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Band structures of a dipolar Bose-Einstein condensate in one-dimensional lattices
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We derive the effective Gross-Pitaevskii equation for a cigar-shaped dipolar Bose-Einstein condensate in
one-dimensional lattices and investigate the band structures numerically. Due to the anisotropic and the long-
ranged dipole-dipole interaction in addition to the known contact interaction, we elucidate the possibility of
modifying the band structures by changing the alignment of the dipoles with the axial direction. With the
considerations of the transverse parts and the practical physical parameters of a cigar-shaped trap, we show the
possibility to stabilize an attractive condensate simply by adjusting the orientation angle of dipoles. Some

interesting Bloch waves at several particle current densities are identified for possible experimental

observations.
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I. INTRODUCTION

The Bose-Einstein condensate (BEC) in an optical lattice
has provided a versatile and controllable platform to study
the condensed-matter-like properties by the atomic quantum
gases [1]. As electrons in a crystal lattice, matter waves in
laser-induced optical lattices have many similar but ubiqui-
tous interesting features due to the nonlinear atom-atom in-
teractions in BECs. Bloch waves with discrete eigenenergy
are the stationary solutions for BEC in periodic potentials.
The resulting band structures are identified by the Brillouin
zones. With the nonlinear mean-field Gross-Pitaevskii equa-
tion, the swallow-tailed loop structure at the boundary of the
Brillouin zone was first predicted by a simple two-state
model [2]. Later on, an exact solution of such loop behaviors
in the band structure was found for a particular kind of one-
dimensional lattice [3,4], and was further studied numeri-
cally by a detailed many-mode expansion method [5,6]. The
atomic band structures are related to the dynamics and sta-
bility of the condensates. The new property has attracted
intensive investigations, including the nonlinear Landau-
Zener tunneling [2,7], the Bloch oscillation [8,9], and the
stability of Bloch waves [6,10].

In 2005, a new species of dipolar BEC was realized in
addition to the alkali-metal atoms BEC systems since the
first realization in 1995. This dipolar system uses chromium
atoms, >°Cr. Each chromium atom has a magnetic dipole
moment of 6 Bohr magneton which is larger than that of the
alkaline atom [11-14]. More recently, >°Cr BEC was pro-
duced with an all-optical method [15]. For the dipolar BEC,
there is then an extra dipole-dipole interaction between at-
oms in addition to the known contact interaction in the BECs
of alkali-metal atoms. The dipole-dipole interaction is aniso-
tropic and long-ranged. So, there are new tunable parameters
from this interaction. There are renewed interests in the di-
polar BEC due to the dipole force. Namely, an unusual prop-
erty of double-peak order parameter for the dipolar BEC un-
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der certain environments was demonstrated [16]; and the
effects of the dipolar interaction to the quantum phase tran-
sition temperature was also explored [17]. The stability,
ground state, and excitations of the dipolar BEC in a trap
potential were already investigated in the literature [18-20].
It was found that the Luttinger-liquid phase persists for a
wide range of density in one-dimensioanl dipolar gas [21].
The solidlike to liquidlike phase change of the one-
dimensional dipolar system ground state with respect to the
linear density by the quantum Monte Carlo method was
shown [22]. The signature of one-dimensional dipolar gas in
the Super-Tonks-Girardeau regime was studied [23]. The
ground state phase diagram of the two-dimensional dipolar
gas was also investigated [24]. Applying the Bose-Hubbard
model to the system of dipolar BEC in a two-dimensional
optical lattice, the possibility of several quantum phases for
the ground state with different aspect ratios was elucidated
[25]. An extension to dipolar spinor BEC was also explored
recently [26]. More interestingly, a novel structure of dipolar
bosons in a planar array of one-dimensional tubes was pro-
posed [27].

The goal of this paper is to investigate the band structures
of the dipolar BEC in a quasi-one-dimensional optical lattice.
As shown in Ref. [25], in the case of extreme quantum re-
gime, there are several possible phases for the ground state
for dipolar Bosons in optical lattice. Instead of using the
Bose-Hubbard model with long-range force, mean-field
theory is applied here as the cases of nondipolar bosons in
lattice and our system parameters are within the range of
superfluid phase. The number density of atoms we consid-
ered will be quite large and without significant fluctuations.
In such a scenario, even though the effects of the transverse
confinement could wash out some of the ground states, but
effectively with the regime of a mean-field approach one
only obtains a modified one-dimensional Gross-Pitaevskii
equation with coefficients depending on the geometry of the
ground state. Instead of using the ideal pure one-dimensional
lattice model [2-6], in this work we use practical physical
parameters of a cigar-shaped trap and take into account the
effects of transverse parts. As mentioned above, with the
dipolar potential, the effects of the spatial distribution of the

