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With the wave interferometric approach, we study how
extrinsically coherent waves excitation can dramatically al-
ter the overall scattering properties, resulting in tailoring
the energy assignment between radiation and dissipation,
as well as filtering multipolar resonances. As an illustration,
we consider cylindrical passive systems encountered by
arbitrary configurations of incident waves with various
illuminating directions, phases, and intensities. With for-
mulas for dissipation and radiation powers, we demonstrate
that a coherent superposition of incident waves extrinsically
interferes with the targeted channels in a desirable way.
Moreover, the interferometric results can be irrespective
of inherent system properties such as size, material, and
structure. Our approach paves a non-invasive solution to
manipulate wave–obstacle interaction at will. © 2019
Optical Society of America

https://doi.org/10.1364/OL.44.005310

Scattering coefficients contain the complete information in
light–obstacle interaction, including their multipolar resonan-
ces, energy distribution, radiation polarization, etc. [1–3]. A
standard way to achieve the targeted scattering is to seek proper
system configurations, with available materials embedded. For
example, in the subwavelength dimension, the magnetic meta-
atom [4–6], invisible cloaking [7,8], superdirective antenna [9],
perfect absorption object [10,11], Kerker scattering [12,13],
anapole [14], and superscattering [15] are demonstrated.

Recently, it was shown that under structured illumination,
inaccessible modes, which are not observed in conventional illu-
mination, could be excited [16]. With a designed beam excita-
tion, we can also suppress the dominant electric dipole (ED),
and enhance the weaker magnetic response, resulting in asymmet-
rical Kerker effects [17]. These local electromagnetic responses
offer opportunities for locating a sub-angstrom dimension in the
spatial variation of phase and intensity [18,19]. Now, in addition
to directly solving a given setting of structures and materials, the

wave interferometric mechanism could also lead to peculiar func-
tionalities for controlling light scattering.

Nevertheless, a generalized approach to provide details for
multipolar resonance control is still missing. In this Letter, we
derive formulas for the scattering and absorption powers in cylin-
drical systems, which are encountered by an arbitrary setting of
coherent waves excitation. In particular, we reveal an interfering
factor constituted by the linear superposition of excitation waves.
This interfering factor responds to the manipulation of overall
light scattering response, which not only modulates the resulting
scattering channels but also affects the scattering distribution and
dissipation energy outside and inside the scatterer, respectively.
As a demonstration, we implement a set of impinging coherent
waves to turn off or switch on the target channels, i.e., for both
scattering radiation and dissipation energy. Moreover, to achieve
the same scattering response, more than one solution can be
found, which allows us to have the same scattering consequences
by different irradiation settings. The results obtained by our
methodology pave a useful non-invasive way to manipulate light
scattering in desired ways.

Here, we consider a scatterer with cylindrical symmetry,
which is illuminated by a monochromatic TM wave, i.e., the
polarized magnetic field is along the z axis. The radius of our
cylindrical object is denoted as a. The time evolution of
the wave is chosen as e−iωt , with the angular frequency ω,
while the direction of propagation is on the x − y plane with
an angle Φ1 with respect to the x axis. With the partial wave
expansion, the corresponding magnetic field of our incident
wave can be decomposed into a coherent sum of cylindrical
waves, i.e., Jacobi–Anger expansion [20]: ~H �1�

in �θ, r� �
ẑ
P∞

n�−∞ ineinθ−inΦ1H 1Jn�k0r�. Here, Jn is a Bessel function,
k0 is the environmental wavenumber, and H 1 denotes the
complex amplitude of an incident magnetic wave. Then,
the associated scattered wave can be expressed as ~H �1�

scat �
ẑ
P∞

n�−∞ ineinθ−inΦ1H 1aTMn H �1�
n �k0r�, with the Hankel func-

tion of the first kind H �1�
n , representing the out-going wave,
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and the complex scattering coefficient aTMn , which is determined
by boundary conditions. In this convergent series, each term rep-
resents a unique scattering multipolar channel: n � 0 for the
magnetic dipole (MD), n � �1 for the ED, and n � �2 for
the electric quadrupole (EQ). The corresponding electric field
can be found by using the Maxwell–Ampére equation.

Now, for multiple coherent waves excitation, as illustrated
in Fig. 1(a), the resulting incident waves can be obtained based
on a linear superposition:

~Hin � ~H �1�
in � ~H �2�

in � � � � � ~H �N �
in

� ẑ
X∞
n�−∞

ineinθ
Xm�N

m�1

e−inΦmHm Jn�k0r�: (1)

Here, we assume that there are N incident waves. Each of them
has its own propagation direction Φm and the complex ampli-
tude Hm. As a consequence, the corresponding total scattering
wave has the following form:

~H scat � ~H �1�
scat � ~H �2�

scat � � � � � ~H �N �
scat

� ẑ
X∞
n�−∞

ineinθH inf
n aTMn H �1�

n �k0r�, (2)

with the introduction of an interfering factor involving all the
excitation, i.e.,

H inf
n �

Xm�N

m�1

e−inΦmHm: (3)

Note that this interfering factor also depends on the channel
index n, giving different effects on different channels. In the
following, we will illustrate that this interfering factor, H inf

n ,
plays a crucial role in the interferometric effect, resulting in tun-
ing the scattering field for outside and internal field for inside
the scatterer.

