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Abstract: By considering a cigar-shaped trapping potential elongated in a proper curvilinear
coordinate, we discover a new form of wave localization that arises from the interplay of geometry
and topological protection. The potential is undulated in its shape such that local curvature
introduces a geometrical potential. The curvature varying along the trap curvilinear axis encodes
a topological Harper modulation. The varying geometry maps our system in a one-dimensional
Andre-Aubry-Harper grating. We show that a mobility edge exists and topologically protected
states arise. These states are extremely robust against disorder in the shape of the string. The
results may be relevant to localization phenomena in Bose-Einstein condensates, optical fibers
and waveguides, and new laser devices.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Topological concepts pervade modern physics, including photonics, Bose-Einstein condensation
(BEC), condensed matter physics, and high-energy physics, with the illustrations on the difference
between bulk and boundary, chiral symmetry, adiabatic equivalence, topological invariants, and
bulk—boundary correspondence. Topology enriches physical systems with non-trivial symmetries
that protect specific features with respect to disorder, as the energy eigenvalues of localized states.
In addition, properly designed topological systems may link to analog additional dimensions in a
way such that one can mimic multidimensional physics in the four-dimensional world [1-3]. By
taking the quasi-crystal structure as a platform, Andre-Aubry-Harper (AAH) model has provided
a simple one-dimensional model with the parameter being synthetic dimension [4]. Through the
analogy in single-particle Hamiltonian, topologically non-trivial modes can also be observed in
various platforms such as waveguide arrays [5,6], cavity arrays [7], cold atom lattices [8], and
split-ring resonator (SRR) arrays [9-12], with a periodically setting on the confined potentials.
Specifically, topological edge states, may be induced at the interface between media with different
topological features as Chern number. Topological edge states are recently demonstrated to be
very useful for a new generation of lasers, and attracted considerable attention [13—18].

In parallel to topology, geometrical features may also bring forth different forms of localization,
if a flat system is curved by a continuous deformation [19-24]. The local curvature creates an
effective trapping potential, the so-called geometrical potential. For example, the interplay of
disordered induced localization and geometry has been analyzed in Ref. [25]. Also curvature
induced localization has recently been exploited to induce states at maximal curvature points in
vertical cavity lasers [26], as well as to speckle reduction in imaging projection [27]. However,
this effect is influenced by unwanted and random deformations.
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May we use topological protection to stabilize localized states due to local curvature? The
connection and the interplay between the two forms of localization are unexplored. In this paper
we show that by combining geometrical and topological potentials, one obtains new kinds of
localized states. We identify specific - open or closed - “topological strings," such that the
localized states of the curvature profile are robust with respect to the deformation. In addition,
we know that some of the most important theoretical models of modern physics are related to
two-dimensional strings embedded in multidimensional space. One can argue that if one can
realize these kinds of systems in the laboratory, then it is possible to study five-dimensional strings.
Here, we show that a workable strategy is given by our topological strings. Their excitations,
as localized states, may represent analogues of fundamental physical particles [28]. Through
the analogy in single-particle Hamiltonian, various systems are suitable for the experimental
realization of these topological strings, such as BEC with an elongated potential, curved optical
waveguides and lasers, and polymer physics.

The rest of the paper is structured as follows. In Sec. 2, we outline the derivation of the reduced
1D equation in the curvilinear coordinate, starting from the 3D Schrodinger equation. Then, in
Sec. 3, the methodology to construct topological string by a sequence of parabolas is illustrated.
The equivalence between our topological string and AAH model is demonstrated in Sec. 4, with
examples for the localized/delocalized states and their inverse participation ratio (IPR) index as a
quantitative figure of merit. The paper is summarized in Sec. 5.

