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We analyze stability of the TM polarized optical solitons and nonlinear guided waves localized at a metal-
dielectric interface. We demonstrate, both analytically and numerically, that the spatial solitons can expe-
rience vectorial transverse modulational instability that leads to the generation of arrays of two-dimensional
TM polarized self-trapped localized beams. In a sharp contrast, we reveal that the transverse instability is
completely eliminated for nonlinear surface plasmons. © 2009 Optical Society of America

OCIS codes: 190.3270, 190.4420, 190.6135.

Nonlinearity-induced instabilities are observed in
different physical systems, and they provide the most
dramatic manifestation of strongly nonlinear effects.
Transverse (or symmetry breaking) instabilities of
solitary waves were predicted theoretically a long
time ago [1], but only recently such instabilities were
observed experimentally for different types of spatial
optical solitons [2—4].

When several components of an optical beam are
coupled together, they form a vector soliton [3]. The
most natural example of a vector soliton is the
TM-polarized spatial soliton described by a system of
coupled nonlinear equations for two field components
[5-7]. The interest to the TM polarized nonlinear
waves has been renewed recently in connection with
the research on subwavelength localization in nano-
photonics associated with the light localization in the
form of surface plasmon polaritons [8,9].

In this Letter, we study the transverse instability
of the TM polarized spatial optical solitons and dem-
onstrate, both analytically and numerically, that the
spatial solitons can experience vectorial transverse
modulational instability observed for both the compo-
nents; this instability leads to the generation of ar-
rays of two-dimensional TM polarized self-trapped
beams. In addition, we address an important ques-
tion of stability of nonlinear guided waves localized
at an interface between a metal and a nonlinear
Kerr-like dielectric medium. In a sharp contrast to
TM solitons, we reveal that the transverse instability
of nonlinear plasmons is completely eliminated.

First, we consider the propagation of TM polarized
light in a nonlinear dielectric. The governing Max-
well’s equations for the vector field in a nonlinear ma-
terial can be expressed in the well-known vectorial
form [5,7]

[V2+k%n%]E = - V[E -V In n?]. (1)
To find spatially localized waves in a nonlinear
medium, we present the electrical and magnetic

fields in the form, E=[e,(x)%+e,(x)2]exp(iBz) and H
=h, exp(iBz), where 3 is the soliton propagation con-
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stant. Without loss of generality, we assume (e,,e,)
=(u,iv) and rewrite the nonlinear equations in the

form
d2 d/ dlnn?
— +kni - lu=-—|u ,
dx? dx dx

d? d In n?
@+k2 2—B2 v=—/3u 5

dx 2

n?=n2+ alluf* + ),

(2)
where u and v are the fields polarized in the x and z
directions, respectively, both vanishing for |x|—c. k&
is the free-space wave number, and n is the scalar re-
fractive index of the nonlinear Kerr-like medium, as
in thermal- or electrostriction-type nonlinearities [5].

The two-component localized solutions of Eq. (2) for
the TM polarized vector soliton can be found numeri-
cally [5,6], and the results are summarized in Figs.
1(a) and 1(b). In Fig. 1(b), we show the power curves
for two polarizations u and v, where P,=/"_ |u|?dx
and P,=[7 |v|?dx.

To analyze the transverse instability of the TM
polarized solitons, we apply a standard linear stabil-
ity analysis [2]. We present the solutions in the form

E = [u0’07 - ivO]T exp (LBZ) + [AexyAey’Aez]T exp (LBZ)’
where u, and v, are the soliton components, and the
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Fig. 1. (a) Spatial TM soliton. Shown are the electric field

components u (solid curve) and v (dashed curve). (b) Partial
powers P, and P, of the electric field components.
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perturbations are described by the functions Ae;=
[e(pj+ig;)exp(iNz +ikyy)+&(p; +ig;)exp(-iNz~ikyy)], &
being a small parameter, and the subscripts are j
=x,y,z, respectively. Next, we rewrite the nonlinear
refractive index as n%=nj+a(le,*+le,|?+[e.|?) to in-
volve the y-polarized perturbations and substitute
the ansatz into Eq. (1) for TM polarized nonlinear
waves. In the first-order approximation in &, we ob-
tain a set of linearized equations for small perturba-
tions and solve numerically the corresponding eigen-
value problem.