To obtain the total scattering and absorption powers, we
apply the Poynting power vectors, as well as asymptotic analy-
sis, to calculate the net power integrated over a closed area. The
corresponding absorption and scattering powers for multiple
coherent waves excitation can be found as

PTM
abs � −

2

k0

ffiffiffiffiffi
μ0
ϵ0

r Xn�∞

n�−∞
jH inf

n j2fRe�aTMn 	 � jaTMn j2g,

PTM
scat �

2

k0

ffiffiffiffiffi
μ0
ϵ0

r Xn�∞

n�−∞
jH inf

n j2jaTMn j2: (4)

Here, ϵ0 and μ0 are environmental permittivity and permeabil-
ity, respectively. We want to remark that, unlike the scenario
with conventional (single) illumination, the interfering factor
H inf

n provides an extrinsic way to control the scattering
states.

Without loss of generality, we consider a single-layer cylin-
der embedded by isotropic and homogeneous electromagnetic
material, as an example. Nevertheless, our methodology can be
easily applied to other structures. We note that in subwave-
length dimension k0a < 1, the primary channels to extrinsic
scattering are usually dominant from n � −2 to n � 2. In
the following, we therefore embed five beams to achieve the
results. As illustrated in Fig. 1(b), we denote the corresponding
complex amplitudes as �H 1,H 2,H 3,H 4,H 5	, illuminating
from different impinging angles, �Φ1,Φ2,Φ3,Φ4,Φ5	. The
corresponding interfering factor has the form H inf

n �
H 1e−inΦ1 �H 2e−inΦ2 �H 3e−inΦ3 �H 4e−inΦ4 �H 5e−inΦ5 . For
each excitation wave, there are three degrees of freedom: direc-
tion of illumination Φi, intensity jHij2, and its phase Arg�Hi 	.
Then, for the lowest five channels (from n � −2 to n � 2),
one can write down the incident waves configuration for inter-
fering factors in a matrix form:

Fig. 1. (a) Illustration of our scattering system with multiple coherent waves excitation. (b) Example of five incident TM waves to the scatterer. As
a comparison, a single wave excitation along x axis is shown in (c), with the normalized scattering powers, equivalent to jaTMn j2 (left panel) and the
intensity of total magnetic field (right panel). Results for multiple (five) coherent waves excitation is shown in (d), with the normalized scattering
powers (left panel) and the intensity of total magnetic field (right panel). Results from a different set of wave amplitudes, but with the same
arrangement of illumination directions, are shown in (e), revealing the n � −1 ED pattern. Note that all the field plots are depicted in units
of jH ref j2.
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2
6666664

ei2Φ1 ei2Φ2 ei2Φ3 ei2Φ4 ei2Φ5

eiΦ1 eiΦ2 eiΦ3 eiΦ4 eiΦ5

1 1 1 1 1

e−iΦ1 e−iΦ2 e−iΦ3 e−iΦ4 e−iΦ5

e−i2Φ1 e−i2Φ2 e−i2Φ3 e−i2Φ4 e−i2Φ5

3
7777775

2
6666664

H 1

H 2

H 3

H 4

H 5

3
7777775
�

2
6666664

H inf
−2

H inf
−1

H inf
0

H inf
1

H inf
2

3
7777775
:

(5)

The obtained matrix shown in Eq. (5) implies that when we
assign the desired interfering factors and illumination direc-
tions, the corresponding five incident waves �H 1,H 2,H 3,
H 4,H 5	 can be found.

As an illustration, as depicted in Fig. 1(b), we choose the
irradiation system with �Φ1 � 0,Φ2 � 2π∕5,Φ3 � 4π∕5,
Φ4 � 6π∕5,Φ5 � 8π∕5	. A lossless scatterer with ED
resonance, i.e., jaTM1 j � jaTM−1 j � 1, and with permittivity
ϵ1 � −1.156 and permeability μ1 � 1, is considered as our
studied system. The radius of the system is a � 0.05λ. As a
comparison to conventional (single) illumination, in Fig. 1(c),
we show the normalized scattering powers in each channel for
a single TM wave excitation along x axis. As one can see from
the left panel in Fig. 1(c), the dominant channels are aTM−1 and
aTM1 [21]. At the same time, the corresponding intensity of total
magnetic field in the right panel in Fig. 1(c) reflects the reso-
nant ED.

Now, with multiple coherent waves excitation, suppose we
want to eliminate all the lowest channels, i.e., n � −2 (EQ),
n � −1 (ED), n � 1 (ED), and n � 2 (EQ), but keep only
the n � 0 (MD) channel. Then, the extrinsic interfering
factors for each channel are chosen as �H inf

−2 � 0,H inf
−1 � 0,

H inf
1 � 0,H inf

2 � 0	 and H inf
0 � 1H ref . By solving Eq. (5),

the corresponding incident wave amplitudes are found:
�H 1 � 0.2H ref ,H 2 � 0.2H ref ,H 3 � 0.2H ref ,H 4 � 0.2H ref ,
H 5 � 0.2H ref 	.