2. Reduced 1D equation in the curvilinear coordinate

As illustrated in Fig. 1, what we adopt as a reference model is the three-dimensional (3D)
Schrddinger equation, i.e.,
iV, = -V2¥ + V3p V. (1)

The concepts described in the following may also apply to the other systems, as lasers, optical
fibers and waveguides described in the paraxial wave equations. Here, we consider a curved
potential in the 3D space [Fig. 1(a)], i.e., V3p = Vi(q1) + Vi(q2,g3), where q; = q is the
longitudinal coordinate along the arc, and g5, g3 are the transverse coordinates [19,24]. In Eq. (1),
V. determines the transverse confinement along an arbitrary curve, whose curvilinear coordinate
is given by g. Specifically, we consider parabolic potentials in the form: V, = w(q% + q%),
Vi(g1) = wy q%, with w > w;. Being 2= w/wi, the 1D reduction holds true as A2 5 o [19].
Then, by separation of variables, one can assume the solution in the form: ¥(q1,¢2,43,1) =
Ly (g2, g3)W(q) exp(—i E, t), with f l¥1(q2,93)|* dgadgs = 1 and E the transverse part of the
eigenvalue. The transverse localization length is lf = f Y1 (g2, q3)|* dgadqs, along with the
normalization condition [ |(¢)|* dq = NI;* = P. For the parabolic potential above, the resulting
reduced 1D Schrodinger equation has an effective 1D potential,

19 = =00 + V(@ 2

which gives a geometrical potential V = V| + V5. Explicitly, one can denote the parabola in a 2D
plane, as illustrated in Fig. 2, by setting ¥ = k X°. Please note that our reference coordinate is
X-axis. Then, the corresponding maximum curvature is 2k = 1/R, with R denoting the radius of
curvature. In terms of the local curvature K(g), the corresponding geometrical potential Vi has
the form

K 2
Volg) = < ©)
Now, for a parabola, the local curvature can be derived as
dit , dX 42
K@ === = —F—— “4)

ax' 'dq'  [1+4k2X(q)?’
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Here, 7 denotes the normalized tangent vector along the curvilinear coordinate g. The implicit
function X(g) is given by the inverse of 4k g = 2k XV1 + 4k2 X2 + sinh ™' 2k X).

(@

Vg‘ |V5n+1 IVGn+2 IV5L+3 q

Fig. 1. (a) Sketch of a topological string made by a 3D trapping potential; and (b) in the
curvilinear coordinate g, we show such a topological string formed by four segments of
parabolas in Blue-color with the corresponding potential V in Red-color. Here, L, denotes
the distance between two parabolic segments, with the corresponding local minimum value
in each segment indicated as Vg”, i=0,1,2,3.

(X3, C2)

XL (X1,Cy) X1r X2R

Fig. 2. The illustration to construct a topological string. Here, we take two parabolic
segments plotted in Red- and Blue-colors as an example. The the front (left), end (right) points
labelled in X7, X1 g, X2k denote the projections of the segments onto our reference coordinate
X-axis; while (X1, Cy) and (X3, C») denote the extremum (minimum and maximum) of the
local curvature in each parabola.

With such a reduction to the curvilinear coordinate g, in Fig. 1(b), we illustrate an example
showing the local potential V(g) for a four parabolic segments string in Blue-color. As one can
see for the corresponding potential V; in Red-color, now, one can modulate the local minimum
value in each segment by varying the curvature in each parabola. In the following, we consider a
modulate path characterized by a repetition of parabolas merged with straight line. By using
Egs. (2-3), we aim at determining the path that realize a Harper modulation. The topological
strings are 3D objects that are modulated in one dimension by a Harper potential, which is known
to simulate additional synthetic coordinates. By including also the time evolution, the system
simulates a string in a five dimensional space.

3. Topological string constructed by parabolas

Our topological potential is composited by a sequence of parabolas. To merge each segment
together, we fix the distance between two parabolic segments as a constant, denoted as L, in
Fig. 1(b). Adopting a Cartesian set (X, Y), as illustrated in Fig. 2, each branch of the parabolas
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has extremum (maximum or minimum) in (X;, C;), with the local curvature is k;. Explicitly, for
each branch of the parabola we have

Y = 2k, (X = X,)* + Gy, )

with the offset denoted as C,. In Eq. (5), the plus sign is applied when the parabola opens
up; while the minus sign is applied when the parabola opens down. As shown in Eq. (3), the
corresponding maximum of the potential is related to the curvature Vg, = —k2. By merging
the different branches and imposing the continuity profile, we find that one can build a Harper
modulation with a constant distance L, between the maximum curvature points that are located
at positions X = X, and Y = C, with the curvature coefficient k", withn = 1,2,...,N.

