortex with [
=1 stays stable over z=4, Fig. 3(e), and evolves into
clusters at z=6.7, Fig. 3(f) [7,8]. Although both ellip-
tical vortices with /=1 and /=30 end up with soliton
clusters locating at nodal points of the Ince—~Gaussian
mode [9,10], their geometric arrangements are be-
tween two limits of soliton clusters; i.e., with /=1 the
elliptical vortex transforms into Laguerre soliton
clusters, and with /=30 it becomes Hermite soliton
clusters. Consequently, these facts support the theory
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that the elliptical solitary wave is a more-general
family in nonlinear media.

Elliptical soliton rings are illustrated by their ra-
dial and angular functions in Figs. 4(a) and 4(b); the
angular functions are modulated by two frequencies
in 6 and behave like soliton clusters riding on the el-
liptical orbit. By comparing the evolution of elliptical
soliton rings with /=1 [Figs. 4(c)-4()], [=5 [Figs.
4(g)-4()], and [="7 [Figs. 4(k)—4(n)], we discover that
the larger semifocal separation deteriorates the ellip-
tical soliton ring then brings it fast to soliton clusters
with an Ince-mode topology, and finally into collapse.

In short, we find families of elliptical soliton, soli-
ton ring, and vortice solutions with a more-general
formulation and investigate their modulation insta-
bilities. For elliptical solitons, we demonstrate that
by introducing an elliptical coordinate, the instability
of radial symmetric eigenmodes is suppressed, and
higher excitations, such as dipole modes, tend to
move elliptical solitons transversely and become
dominant. For elliptical-shaped vortices and soliton
rings, we show by evolutions that the semifocal sepa-
ration presides in the formation of soliton clusters as
a consequence of transverse instability, which even-
tually leads to collapse of vortices and soliton rings.
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