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Quantum Optics

Quantum Phase Transitions of  
Light for Two-level Atoms 
Soi-Chan Lei and Ray-Kuang Lee

Quantum phase transition (QPT) 
can only be accessed at near-

absolute-zero temperatures by changing 
an external parameter or a coupling 
constant driven by quantum fluctua-
tions.1 There have been intensive studies 
of QPTs in interacting many-body prob-
lems, originally for strongly correlated 
electronic systems in condensed matter 
physics, and more recently for a weakly 
interacting ultracold atomic system. Typi-
cally, it is difficult to control and probe 
such exotic quantum phenomena in 
strongly correlated systems of electrons. 

Optical lattices—artificial crystals 
made by interfering laser beams—offer 
a versatile platform for studying trapped 
Bose gases.1 In this situation, one can 
describe the many-body dynamics from 
a Mott-insulating phase to a superfluid 
phase in a gas of ultracold atoms with 
periodic potentials by using a Bose-
Hubbard model that includes an on-site 
two-atom interaction and hopping 
between adjacent sites. 

Photons are non-interacting bosons, 
and there is no possibility of having any 
QPTs in purely photonic systems. For 
a purely Bose system, the conducting 
phase at zero temperature is presumably 
always superfluid. However, engineered 
composites of optical cavities, few-level 
atoms, and laser light can form a strongly 
interacting many-body system to study 
the concepts and methods in condensed 
matter physics from the viewpoint of 
quantum optics. In this case, a photonic 
condensed-matter analog could be realized 
with state-of-the-art photonic crystals 
embedded with high-Q defect cavities. 

Therefore, it should be easier to study 
critical quantum phenomena such as 
QPTs in conventional condensed mat-
ter systems. The simplest light-atom 
system is photons interacting with a 
single two-level atom, described by the 
Jaynes-Cummings model. With an array 

of high-Q electromagnetic cavities, each 
containing a single two-level atom in the 
photon-blockade regime, quantum phase 
transitions of photonic insulator (excita-
tions localization) to superfluid (excita-
tions delocalization) are predicted by the 
Bose-Hubbard model.2, 3 

As the number of TLAs increases, 
collective effects due to the interactions 
of atoms among themselves give rise to 
intriguing many-body phenomena. With 
the Dicke-Bose-Hubbard Hamiltonian, 
we show that the Mott insulator to su-
perfluid QPTs with photons can be real-
ized in an extended Dicke model for an 
arbitrary number of two-level atoms. We 
illustrate the generality of the method by 
constructing the dressed-state basis for 
an arbitrary number of two-level atoms. 
Moreover, we show that, as the number 
of TLAs increases, superposition states 
may disappear and classically emerge. 

The phase diagrams for arbitrary number of two-level atoms, (a) N=3, (b) N=4, (c) N=5, (d) 
N=6, (e) N=7, and (f) N=10. The horizontal and vertical axes are shown by the normalized in-
tercavity hopping energy of photons and the relative chemical potential. The phase boundary 
between MI-SF is the superposition states that disappear and result in a single macroscopic 
coherent radiation state for a large number of two-level atoms.
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We expect that more controllable 
light-wave technologies will lead to an 
enhanced understanding of the QPTs of 
light with distinctive properties, improve-
ments in the organization of the ground-
state wave function, and the introduction 
of new applications. With combinations 
of Dicke-like and Hubbard-like models 
to simulate strongly correlated electron 
systems using photons, we believe that 
there will be many more interesting 
QPTs to be demonstrated. 
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