To construct the topological strings, for each parabolic segments, in addition to the local
curvature k, and the given distance L,, we also have two free parameters X, and C,,, corresponding
to the center of the parabola and its offset. Here, we fix the distance between two segment as a
constant, i.e., L, = 6, but vary the offset of the adjacent parabola to mimic the Harper modulation.
As for the curvature, the adjacent parabolas have the different sign, in order to have a smooth
connection. As illustrated in Fig. 2, to have a continuous derivative in the connected segment, we
have

Yr’z(XnR) = Yy/,+1(XnR = X(n+])L)9

or equivalently,
Xn+1 = [(kn + kn+l)XnR - ann]/an-

Then, for a fix value in L, we have L; = gur + g(u+1)r- For the offset, we have
Ci1=Cy + kn(XnR - Xn)2 + kn+l(XnR - Xn+l)2s
where we set the plus sign for the odd number in segments; and minus sign for the even number.

4. Equivalence between the topological string and AAH model

To have the corresponding Harper modulation, by fixing the period with the distance between two
branches L,, we calculate the potential peak Vg(nL,) = Vo + Vi cos(2man + §) for each portion
of the parabola, in order to have a set of localized potentials. In the tight binding approximation
(Vy is omitted hereafter without loss of generality), we have

t(Yns1 + Yuo1) + VicosQran + 6, = E, . (6)

In Eq. (6), the hopping constant is denoted by ¢ and the corresponding energy eigenvalue is
E,. In the AAH model, V| is the strength of the modulation, « is modulation frequency, and
the phase term ¢ gives the synthetic dimension [4]. Compared to the well-known AAH model
characterized by its hopping constant ¢ and the Harper modulation Vi, here, we describe our
topological string by the length L, between two segments, and local curvature k.

It is known that in AAH model there exists a critical value for the ratio between Harper
modulation and the hopping constant, V; /¢, which equivalently corresponds to L, X k, in our
topological string. When V| /1>2, localized states are supported; for V; /<2 all the modes are
delocalized. The transition from delocalized to localized modes is expected when the modulation
frequency « is an irrational number, for example & = (1 + V/5)/2. This case is referred to as the
so called incommensurate Harper model; it is specifically relevant as a one-dimensional model
with a mobility edge in analogy with the Anderson model.

As illustrated in Fig. 3, the band-diagrams for the AAH model in Eq. (6) support mobility edge
states (red color), independently of V;/t. Instead of Brillouin zone defined in reciprocal space,
here, the phase term ¢ defined in the AAH model, see Eq. (6), provides the synthetic dimension
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for the band-diagram. For the mobility edge states, the existence region in the band-gap becomes
narrower when our system only supports localized states, see Fig. 3(a) for V| /f = 3. Nevertheless,
when delocalized states are supported, see Fig. 3(b) for V| /f = 1, the existence region in the
band-gap becomes broader.

"(@) __ ! (b)

0 05 1 15 2
%4

Fig. 3. Band diagrams for the AAH model in Eq. (6), for the ratio between Harper

modulation and the hopping constant, V; /, larger than the critical value (a) V;/t = 3 with

all states localized; and smaller than the critical value (b) V;/t with delocalized states.

Red-curves denotes the mobility edge states. Here, parameters used are Vy = —4 and

a = (1 +v5)/2, which gives the critical value V;/t = 2.

4.1. Examples

To test that our geometrical potential mimics the Harper model in an equivalent way, we study
the modes for N = 20 segments. Then, we calculate the eigenstates of this effective potential
along the curvilinear coordinate by following the methodology illustrated in Sec. 3. A series of
localized states and also delocalized functions are found for a different setting on the parameter
kn X Lg. A key challenge is showing if the topological and geometrical potential V(g) inherit the
features of the discrete Harper modulation. In terms of the string parameters, the critical value
for the localization-delocalization transition is defined by the product of the maximum local
curvature and the length of string, i.e., k,, X L,;. By numerical simulations, we have k,, X L, = 7.0.

As an illustration for some representative cases, in Figs. 4 and 5, we show the field profiles
(in Blue-color) and the corresponding geometrical potential (in Red-color) given by a series of
localized traps with varying amplitudes V. First of all, in Fig. 4(a-b), we illustrate the localized
state supported in AAH model in Blue-colors, with the corresponding disorder potential Vg,
based on the band-diagram illustrated in Fig. 3. In addition to these localized states, in Fig. 4(c-d),
one can see the supported mobility edge states and the corresponding topological string in 3D
space. With a proper setting on the curvatures in the string, our topological strings indeed support
non-trivial mobility edge modes in the front (or end) branch.

