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Interplay between intensity-dependent dispersion
and Kerr nonlinearity on the soliton formation
Jen-Hsu Chang,1 Chun-Yan Lin,2 AND Ray-Kuang Lee2,3,4,5,∗
1Graduate School of National Defense, National Defense University, Taoyuan City 335, Taiwan
2Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
3Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
4Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
5Center for Quantum Technology, Hsinchu 30013, Taiwan
*rklee@ee.nthu.edu.tw

Received 24 May 2023; revised 19 July 2023; accepted 20 July 2023; posted 21 July 2023; published 4 August 2023

A generalized nonlinear Schrödinger equation is studied
with the interplay between Kerr nonlinearity and intensity-
dependent dispersion. The supported soliton solutions
are characterized analytically in different families by the
pseudo-potential method, in terms of Maimistov and Cuspon
solitons for different ratio between the intensity-dependent
dispersion and Kerr nonlinearity. Direct numerical simula-
tions also agree with our analytical formulas. In addition to
the well-studied Kerr-type nonlinearity, our results reveal
an unexplored scenario with the introduction of the nonlin-
ear corrections to wave dispersion. © 2023 Optica Publishing
Group

https://doi.org/10.1364/OL.496186

Introduction. The nonlinear Schrödinger equation (NLSE)
with Kerr (or cubic) nonlinearity is the main governing
equation for the evolution of optical fields in a nonlinear
medium [1]. For pulse propagation in optical fibers, tempo-
ral solitons are supported with the balance between the group
velocity dispersion and self-phase modulation [2]. To uti-
lize solitons for light wave systems, dispersion managements,
including dispersion-decreasing fibers and periodic dispersion
maps, are commonly employed for modern wavelength division
multiplexing [3].

In addition to the linear dispersion, nonlinear corrections to
the chromatic dispersion as a function of the wave intensity
have been reported for water and acoustic waves [4–6]. For opti-
cal systems, the photon–atom interactions in general bring the
nonlinear dispersion effects [7–11]. With intensity-dependent
dispersion only, the supported soliton solutions are formed due to
the interplay between the constant coefficient dispersion and the
intensity-dependent dispersion, leading to a continuous family
of solitary wave solutions [12,13].

In this paper, we show that soliton solutions exist due to
the interplay between intensity-dependent dispersion and Kerr
nonlinearity on the soliton formation. Here, we consider a gen-
eralized NLSE with both Kerr nonlinearity characterized by the
coefficient g, and the nonlinear dispersion characterized by b, as
follows:

iψz + ψxx = b|ψ |2ψxx + g|ψ |2ψ. (1)

When b = 0 and g<0 (or g>0), Eq. (1) corresponds to the
focusing (defocusing) NLSE, which supports bright (dark) soli-
tons. Moreover, in the case g = −2(1 − b), Eq. (1) gives the
continuous limit of the Salerno model [14]. When one consid-
ers a strong coupling between nonlinearity and diffraction in a
crystal at the super-collimation point, our model equation can
also be mapped to a nonlinear diffraction in NLSE [15,16].

Model equation. The corresponding Lagrangian density for
Eq. (1) has the form

L =
(︃
i(ψzψ̄ − ψ̄zψ)

2b|ψ |2
−

g
b2

)︃
ln | − 1 + b|ψ |2 | −

g
b
|ψ |2 + |ψx |

2,

(2)
which also keeps the U(1) symmetry, i.e., ψ → eiθψ. With the
help of Noether’s theorem [17], there are two conserved quan-
tities for our model equation, denoted as the density Q and the
Hamiltonian H:

Q =
1
b

∫ ∞

−∞

ln | − 1 + b|ψ |2 | dx; (3)

and

H =
∫ ∞

−∞

(︂
−

g
b2 (ln | − 1 + b|ψ |2 |) −

g
b
|ψ |2 + |ψx |

2
)︂

dx. (4)

When the nonlinear dispersion term vanishes, i.e., b → 0, the
conserved density Q in Eq. (3) approaches

∫ ∞

−∞
|ψ |2dx; while

H in Eq. (4) becomes the Hamiltonian
∫ ∞

−∞
(|ψx |

2 +
g
2 |ψ |

4)dx of
NLSE. In contrast to NLSE, it is noteworthy that Eq. (1) is not
a Hamiltonian system by a direct calculation.

