Thresholdless crescent waves in an elliptical ring
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By introducing symmetry-breaking in geometry, we reveal the existence of thresholdless crescent waves, i.e., nonlinear
diffractionless modes pinged to the boundary of a curvature, in an elliptical ring. An effective nonlinear Schrédinger
equation along the azimuthal direction is derived by taking the transformation in the curvilinear coordinate of elliptical
symmetry, which illustrates the formation of trapping potentials (barriers) along the semi-major (minor) axis. Our
results demonstrate an alternative but efficient approach to access optical modes with a variety of inhomogeneous

potentials. © 2013 Optical Society of America
OCIS codes: 240.4350, 190.6135.

Crescent waves are localized modes pinged to a circular
boundary with a shape similar to a cresent moon [1]. To
form crescent waves, the original proposal is to extend
the concept of surface modes for electronic Tamm
states localized at the interface separating periodic crystal-
line lattice and homogeneous vacuum space [2]. With
the introduction of concentric rings, nonlinear surface
waves form at the edge of guiding structures, where an
abrupt termination of the periodic potential happens [3].
Direct observations of optical surface states have been
demonstrated in photonic lattice edges [4] and periodic
waveguide arrays [5]. With the introduction of metallic
structures, strongly confined plasmonic surface modes
can also exist at the termination of metal-dielectric meta-
materials [6-8], as the counterpart in electronic Shockley
states [9].

To generate crescent waves, a guiding potential in the
shape of a single ring is enough to support modes pinged
to the boundary of a curvature. Such self-trapped nonlin-
ear waves, bifurcating from the linear modes, exist above
a certain threshold power. In this Letter, we introduce
symmetry-breaking in geometry by analyzing crescent
waves in an elliptical ring, which can be realized experi-
mentally in a microcavity based on vertical cavity surface
emission lasers [10]. The formation power for crescent
waves along the semi-major axis of an elliptical ring is
found to be lower than that along the semi-minor axis.
By directly numerical simulations, we show that the
thresholdless crescent waves can be supported along
the semi-major axis when the ellipticity, the ratio between
the major and minor axes, is larger than a critical value.
Through the curvilinear coordinate transform, the corre-
sponding effective potential along the azimuthal direction
is derived, in which the minimum (maximum) values oc-
cur just at the semi-major (minor) axis. Without any coun-
terparts in the linear limit, the studies on crescent waves
not only provide a step to access optical modes with a
variety of microcavities but also serve as a platform for
other physical systems, such as Barchan sand dunes made
by a unidirectional flow of air.

We consider an optical beam with the complex ampli-

tude ¥, scaled to 1/,/ny/2n, with the linear and nonlinear
refractive indexes denoted by 7, and n,, respectively,
which is propagating along the normalized z axis in a
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Kerr-type nonlinear material and described by the
generalized nonlinear Schrédinger equation [11]
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where x and y are transverse coordinates, with the scaled
length normalized by 1/(nyk,) and the free space propaga-
tion constant of the wave denoted by k. The potential in
our consideration, V(x, ), is an elliptical ring described by
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with the depth of potential V,, and radial parameter > =
2?/a? + y?/b> shown in Fig. 1. Given the semi-major and
semi-minor axes, a and b, respectively, stationary
nonlinear solutions are found numerically by substituting
the ansatz W(x, y;2) = U(x,y) exp(ifz) into Eq. (1), for a
given propagation constant f.

Examples of found crescent waves, showing the
intensity profiles, |¥|?, are illustrated in Figs. 2(a) and
2(b), which are pinged to the boundary of a given ellip-
tical ring. Here, the ellipticity, defined as a/b = 1.8, is
chosen, such that x (y) axis corresponds to the major
(minor) axis. In contrast to a random localization in the
azimuthal direction for the case in a circularly symmetric

Fig. 1. (Color online) (a) Elliptical potential, V, and (b)
corresponding top-view used in the simulations, with the
semi-major axis ¢ = 1.8, semi-minor axis b = 1, and potential
depth V, = 10.
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Fig. 2. (Color online) Examples of the intensity profile for
crescent waves are shown along the (a) semi-minor and
(b) semi-major axes, corresponding to the markers A and B in
(c), respectively. (c) Formation power P versus propagation
constant S for crescent waves along the semi-minor (solid-line)
and semi-major (dashed-line) axes are shown in black, while the
crescent waves in the inscribed (dashed-line) and circumscribed
(solid-line) circles are shown in red, which bifurcate from the
corresponding symmetric donut-shaped modes (in blue).

annular ring [1,12], now the supported crescent waves in
an elliptical ring localize only along the minor and major
axes. Moreover, no localized solution is found other than
the minor and major axes. It can be seen clearly that
along the semi-minor axis, the supported crescent wave
has an elongated field distribution, almost extending to
more than half of the elliptical ring, while along the
semi-major axis, the supported one is strongly localized
with a narrow field distribution. More interestingly, the
required formation powers, defined as P = [ |¥|2dxdy,
are totally different for the crescent waves along the
semi-minor and semi-major axes, as shown in Fig. 2(c).