The growth rate of the linear modes responsible for
the transverse instability of the TM solitons is shown
in Fig. 2 for several values of the soliton propagation
constant B. When the transverse modulations are
void, i.e., when k,=0, the amplitude growth rate of
the perturbed field vanishes, which implies that all
one-dimensional TM polarized vector solitons are
stable for the Kerr-like nonlinearity, similar to their
TE polarized scalar counterparts [3]. However, the
TM spatial solitons are unstable to transverse modu-
lations (k,>0), resulting in the formation of two-
dimensional array of self-trapped beams as illus-
trated later in Figs. 5(a) and 5(b). Moreover they can
induce the E, component, which changes their polar-
ization [5].

Nonlinear TM polarized guided waves propagating
along an interface separating a metal and nonlinear
Kerr-like dielectric have been studied more than 20
years ago [10-13], and they provide a nonlinear gen-
eralization of surface plasmon polaritons actively
studied these days in nanophotonics [8]. Neverthe-
less, the stability of such nonlinear plasmon modes
has never been addressed. The nonlinear plasmon
mode can be viewed as a TM polarized soliton propa-
gating along the interface between a metal and non-
linear dielectric. In this case, the transverse field
should be continuous across the interface. Using the
soliton solutions found above, we construct the solu-
tions for the nonlinear plasmons by employing a
matching procedure [10]. If the interface is at a aux-
iliary location, x=x, the equations for the TM waves
in a metal with the dielectric permittivity ey(w)
=¢[1-w?/(w?+iwl)] can be written in the form,
(d%/dx?+k2ey(w) - BAH,=0 for x<xy; and as Eq. (2),
for x>xy. By matching the fields at x=x, at '=0, we
calculate the dispersion relation for TM modes from
the continuity of the transverse components [11],

=
n

growth rate
I
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w
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Fig. 2. Spectrum of transverse instability for TM polar-
ized spatial soliton for three values of the propagation con-

stant: B=1.1, 1.3, and 1.5, respectively.
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[8% - ey(w)k?] 2 eun(xo)
Bey(w)

For a given set of propagation constant B8, and carrier
frequency o, this auxiliary location of the interface
can be uniquely determined if it exists. By the trans-
lation symmetry, one can move this auxiliary location
xo to the position where the physical interface re-
sides. Furthermore a continuum band of nonlinear
surface-guided modes can be expected. Figure 3
shows the dispersion of nonlinear surface plasmons
for different xy. Nonlinear surface modes are shown
in Fig. 4, where the power is defined as electrical
powers. Importantly, the soliton power is drastically
reduced owing to the metallic boundary. Although
higher-frequency TM solitons carry larger power in
nonlinear media, the nonlinear surface plasmons, on
the contrary, can only have lower power owing to
matching to the plasmonic resonance [13].

In the limit where B~kn,, we can derive approxi-
mate solutions for nonlinear plasmons. In this case,
the power ratio P,/P, is small, so that we solve the
first equation in Eq. (2) neglecting the field v. This
equation can then further be approximated by first-
order perturbation as u=e, exp(idBz), where e,
=[(282-2k*n3)(k%a;)1]V2sech([ B2~ k2n 3] 2x)exp(i Bz)
is the solution for the TE polarized spatial soliton [5]
and B is explicitly written in [5]. The associated
electric and magnetic fields can be obtained from
Maxwell’s equations. Applying this approximation to
the nonlinear plasmons, only for o <w, and x,>0 we
find solutions, which decays into the metal. Using the
approximate expressions for the fields, we derive the
approximate dispersion relation in the form (0 <w,)

u(xg) = v(x). 3)