To find the stationary soliton solution, we assume ψ =
p(x)e−ic z with the wavenumber c and the real function p(x) to
be determined. Plugging this form into Eq. (1), one has

p′′(x) =
cp(x) − gp(x)3

−1 + bp(x)2
. (5)

By rewriting Eq. (5) as

p′′(x) = −
dV(p)

dp
or

1
2

(︃
dp
dx

)︃2

= −V(p), (6)
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the pseudo-potential V(p) can be derived,

V(p) = −

∫
cp − gp3

bp2 − 1
dp =

gp2

2b
−

c − g
b

2b
ln |bp2 − 1|, (7)

with V(0) = 0. When b>0, we see that there is a vertical
asymptote at p = 1

√
b
, which differs from a generally smooth

pseudo-potential. Even though ω ≡ bc
g = 1 makes the conserved

density Q divergent, we assume bc
g ≠ 1, along with g<0, b>0,

and c<0, to test the convergence of Eq. (3). For a bounded
solution, we ask for 0<p(0) = M and have

Q =
−1
b

∫ 1

0

ln udu√︂
−2g

b (1 − u) | 1 − u + (1 − ω) ln u |

−
1
b

∫ 1

0

ln u1du1√︂
−2g

b (1 + u1) | 1 + u1 + (1 − ω) ln u1 |

+
1
b

∫ bM2−1

1

ln u1du1√︂
−2g

b (1 + u1) | 1 + u1 + (1 − ω) ln u1 |

,

(8)

where u = 1 − bp2 and u1 = bp2 − 1. The convergence near u = 0
and u = 1 can be obtained similarly as that done in Ref. [12].
When the denominator is zero, we can consider the integral∫ µ1

0
κ dµ√

|µ |
, κ>0, µ1>0, and it is convergent.

Maimistov Solitons. According to the pseudo-potential the-
ory, if the first positive root, denoted as Ω, of V(p) exists, then
√
Ω is the corresponding amplitude of the soliton [18,19]. Next,

we investigate the first root Ω. As the translation invariant of
Eq. (5) is valid, we also assume the amplitude happens at x = 0.
Now, one has the equation

p2(x) =
(︃
c
g
−

1
b

)︃
ln |bx − 1|. (9)

In this case, we have two positive roots in general. Here, we
focus on the first positive root, i.e.,

Ω =
1
b

[︃
−

1
γ

W(γeγ) + 1
]︃
≤

1
b

, (10)

where γ ≡ 1/(ω − 1) and W(x) is the Lambert function. If we
consider the approximation

p′′(x) ≈ −cp(x) + g
(︃
1 −

bc
g

)︃
p(x)3 + bg

(︃
1 −

bc
g

)︃
p(x)5. (11)

Equation (11) is the type of quintic Duffing equation, which
supports the Maimistov soliton solution [20]. The corresponding
soliton solution has the form

p2(x) =
−2c

bc−g
2 +

√︂
(g−bc)2

4 − 4
3 bc(bc − g) cosh(2

√
−cx)

. (12)

When b = 0, g = −1, c = −1
2 , we have the NLSE one soli-

ton solution, i.e., p(x) = 1/[1/2 + 1/2 cosh(x/
√

2)]. Moreover,
to have a bounded solution, we ask for bp2(x) ≤ bp2(0) ≤ 1 with
the following equation:

bp2(0) = 12
ω

−3ω +
√
−39ω2 + 30ω + 9 + 3

, (13)

which results in 0 ≤ ω ≤ 5
11 ≡ ω1.

Cuspon solutions. From Eq. (6), one notes that p(0) = 1
√

b
and

p(±∞) = 0, then we have

|x| =
∫ 1√

b

p

dξ√︂
|
−gξ2

b +
bc−g
b2 ln(1 − bξ2)|

. (14)

To obtain a approximation of a Cuspon solution, one can
consider the asymptotic limit with the Taylor expansion near
x = 0 and arrive at [12]

|x| =
∫ p(0)= 1√

b

p

dp
√
−cp(1 + b−g/c

2 p2 + · · · )1/2

=
−1
√
−c

ln p −
b − g/c
8
√
−c

p2 − · · · .
(15)

Consequently, one yields the approximation of a Cuspon
solution

p(x) ≈ e− 1
2 W( b c−g

4 c e−2 |x|
√
−c)−|x|

√
−c, (16)

where W again is the Lambert function. Since b c−g
4 c is nonneg-

ative, the approximation Eq. (16) is applicable for all x. The
corresponding amplitude is p(0) = e− 1

2 W(
b c−g

4 c ). By Eq. (16), if
bc
g = 1, one has the Peakon solution

p(x) = e−
√

−g
b |x| . (17)

Regarding the applicable range to keep the validity of Eq. (16),
let us have

p(0) = e− 1
2 W[ b c−g

4 c ] =
1
√

b
= e− ln b

2 ,

resulting in

W
[︃
b c − g

4 c

]︃
= ln b or eW( 1

4 (b−
g
c )) = b. (18)

By the property of the Lambert function eW(y) =
y

W(y) , the
solution of Eq. (18) is

1
4

(︂
b −

g
c

)︂
= 0 or b ln b.

When b c−g
4 c = 0, one has Eq. (17). If b c−g

4 c = b ln b, then one
yields

0<
g
c
= b (1 − 4 ln b). (19)

Also, 1<w = bc
g =

1
1−4 ln b → ∞ as b → e1/4. Thus, if we choose

1 ≤ b<e1/4 ≈ 1.28, then Eq. (19) is the condition for the
approximated solution give in Eq. (16) to be valid.