As known for the case in a circular ring, a certain
threshold power is needed for nonlinear surface modes
to be self-trapped at a random azimuthal orientation [12].
It is also shown in Fig. 2(c) that crescent waves in a
circular ring potential bifurcate from the corresponding
symmetric donut-shaped modes at some threshold
power, as the cases both for inscribed and circumscribed
circles shown in blue colors. In the scenario of an
elliptical ring, such a threshold power remains for the
crescent waves along the semi-minor axis [see the black
solid-line in Fig. 2(c)]. Yet along the semi-major axis, as
shown in the black dashed-line of Fig. 2(c), the supported
crescent waves are thresholdless. Since the threshold
power required for a crescent wave comes from its
bifurcation from a linear mode, for an elliptical ring,
there is no corresponding linear mode to match due to
a directly symmetry-breaking in geometry.

By varying the value of ellipticity, in Fig. 3, we show
the corresponding threshold power, Py, for crescent
waves along the x axis (dashed-line). In the case of
a/b =1, our elliptical ring is reduced into a circular
one, which recovers to the known results in the literature
[12]. When the value of ellipticity exceeds 1, the required
threshold power for the crescent waves along the
semi-major axis decreases. A thresholdless condition is
found for those crescent waves in the elliptical ring with
the ellipticity above 1.8. On the other side, when the
ellipticity goes below 1, the required threshold power
for the crescent waves along the same (x) axis increases.
In this case, the original x axis changes from a major axis

Fig. 3. Required threshold power, Py, to support crescent
waves along the y(solid-line)/x(dashed-line) axis for different

ellipticity, a/b.

to a minor one, and thresholdless crescent waves can
be found along the y axis, as shown in the solid-line of
Fig. 3. The stabilities of these crescent waves are testified
both with linear stability analyses by imposing perturba-
tions upon these crescent wave solutions and a direct
nonlinear wave propagation numerically. All the crescent
waves found are stable due to the confinement from ring
potentials. Without the nonlinearity, the crescent waves
in an elliptical ring get diffracted in the propagation
and eventually flow to the opposite side along the
semi-major/semi-minor axis, which is applicable for the
implementation of nonlinear switching devices.

To have a better understanding on the formation of
crescent waves in an elliptical ring, we transform the
nonlinear wave equation in Eq. (1) in the curvilinear co-
ordinate of elliptical symmetry [13], by introducing
new variables in the transverse directions, according
to the following relation: x =1 cosh(u)cos(d) and
y = [ sinh(i) sin(d). Then the corresponding Laplacian
operator in the new coordinate system can be written as
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where h = [y/cosh?(u) — cos?(d), with the semi-focal
distance, [, determined by a given ellipticity. With the
variational approach, a separable ansatz WY =
M(u)B(0) exp(ifz) is used as a solitary wave solution
for the NLSE with an elliptical ring [13,14]. The corre-
sponding Lagrangian density can be described as
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Supposing that the ring potential V is narrow in u
direction, one can take M (u) as a parameter to minimize
the averaged Lagrangian by integrating the Lagrange
density over u. From the averaged Lagragian, we can
reach a quasi-one-dimensional equation of motion for
the supported soliton wave solution ®@(6) in the azimuthal
direction, i.e.,
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Fig. 4. Effective diffraction coefficient D¢, effective nonli-
nearity g.¢, and effective potential Vg for the reduced quasi-
1D nonlinear equation along the azimuthal direction 0, with
the formula in Eq. (4). Dashed and dotted—dashed lines in each
panel indicate the cases of the inscribed and circumscribed
circles, with the radii 1 and 1.8, respectively.

where the corresponding effective diffraction coefficient
Dy, effective nonlinearity g.;, and effective potential
Vg are shown in Fig. 4, with the form given below:

Doy = f M Jeft = 416)0 thrldﬂ,
2f°° h|M|2d S5 hIM|Pdp
v I RIMRG 2 VM
e 2[5 | M Pdy

Here the ring potential V is taken from the same param-
eters in Fig. 1. From Fig. 4, it is clearly seen that the ef-
fective potential energy has maximum values at 0 = 72
and 372, which acts as a potential barrier and sets
the lower limit (threshold value) on the propagation
constant f§ for a localized state to be supported along
the semi-minor axis. Instead, the effective potential
shows minimum values along the semi-major axis,
6 = 0, z, and 2z, resulting in the reduction of formation
power for crescent wave in a trapping potential, where
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discontinuity occurs [15]. Compared to the circular
ring potentials, no matter the inscribed or circumscribed
circles, the effective diffraction coefficient, effective
nonlinearity and effective potentials are all constants
in the azimuthal directions.

In conclusion, by introducing a potential in shape of
elliptical rings, we reveal the existence of two different
families of crescent waves along the semi-major and
semi-minor axes. For the crescent wave along the
semi-major axis, its profile is strongly localized due to
the confinement induced by the symmetry-breaking in
geometry, resulting in the reduction of formation power
to self-support. Thresholdless crescent waves are found
numerically and illustrated analytically when the elliptic-
ity of the ring is larger than a critical value. Our studies
provide an interesting result for the understanding in the
interplay between symmetry-breaking phenomenon and
nonlinear modes.
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