Instead, when we choose k,, X L, = 6.61<7.0, we show the delocalized state supported in our
topological string in Fig. 5(a-b). Since the value k,, X L, is smaller than the critical value, our
topological string does not support localized states as expected. Nevertheless, mobility edge
states can still be found, as shown in Fig. 5(c-d), which demonstrates that these mobility edge
states are robust with respect to disorder in shape of the string.

4.2. Inverse participation ratio (IPR)

Our topological string works effectively as the AAH model. By mapping our system into the
discrete AAH model, we can estimate the corresponding Harper modulation and the hopping
constant. In order to give a quantitative figure of merit to verify localization-delocalization
transition in the topological strings, we also calculate the inverse participation ratio (IPR) index
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Fig. 4. (a) Localized states in the topological string: Blue-curve gives the field profile;
while Red-curve reveals the corresponding disordered potential V; (b) the corresponding
topological string in 3D space. (c) Mobility edge state and (d) the corresponding topological
string in 3D space. Parameters: Vo = —4, V| = 3.0, L; = 6 (kyy X Ly = 15.87>7.0), and
6 = 0.221.
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Fig. 5. (a) Delocalized states in the topological string: Blue-curve gives the field profile;
while Red-curve reveals the disordered potential V; (b) the corresponding topological string
in 3D space. (c) Mobility edge states and (d) the corresponding topological string in 3D
space. Parameters: Vy = -4,V = 3.0, Ly = 2.5 (kyy X Ly = 6.61<7.0), and 6 = 0.
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by defining [29],
_ Zfil W’l |4

(L i)
where N being the number of all the lattice sites. It is known that IPR index represents a measure
of the number of sites contributing to a given state. The clear distinction of IPR index indicates
the characteristic features of the AAH model, providing a criterion to distinguish the extended
(delocalized) states from the localized ones. In Fig. 6, we show the IPR index for all the supported
modes, for a different setting on the product of the maximum local curvature and the length of
string, i.e., k,, X Ly. Clearly, one can see that there exists a transition in IPR index at k,, X L, = 7.0,
for the description maximum local curvature and distance between two segments of a string.
Again, such a transition between localized and delocalized states verifies that our proposed
topological strings can server as the platform to realize the AAH model to embed nontrivial
topological protection.

(N

3
x 10

9]

kmxLq

10 20 30 40 50 60
mode number

Fig. 6. The inverse participation ratio (IPR) index for all the supported modes, as a function
of the product of the maximum local curvature and the length of string, i.e., k;y X L. One
can see that there exists a transition in IPR index at k;, X Ly ~ 7.0.

5. Conclusion

In conclusion, by combining two different concepts, geometrical string and fopological protection
together, we have predicted novel localized states in string-like trapping potential with topological
modulation. Curvature and topological protection commit together to support an entire new
class of localized states, which are robust with respect to fluctuations of system parameters and
string geometry. By combing the local curvature and global synthetic dimension together, we
have introduced for the first time this class of states, which are expected to sustain novel and
unexpected physical properties. In particular, with the reduced 1D equation in the curvilinear
coordinate, we provide the methodology to construct topological string by a sequence of parabolas,
which is equivalent to the Andre-Aubry-Harper (AAH) model. Examples are illustrated for the
localized/delocalized states and their inverse participation ratio (IPR) index as a quantitative
figure of merit. The proposed fopological strings in this work provide an alternative solution to
overcome the difficulties in manipulating the complex potentials. For the possible experimental
realization, one can easily fabricate curves in 2D surface with an arbitrary curvature. For
examples, in Ref. [26], we have experimentally demonstrated such a wave localization due to
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the confinement from the curvature in vertical cavity surface emitting lasers (VCSELs). With a
proper setting as we illustrated in this work, it is expected to realize such fopological strings in a
similar platform. It is remarkable that using topological strings one can experimentally test the
resonances and features of excitations in simulated multidimensional spaces, which can open the
way to fundamental studies of string theory and related fields.
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