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We investigate properties of dark solitons under competing nonlocal cubic–local quintic nonlinearities. Analytical
results, based on a variational approach and confirmed by direct numerical simulations, reveal the existence of a
unique dark soliton solutions with their width being independent of the degree of nonlocality, due to the competing
cubic–quintic nonlinearities. © 2013 Optical Society of America
OCIS codes: 260.5950, 190.0190.

In optical nonlocal nonlinear media, the nonlinear re-
sponse to the intensity of an optical beam in a particular
spatial location is determined by the integrated light in-
tensity (or power) within a certain neighborhood of this
location. It appears that nonlocality is an inherent prop-
erty in a variety of physical systems including plasmas,
optics, and condensed matter [1–4]. Nonlocality has a
profound impact on the propagation of spatial optical so-
litons, in particular, formation of dark solitons [5–8] and
their interactions [9,10]. Recently, nonlocal media with
competing nonlinearities have drawn much attention
[11,12]. Competing nonlinearities occur in systems where
few different physical processes contribute to the overall
nonlinear response. This is, e.g., the case of Bose
Einstein, condensate with simultaneous local and long
range bosonic interaction [13] or nematic liquid crystals
with comparable thermal and orientational nonlinearities
[11]. It has been shown that the competing nonlinearities
can stabilize many complex soliton structures, which are
otherwise unstable in a medium with one type of nonlo-
cal nonlinearity [14–18]. The competing nonlocal nonli-
nearities can also destabilize dark soliton states [19]
and enable coexistence of dark and bright spatial solitons
[12]. In a recent study, Tsoy [20] analyzed the effect of
local quintic contribution to nonlocal Kerr-like nonlinear-
ity on bright and dark solitons in the regime of weak non-
locality. Here, we investigate the effect of competing
nonlocal cubic and local quintic nonlinearities on the
properties of dark solitons for an arbitrary degree of
nonlocality.
We consider propagation of a dark soliton with the

slowly varying amplitude u�x; z� governed by the follow-
ing normalized nonlinear Schrödinger equation (NLS)
[8,15,21]:
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where R�x� is the normalized nonlocal response function,
and α2 is the relative strength of the local component of
the nonlinear response. The particular form of the

response function is determined by the physics of under-
lying processes responsible for the nonlinearity [22].
Beside optics, Eq. (1) may represent other nonlocal sys-
tems such as Tonks–Girardeau gas with dipolar interac-
tions [23] or Bose–Einstein condensate with contact and
long range interaction [24].

To analyze this nonlocal NLS equation, we first employ
the variational approach to Eq. (1), with the following
Lagrangian density corresponding to [8,21,25]:
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In general, for an arbitrary form of the response func-
tion R�x�, Eq. (1) can be solved only numerically. To
make the problem analytically tractable, without loss
of generality, we consider here a phenomenological mod-
el of the rectangular profile for the nonlocal response
function R�x�:

R�x� �
�

1
2σ ; −σ ≤ x ≤ σ;
0; otherwise

(3)

with σ defining the degree of nonlocality. To proceed
further we must postulate the form of the slowly varying
amplitude u�x; z�. We should emphasize that some pre-
vious works have obtained the exact dark solitons
solutions under local cubic and quintic competing non-
linearities [26,27]. However, in order to investigate
the dark solitons analytically for arbitrary degree of
nonlocality, we consider here the general ansatz of dark
solitons in the following form:

u�x; z� � B tanh�D�x − x0�� � iA (4)

with A2 � B2 � 1 and all the parameters A, B, D, and x0
assumed to be functions of the propagation variable z.
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Substituting Eqs. (3) and (4) into Eq. (2) and integrat-
ing over x, we can obtain the effective Lagrangian:
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From the corresponding Euler–Lagrangian equations,
we can get that B � const, and
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Equations (6) and (7) represent analytical relations for
the parameters of dark solitons in nonlocal media with
competing nonlinearities.When α2 � 0, we recover the
previous result describing dark nonlocal solitons in a
Kerr-like medium [8]. In the following, we consider black
soliton solutions, i.e., B ≈ 1 and A ≈ 0. We find that the
dark soliton solutions only exist when the nonlocal cubic
nonlinearity is self-defocusing. For the focusing nonlocal
cubic nonlinearity, we have numerically tested (not
shown) that the dark solitons will diffract quickly for
α2 > 0 or break into two kinks moving in opposite direc-
tions for α2 < 0 [20]. In Fig. 1(a), we show the soliton

width (∝ D−1) as a function of the degree of nonlocality
σ and the strength of local quintic nonlinearity α2.

