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Soliton solutions are studied for paraxial wave propaga-
tion with intensity-dependent dispersion. Although the
corresponding Lagrangian density has a singularity, ana-
Iytical solutions, derived by the pseudo-potential method
and the corresponding phase diagram, exhibit one- and
two-humped solitons with almost perfect agreement to
numerical solutions. The results obtained in this work reveal
a hitherto unexplored area of soliton physics associated with
nonlinear corrections to wave dispersion. © 2020 Optical
Society of America

https://doi.org/10.1364/0L.387642

Chromatic dispersion is the dependence of the phase veloc-
ity of a wave on its frequency [1] or, equivalently, frequency
dependence of the refractive index. Nonlinear corrections to the
chromatic dispersion as a function of the wave intensity arise for
various waves, such as shallow water waves [2,3], acoustic waves
in micro-inhomogeneous media [4], or ultrafast coherent pulses
in GaAs/AlGaAs quantum well waveguide structures [5]. In
the context of photon—atom interactions, nonlinear dispersion
effects may come about from the saturation of the atomic-level
population [6], electromagnetically induced transparency
(EIT) in a chain-A configuration [7], or nonlocal nonlinearity
mediated by dipole—dipole interactions [8].

The interplay between refractive-index nonlinearity and
linear dispersion effects in a medium is expected to give rise to
solitary, undistorted wavepacket shapes over extended travel
distances. However, soliton solutions of this kind are still
unknown. Here, we search for soliton solutions in paraxial
wave propagation along the axis ¢, with an intensity-dependent
dispersion,
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where ¥ (¢, 7) describes the envelope function of the wave, and
B2(|1¥|*) denotes the intensity-dependent dispersion due to the
interaction beyond the single-dipole term.
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We may perform a Taylor expansion of the nonlinear disper-
sion term and restrict ourselves to the lowest-order quadratic
correction, whose strength is measured by the nonlinear
coefficient 4, i.e.,
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As b =0, we have the wave propagating with the group veloc-
ity dispersion B9, which is set to one in the following. The

corresponding Lagrangian density for Eq. (2) has the form
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We note that Eq. (2) also preserves the U(1) symmetry,
ie, ¥ — exp[if]¥. From the Noether theorem [9], one
can obtain the conserved density for this model equation:

1 o0
Z/ In| =1+ 6|y*|dr. (4)

For 6 =0, the corresponding Lagrangian density given in
Eq. (3), as well as the conserved density given in Eq. (4), both
go to infinity. In this limit, we only have plane wave solutions
supported by linear dispersion.

To find soliton solutions with a confined spatial profile, we
adopt the stationary ansatz

¥ =X(1) explict],

with the real function X(7) to be determined for a given propa-
gation constant ¢ > 0. By substituting this ansatz into Eq. (2),
one has

—cX(1) =[-14 6X(1)21X (7). (5)

By resorting to the concept of pseudo-potential [10,11],
ie, X' =—-VV(X), we can find the corresponding pseudo-
potential for the intensity-dependent dispersion in Eq. (2), to

be
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that vanishes at the origin, V(X =0) =0. The potential in
Eq. (6) must be a trapping potential in order to support bright
solitons as bound states. That is, the pseudo-potential must have
either b < 0 to ensure thatitis negative or & > 0 and bX* < 2.
In the latter case, the pseudo-potential has a singularity at
V(X) =0, for X > 0. The amplitude of the supported soliton is
determined by V(X) = 0, so that X =2/4. For these two cases,
we can obtain the solution X(7) from Eq. (5) with the asymp-
totic condition X(t — 00) =0, by solving the Newtonian
equation for a fictitious particle in the pseudo-potential,

ien 12?2 = V(X):
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Here, the maximum value X at 7y is assigned by X(7p) = M > 0.
Inboth cases, when X & 0, one can also apply Taylor’s expansion

forln(1 — 6X?) ~ bXZ b*X4)2 — b3X6/3 — ... . Then, as
‘/“fm X,wehaveX—)Oast—):I:oo Due

to the translation invariance, we can set 7y = 0 for X(0) =
Then, the corresponding derivative X'(0) can be obtained as

X(0)=—,/7In| =1+ b6M?|. Now, we can find soliton
solutions for Eq. (7) or (8) with & < 0 or & > 0, respectively.

For a negative nonlinear coefficient, 4 < 0, one can match the
asymptotics with the Taylor expansion near T = 0 and arrive at

I7] = — In (X) 7 + l%xz + O(XH. (9)

Then, we have the following approximation for the correspond-
ingsoliton solution:

X(t) ~ exp [;W(%Ibezﬁﬂ) _ \/E|T|:|, (10)

where W denotes the Lambert function defined as
W(z)eV@ = 5.