The corresponding result for such a five-waves exci-
tation is revealed in the left panel in Fig. 1(d) for the nor-
malized scattering powers in each channel n, defined as
PTM
scat k0�2

ffiffiffiffiffiffiffiffiffiffiffi
μ0∕ϵ0

p
jH ref j2�−1. With the comparison to the sin-

gle excitation shown in Fig. 1(c), we can clearly see the zeros in
EQ and ED channels in the left panel in Fig. 1(d), as we apply
multiple excitations. Right now, the non-zero channel is the
n � 0 (MD) channel. With the intensity of total magnetic
field, shown in the right panel in Fig. 1(d), we have an MD

pattern with aTM0 inside the system. As we expect, by extrinsic
interferometric waves, one can desirably alter the scattering
states.

Moreover, to demonstrate the flexibility in controlling light
scattering by our proposed multiple coherent waves excitation,
in Fig. 1(e), we demonstrate another setting for the interfering
factors by choosing �H inf

−2 � 0,H inf
−1 � 1H ref ,H inf

0 � 0,
H inf

1 � 0,H inf
2 � 0	. Even with the same illumination

directions given in Fig. 1(b), this set of parameters gives us de-
structive interferences at n � −2, n � 0, n � 1, and n � 2
channels, but with the constructive interference at the
n � −1 channel. The corresponding incident wave ampli-
tudes are �H −2� 0.2H ref ,H −1��0.06−0.2i�H ref ,H 0�
�−0.16−0.12i�H ref ,H 1��−0.16�0.12i�H ref ,H 2��0.06�
0.2i�H ref 	. Here, the ED preserved in jaTM−1 j � 1 is displayed
in the corresponding intensity plot of the magnetic field.

It is known that the resulting scattering coefficient has a
symmetry property when one replaces n↔ − n. Nevertheless,
with a proper set of multiple waves excitation, the symmetry
breaking can be achieved as the incident amplitudes become
complex. As shown in Fig. 1(e), only a non-zero value is estab-
lished at the n � −1 channel.

Next, we consider the interferometric effect on partial ab-
sorption powers. As an illustration, we choose a larger scatterer
with the radius a � 0.2λ, but embedded by a lossy non-
magnetic material ϵ1 � −3� 0.3i. As shown in Fig. 2(a), by
a single excitation, we can see the multi-channel resonances ex-
cited in scattering and absorption powers. Intensity of the total
magnetic field is illustrated in the right panel in Fig. 2(a),
revealing the maximum strengths around the scatterer.
Now, we choose the interfering factors by �H inf

−2 � 0.1H ref ,
H inf

−1 � 0.5H ref ,H inf
0 � 0,H inf

1 � 0,H inf
2 � 0	, with the

same illumination configuration in Fig. 1(b), with the corre-
sponding incident wave amplitudes being �H −2 � 0.12H ref ,
H −1 � �0.014−0.11i�H ref ,H 0 � �−0.074−0.04i�H ref ,H 1 �
�−0.074�0.04i�H ref ,H 2 � �0.014�0.11i�H ref 	. In this
multiple excitation, our strategy is to turn off the channels
at n � 0 to n � 2 and to switch on n � −2 and n � −1 chan-
nels with different weightings. Interestingly, the consequence
of this interferometric illumination would lead to maximum
absorption occurring at the n � −1 channel, as opposed to that
at the n � −2 channel when encountering single excitation, as
shown in Figs. 2(a) and 2(b). The interferometric technology
alters the absorption and scattering power distribution at differ-
ent channels. Our proposed interferometric approach, which

Fig. 2. For a lossy scatter, we show the comparison between (a) single and (b) multiple excitations. The setting configuration of this illumination is
the same as that in Fig. 1(b), but with different wave amplitudes. Note that all the field plots are depicted in units of jH ref j2.
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may turn off or turn on the specific channels, is irrespective of
inherent systems such as geometry, materials, and structures.
We also note that the use of two counter-propagation waves
excitation experimentally also demonstrates the changes in scat-
tering modes [22].

In conclusion, based on the interferometric concept, we
study the scattering in cylindrical systems upon multiple coher-
ent waves excitation. The scattering and dissipation powers
for a cylindrical object encountered by multiple TM waves ex-
citation are rigorously derived for arbitrary irradiation angles,
amplitudes, and phases. An interfering factor is introduced
to tailor the overall incident, scattering, and internal fields.
By manipulating the interfering factors, we not only extrinsi-
cally control the scattering and absorption characteristics, but
also modulate the targeted channels. With five waves excitation
as examples, we demonstrate how systems with different
materials and arbitrary sizes can retain the required scattering
channels. Moreover, we also create destructive interferences to
break the inherently rotational symmetry in the cylindrical scat-
tering coefficients. In general, the solution to support designed
scattering channels is not unique, which provides a flexible
degree of freedom in a wave interferometric framework.
In addition to TM wave excitation, our methodology can be
easily extended to TE wave excitation [23] and more complex
geometry and structures, which offers a route to non-invasion
applications in nano-photonics and meta-devices.
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