® 1
— ~—— B2 k232 tanh(\/B% - k2n2
o T2y VB~ Fng tan (VB = k?ngxo),

which shows an accurate fit with numerical solutions
of Fig. 4 for small values of the propagation constant
B. We can categorize the surface polaritons as linear-
like (L), intermediate nonlinear (IN), and strong non-
linear (SN) as the shaded regions in the blown-up
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Fig. 3. Examples of the dispersion relation w(8) of nonlin-
ear surface plasmons calculated analytically for xq=0.1 ()
and xg=1 (A), and from direct numerical solutions x¢=0.1
(solid curve) and xy=1 (dashed curve), respectively. Param-
eters are k=1 and ny=1.
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Fig. 4. Nonlinear surface plasmon polaritons. Left, power
dependence of the plasmon modes versus g for different fre-
quencies ®=0.05 (solid curve), ®=0.1 (dashed curve) and
analytical solution for w=0.1 (dotted-dashed curve), respec-
tively. The inset is its blow up. Right, three examples of the
nonlinear plasmons presented by their field components e,
(dashed curve) and A, (solid curve), and marked as A, B,
and C on the power dependencies.

panel of Fig. 4 where nonlinear polaritons are distin-
guished by their field profile for E,. In the L band, all
three fields exhibit a exponential decay both into the
metal and nonlinear media as typical linear polari-
tons do [8]; in the IN band, the amplitude of the three
waves decreases into both sides of the interface;
moreover, in the SN band, the polariton is more non-
linear like, and its E, field has a peak in the nonlin-
ear dielectrics.

Now, we analyze the transverse instability of non-
linear plasmons. The dispersion relations resulting
from the matching conditions at the interface can
also be applied to more general equations including
small perturbation fields (p;,q;). In the analysis, we
neglect (p,,q,), since they are not only producing the
second-order effects, but also they cannot survive at
the interface owing to the dispersion relation [8]. To
matching the boundary conditions, we derive a very
similar dispersion relation. Our numerical analysis
demonstrates that the dispersion relations for small
perturbations cannot be satisfied because the fre-
quency for the perturbed field does not exist even for
finite values of I'. Therefore, this result indicates that
the perturbation field is scattered off the boundary,
and no modes are localized, which may grow and
cause instability to exist. As a result, we come to the
conclusion that the transverse instability of the TM
polarized vector solitons is completely eliminated by
the presence of a metal interface, so that the nonlin-
ear plasmons remain transversally stable.

Figures 5(a)-5(f) show the snapshots of the field
components H, and E, for the perturbed evolution of
both TM polarized spatial soliton and nonlinear plas-
mon polariton for z=0 and z=10, respectively. It is
clear that in the presence of a metallic boundary [see
Figs. 5(c)-5(f)], the transverse instability is elimi-
nated, and the perturbed fields cease to grow. We con-
firm this conclusion by analyzing more realistic case
of lossy metal, as shown in Figs. 5(e) and 5(f). The

the development of transverse modulations for the TM po-
larized vector soliton; [(c),(d)] propagation of a nonlinear
plasmon at a metal-dielectric interface, at I'=0; and [(e),(f)]
propagation of a nonlinear plasmon for I'=10"%. Shown are
the field components H, (left) and E, (right) at the input
(z=0) and after the propagation (z=10), in columns. The
propagation constant 8=1.1 (point A in Fig. 4).

surface mode becomes broader, as can be seen in
Figs. 5(e) and 5(f).

In conclusion, we have demonstrated, both analyti-
cally and numerically, that the transverse instability
observed for TM-polarized spatial solitons is com-
pletely eliminated for the nonlinear surface plasmons
localized at an interface between a lossy metal and
nonlinear dielectric.
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