Equation (10) is the main result of this work: it yields the
soliton profile supported only by intensity-dependent disper-
sion. One can see that X(7) ’A‘«exp[—«/—_c|t|] as |t] > 00
since W(0) =0. It corresponds to the reduced linear equa-
tion in Eq. (2), ie., 6 =0. Moreover, as |t| — 0, we have
X0)=M= exp[_T1 W(_le)] Then, if 56— —o00, we have
X(0) — oo aslim,_, o W(z) — o0.

A comparison between our analytical solution in Eq. (10)
and a numerical solution obtained by directly solving Eq. (2)
is depicted in Fig. 1. As shown by the solid curves, the soliton
solution X(7) derived in Eq. (10) almost perfectly matches
the numerical ones obtained by directly solving Eq. (2). We
also depict the corresponding pseudo-potential (dashed curve)
as V(1), by setting & =1. Due to the reflection symmetry,
the function X(7) for 7 < 0 is constructed from Eq. (10) by
taking X(—7) =X(t). The maximum value of the soliton
profile at T = 0 is set to be X(t = 0) = M. One can see that the
derivative of the supported soliton profile diverges at the center,
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Fig. 1.  Illustration of soliton solution X(t) and its correspond-

ing pseudo-potential V(t), depicted in solid and dashed curves,
respectively. The soliton is supported by intensity-dependent disper-
sion, with a negative value of the nonlinear coefficient 6 =—1 < 0.
The soliton solution X(t) derived in Eq. (10) almost perfectly
matches the numerical one obtained by directly solving Eq. (2).
Here, M denotes the maximum value of the soliton profile at T =0,
ie,X(t =0)=M=10"2andc = 1.

ie., dX(t =0)/dt = £00, which is known as the cuspons
[12]. With the introduction of a non-zero nonlinear coefficient,
the resulting pseudo-potential V(7) acquires a discontinuity in
its first-order derivativeat T = 0.

The Lambert function W(z) has the domainz € [—1/¢, 00),
with the minimal value of —1 at z=—1/¢. Hence, in Eq. (10),
we have —b exp[—24/cT]/4 > —1/eor

.l %11 In(b) — 0.3862
N 2./¢ '

This result approximates the soliton solution given in Eq. (10),
as |t| = oo. In addition, when —& exp[—24/cx]/4=—1/e,

one has the value
IIn|%ll 2
X = L= 12
(t0) NG ) 5 (12)

which is the maximum value for the amplitude of soliton solu-
tions at Tg.

Based on the above argument, we can set M = /2/b > 0 for
a positive nonlinear coefficient, i.e., & > 0. In Fig. 2, we depict
the numerical solutions for X(t) by the solid curve, which is
obtained by directly solving Eq. (2) with a positive value in the
nonlinear coefficient, # =+1. Here, even-symmetry soliton
solutions are constructed, i.e., X(—7) = X(t). Except for the
profile between the two points marked A and B, the tails of the
soliton solution X(7) can be almost exactly reconstructed from
Eq. (10). As the corresponding pseudo-potential V() goes to
oo at points A and B (see the dashed curve), the derivatives of the
supported soliton profile also diverge at these two points.

Even though the supported soliton solution shown in Fig. 2
has points with divergent derivatives at the corresponding
pseudo-potential, one can prove that the corresponding con-
served density still remains finite, and thus the solution is
physical. By using the relation between T and X given in Eq. (8),
one can change the integral variable in Eq. (4),
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Fig. 2. One-humped soliton solution X(7) and the corresponding
pseudo-potential V(7), depicted by solid and dashed curves, respec-
tively, for a positive value of the nonlinear coefficient 4 = +1 > 0. The
tails of the soliton solution X(7) obtained numerically from Eq. (2) can
be reconstructed from Eq. (10). The corresponding pseudo-potential
is divergent at the two points marked A and B, where 4V/d7 = 00
andc = 1.
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where we have introduced # =1 — 6X? and u; = —1 + 6X.

As it is known that lim,_, ;- 2% = —] by the Lhopital rule,

T—u
the convergence of improper integrals in Eq. (13) depends on

the integral [ ,/ ln7”dv for a finite positive o near v = 0. By

choosing o = 1 for the scaling, we have

1 _ 00
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with v =e77. Hence, the conserved density of our stationary
soliton solution is convergent even for a nonlinear dispersion
coefficient 4 > 0.