Figure 1(b) shows examples of the dependence of so-
liton width on degree of nonlocality for different values
of α2. It can clearly be seen that the self-defocusing and
self-focusing quintic nonlinearities lead to the decrease
or increase of the soliton width, respectively. This is be-
cause the self-defocusing (self-focusing) nonlinearity
strengthens (weakens) the overall nonlinear response
and subsequently the self-trapping of dark solitons, re-
sulting in the increase (decrease) of the width. Moreover,
the beam width increases with σ for both α2 > 0
and α2 < 0.

For weak nonlocality (σ ≪ D−1), Eq. (6) yields:
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This relation is depicted in dashed lines of
Figs. 1(c) and 1(d). The competition between cubic and
quintic nonlinearities in this regime has been recently
studied in [20].

We see that for both α2 > 0 and α2 < 0 the soliton
width decreases with σ for a lower degree of nonlocality.
Only for a higher degree of nonlocality the soliton width
increases with σ. This effect is independent of the sign of
α2 and can be explained by the fact that a weak nonlo-
cality causes the nonlinear index change to advance to-
ward the regions with a lower light intensity. As a result,
the waveguide induced by the soliton becomes slightly
narrower, and so does the soliton [8]. The increase of
the width in the highly nonlocal limit comes from the fact
that the effective waveguide induced by solitons gets
wider for a large σ [28]. However, we notice here that
in the highly nonlocal regime, the soliton width strongly
depends on the sign of local quintic nonlinearity. Namely,
when the quintic nonlinearity is self-focusing (α2 > 0),
the width increases monotonically with the degree of
nonlocality σ; while the situation becomes very different
for the self-defocusing quintic nonlinearity (α2 < 0). In
the latter case, the soliton width increases first but then
tends to saturate for a large value of σ, as shown in the
inset of Fig. 1(d).

The reason for such drastically different behavior lies
in the competition between nonlocal Kerr and local quin-
tic nonlinearities. Both nonlinearities strongly affect the
soliton-induced waveguide, which determines the locali-
zation of the wave. In all cases, the nonlocality tends to
weaken the waveguide, resulting in a weaker localiza-
tion. When the quintic nonlinearity is self-focusing (non-
local Kerr and quintic terms are of opposite signs), its
effect is to decrease the contrast of the soliton-induced
waveguide even further. Consequently, the correspond-
ing soliton width keeps increasing. On the other hand,
when the quintic term is self-defocusing, it not only en-
hances the self-induced waveguide, but also counteract
the detrimental effect from the nonlocality. As a result,
the soliton width tends to saturate with σ.

In Fig. 2, we illustrate the effect of nonlocality and the
competition of nonlinearities on the propagation of a
single dark soliton in nonlocal cubic media with local
self-focusing and self-defocusing quintic nonlinearities,

Fig. 1. (Color online) Illustration of nonlocality and competing
nonlinearities on the width of dark soliton (D−1): (a) D−1 versus
σ and α2 and (b) D−1 versus σ for different values of α2. The
comparison between general nonlocal (solid-curve) and weakly
nonlocal (dashed-curve) solutions for (c) α2 � 0.1 and
(d) α2 � −0.1, respectively.
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respectively. We numerically integrate Eq. (1) with the
split step Fourier method. Variational soliton solutions
are used as the initial conditions. The left column in Fig. 2
represents results for the focusing quintic nonlinearity
(α2 > 0). In the limit of a weak nonlocality, for example
σ � 0.2 shown in Fig. 2(a), the soliton width does not
change; the nonlocality actually enhances soliton locali-
zation in this regime. For a higher degree of nonlocality,
Figs. 2(b)–2(d), the soliton width increases more than
that predicted by the variational solution. This is because
the ansatz we used to derive the analytical solution is no
longer adequate in the highly nonlocal regime [8]. Differ-
ent behavior is seen for a defocusing quintic nonlinearity,
as shown in Figs. 2(e)–2(h). Almost stationary propaga-
tions for well-localized solitons are observed thanks to
the beneficial influence from the local self-defocusing
quintic term, which counteracts the deleterious role of
nonlocality.
In summary, we have investigated analytically dark

solitons under competing nonlocal cubic–local quintic

nonlinearities for an arbitrary degree of nonlocality.
We show that a self-focusing quintic nonlinearity weak-
ens soliton localization, whereas a defocusing quintic
nonlinearity enhances soliton-induced index change
and counteracts the detrimental effect from a strong
nonlocality.
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Fig. 2. Dynamics of dark solitons with different degrees of
nonlocalities σ, for (a)–(d) focusing (α2 � 0.1, D−1 � 1.09);
and (e)–(h) defocusing (α2 � −1, D−1 � 0.65) quintic nonlinea-
rities. The insets show the corresponding soliton profiles at the
initial (bottom) and final (top) propagation distances.
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