In Fig. 1, we illustrate the existence of soliton solutions with
the interplay between intensity-dependent dispersion and Kerr
nonlinearity. With the single parameter ω ≡ bc

g , we plot the
density Q of supported soliton solutions obtained by direct
numerical simulations from Eq. (1). The numerical solutions
are generated through the iteration with the Fourier spectral
method, with an initial guess from the theoretical prediction.
In general, the lack of a good initial guess limits the possibil-
ity to generate a converged solution. We also consider 0 ≤ ω
for bright solitons only. Numerically, three regions are identi-
fied (in different colors): stable Maimistov soliton solutions for
0 ≤ ω ≤ ωa; unstable Maimistov soliton solutions and Cupson
solutions for ω>1. Moreover, stable Cuspon solution of ampli-
tude 1

√
b

and unstable smooth soliton of amplitude larger than 1
√

b
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Fig. 1. Density Q of supported soliton solutions obtained by
direct numerical simulations of Eq. (1), as a function of the
parameter ω ≡ bc

g . Bright solitons exist for 0 ≤ ω. The numerical
simulations show that if 0 ≤ ω ≤ ωa, the founded soliton solution
is stable; while it is unstable for ωa<ω<1. Here, we have ωa ≈ 0.6.
Four selected examples are marked for the comparison to the ana-
lytical results shown in Fig. 2. Note that there exists a singularity
located at ω = 1.

Fig. 2. Four selected examples for the supported solitons p(x)
are illustrated: (a) stable Maimistov soliton solution for ω = 0.25;
(b) unstable soliton solution for ω = 0.75; (c) stable lowest-branch
Cuspon solutions for ω = 1.10; and (d) unstable higher-order
Cuspon solution forω = 1.10, corresponding to the four markers A,
B, C, and D in Fig. 1, respectively. Here, curves in blue color are the
numerical solutions; while curves in green color are generated from
the analytical formulas given in Eqs. (12) and (16) for Maimistov
soliton and Cuspon solutions, respectively. Note that there is no
analytical solution for the unstable smooth soliton given in (d).

exist for ω>1 at the same time. As our analyses show, the singu-
larity happens at ω = 1. Moreover, compared to the analytical
value of ω1 = 5/11 ≈ 0.4545, numerically we have ωa ≈ 0.6 to
support stable Maimistov soliton solutions.

Even though we have a discrepancy on the values of ω1 and
ωa, i.e., between the analytical and numerical results, the soliton
profiles obtained from numerical results match the analytical
formulas given in Eqs. (12) and (16) very well. In Fig. 2, we
select four examples for the supported soliton solutions: stable

Maimistov soliton solution for ω = 0.25 [Fig. 2(a)]; unstable
soliton solution for ω = 0.75 [Fig. 2(b)]; stable lowest-branch
Cuspon solutions for ω = 1.10 [Fig. 2(c)]; and unstable higher-
order Cuspon solution for ω = 1.10 [Fig. 2(d)], corresponding
to the four markers A, B, C, and D in Fig. 1, respectively.

As one can see the curves obtained from the numerical
solutions (in blue color) give good agreement with the curves
generated from the analytical formulas given in Eqs. (12) and
(16) (in green color), for Maimistov soliton [Fig. 2(a)] and
Cuspon solutions [Fig. 2(c)], respectively. It is noted that in
Fig. 2(b) a discrepancy comes from the validation of our Maimis-
tov solution, which works only for ω ≤ ω1. Also, unstable
smooth soliton solution [Fig. 2(d)] for ω>1 is different from
the Maimistov solution due to the amplitude. When g = 0, this
unstable smooth soliton solution was already investigated in Ref.
[21].

In addition to the the conserved density Q given in Eq. (3), one
may apply Vakhitov–Kokolov (VK) criteria for spectral stability,
i.e., ∂Q(ω)

∂ω
<0 [22–26]. In short, for the range 0 ≤ ω<ωa, all the

supported Maimistov solitons are stable; but become unstable
ωa<ω ≤ 1. However, the Cuspon solutions are tested numeri-
cally as stable ones, as those supported with g = 0 but b ≠ 0
[13].

Conclusion. With the nonlinear correction to the dispersion,
we investigate the interplay between nonlinear dispersion and
Kerr nonlinearity. Approximated stationary soliton solutions,
i.e., both the smooth Maimistov soliton and singular Cuspon
solutions, are derived analytically by utilizing the pseudo-
potential method. With the parameter ω = bc

g , we identify four
different regions to support numerically stable/unstable smooth
solitons, and stable Cuspon solutions. The corresponding pro-
files of these solutions, as well as the stabilities, are also verified
with direct numerical simulations. As the nonlinear corrections
to wave dispersion may arise in many settings, our results pave
a theoretical platform to study the rich family and the related
dynamics with nonlinear dispersion.
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