In addition to the one-humped even-symmetry soliton
solutions displayed in Fig. 2, we can also construct odd-
symmetry two-humped soliton solutions for a positive value
of the nonlinear coefficient 4 = +1. One can see in Fig. 3 the
odd-symmetry soliton solution X(t) depicted by a solid curve,
i.e.,, X(—1) = —X(7), upon setting M = 0. The corresponding
potential V(7), depicted by a dashed curve, has four singular
values at the points marked C, D, E, and E We can check from
Eq. (2) that a finite value of the conserved density exists for the
two-humped soliton solution.
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Fig. 3. Two-humped soliton solution X(7) and its corresponding

pseudo-potential V(7), depicted by solid and dashed curves, respec-
tively, for a positive value of the nonlinear coefficient & =+1 > 0.
Here, the corresponding pseudo-potential is divergent at the points

marked C, D, E, and E where /V/dt = +00.
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Fig.4. Phasediagram defined by Xand X, = dX/d7 for our soliton
solutions. Here, the sets of points marked (A, B) and (C, D, E, F)
correspond to the marked points in Figs. 2 and 3, respectively, while
the points M and M’ give the maximum value of the soliton profile. As
b =41 is chosen, we have X = +1/+/b = +1 for the amplitudes in
the soliton profile, at which the derivative goes to +00.

An alternative picture that provides deeper understanding
of our soliton solutions is obtained from the phase diagram
for the Newtonian pseudo-particle dynamics, defined by X and
X; = dX/dt. For the one-humped solution, one may follow the
trajectory on the right-hand side of this phase diagram, where
X >0 (Fig. 4). By starting at the origin (X, X;) = (0, 0) and
following the trajectory to the point marked B (1/Vb=1, ),
we find an infinite derivative of the profile. The soliton profile
goes through its maximum value (the point marked M) to its
other infinite derivative (point marked A) and finally back to
the origin (0,0). This trajectory exactly reflects the one-humped
soliton solution illustrated in Fig. 2. By following the two sides
of the trajectory in Fig. 4, X> 0 and X <0, one can easily
construct the two-humped soliton solutions illustrated in Fig. 3.
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Fig. 5.  Evolution for an initial Gaussian profile applied to Eq. (2)
directly. Within the propagation distance up to { =40, the resulted
profile resembles our finding of an analytic solution.

In conclusion, our analysis reveals the existence of
singularities in the pseudo-potential associated with intensity-
dependent dispersion, resulting in one- and two-humped
supported solitons with infinite derivatives in their profiles. The
tails of these solitons can be described by Lambert functions,
which give almost perfect agreement to the numerical solu-
tions of the paraxial wave equation with intensity-dependent
dispersion. Even though such discontinuities in the derivative
of soliton profiles make them unstable (as we have checked by
linear stability analysis and by the Vakhitov—Kolokolov stability
criterion), their conserved density still remain finite, attesting to
the physicality of the solutions. By using an initial Gaussian pro-
file applied to Eq. (2) directly, we illustrate in Fig. 5 the evolution
of this approximated solution through numerical simulation.
Within a certain propagation distance (up to { = 40 here), the
resulted profile resembles our finding of the analytic solution.

As nonlinear corrections to the dispersion arise in a variety
of wave phenomena, our results may open a hitherto unex-
plored area of nonlinear wave propagation. Through the
correspondence between the paraxial wave equation and the
Schrédinger equation (upon replacing ¢ — ¢ and 7 — x),
our model equation can also be applied to a quantum particle
(electron or hole) with a nonlinear effective mass 7" (|y|?),
ie, il =[1/2m*(|¥|*)]¥.s- In a non-uniform potential,
a quantum particle may acquire an intensity-dependent effec-
tive mass. For example, in nonlinear photonic crystals, strong
coupling between nonlinearity and diffraction at the super-
collimation point can be modeled with a nonlinear diffraction
term [13]. Such a scenario has gained much interest in view of its
applications, ranging from semiconductors to quantum fluids
[14-20].

A number of promising applications and directions for
further exploration may be identified: (a) the present soliton
model may be connected to off-resonant electromagnetic (EM)
propagation in two-level media outside the domain of resonant
self-induced transparency (SIT) solitons [21,22]. (b) In media
with spatially periodic refractivity doped with two-level systems
(TLS), the spatial modulation of the propagating EM intensity
may enhance the intensity-dependent nonlinear TLS dispersion

Letter

[23,24]. (c) In the EIT regime of three-level atoms that are cou-
pled via resonant dipole—dipole interactions, the present soliton
solutions may be related to the previously explored long-range
photon—photon interactions [25,26]. (d) The nonlinear effec-
tive mass appears in the continuum limit of the Salerno model,
which originally describes a quantum-modified discrete nonlin-
ear Schrédinger equation with on-site focusing and defocusing
inter-site nonlinearities [27].
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