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.78.023629

LIN et al.

atoms must be treated with special attentions. Our calcula-
tion follows the method of many-mode expansion in Refs.
[5,6] and the convergent results are shown. We found that the
transverse part modifies the coupling constant, and the
dipole-dipole interaction can be reduced to an effective con-
tact term with adjustable parameter 7y, which is the angle
between the aligned dipoles and the axial direction. Interest-
ingly, the band structures can be tuned by adjusting the angle
v. This is a special property of the band structures for the
dipolar BEC in optical lattices; and it is also possible to
adjust the angle vy such that a BEC with attractive interaction
can be stable without collapse.

Besides the ultracold atomic systems, artificial periodic
structures with the modulation in the refractive index in a
Kerr-type nonlinear material, known as nonlinear photonic
crystals, also share the same knowledge of such loop struc-
tures. For example, experimental observation of photonic
Bloch oscillations and Zener tunneling were reported in a
photorefractive material with configurable two-dimensional
square lattices [28]. In terms of nonlinear wave packets, pe-
riodic potentials of optical lattices in a condensate also sup-
ported the unique solution, called gap solitons [29]. Gap soli-
tons have attracted a great deal of attention due to their
controllable interaction and robust evolution uninhibited by
collapse. The swallow-tail structures are related to the split
even- and odd-numbered periodic soliton arrays [6,30]. Since
the band structures determine the dispersion relation for op-
tical waves, the results in this work also provide useful in-
formation for the studies of wave packets inside nonlocal
nonlinear photonic crystals, such as their mobilities and in-
teractions [31,32].

The rest of the paper is organized as follows: In Sec. II,
the formulation of a dipolar BEC in quasi-one-dimensional
optical lattices was derived from the three-dimensional
Gross-Pitaevskii equation with a cigar-shaped trap. In Sec.
III, we describe the method of solution based on many-mode
expansions; and the results with several sets of physical pa-
rameters are presented in Sec. IV, especially some interesting
cases of Bloch waves with zero particle current density. Fi-
nally, the discussion and conclusions are presented.

II. FORMULATION

We consider the mean-field equation for a system of N
aligned dipolar atoms in a quasi-one-dimensional lattice de-
scribed by the time-independent Gross-Pitaevskii equation,

hZ
() = {— SV Vi + Ng [V (D

+Ng, J SrVEOeE)P @, ()

Here V,mp=%ma)2l(x2+y2)+V0 sin’ (%), gy=4mh?alm, g,
= ,uo,u,,zn/ 44r, m is the atomic mass, a is the scattering length,
and w,, is the atomic magnetic dipole moment. Note that in a
cigar-shaped trap, the trap frequency for the axial direction is
much smaller than the transverse frequency w, and is thus
neglected. More specifically, we take the recently realized
32Cr dipolar BEC system as a model case. With millions of
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BEC atoms in a cigar-shaped trap modulated by hundreds of
lattice sites and the dipoles aligned in the direction p, besides
the constant g4, the dipole-dipole interaction potential in the
above equation is written as

1- 3|ﬁ ! érr’|2

VA7) = =
’ F- |}

where ¢é,,, = ‘rf—r. is the unit vector. Note that there is no con-
tact term in the dipole-dipole potential V,. Because under the
mean-field theory, an atom has been modeled as a hard
sphere with radius of the scattering length and the overlap of
two atoms is not considered.

In the cigar-shaped trap, we may assume the transverse
part of the solution stays in the ground state of the harmonic
potential, that is,

9(r) = dy(x.y) (2), 2)

where ¢g(x,y)=e‘(x2+y2)/ 2L \/Ei, is the ground state of har-
monic potential in the x-y directions, and L,,=\A/mw  is the
length scale of the transverse wave function. We approximate
the z-direction wave function in the Bloch form:

#(2) = pp(2)e™, 3)

where ¢g(z+d)=pg(z) is a periodic function for the lattice
constant d. The independent wave number k lies in the first
Brillouin zone, [-m/d,/d]. We use the scaled units A=m
=1 unless otherwise stated. For hundreds of lattice sites, the
above assumptions are valid and used often [33,34]. We label
the site index as j=-M,-M+1,...,-2,-1,0,1,2,....M
—1,M. Then the Fourier expansion is used due to the peri-
odicity in the Bloch function:

Ym
pp)= 2 e, (4)

v=—v);

where all the mode coefficients c,, are real numbers [5]; and
with the normalization condition,

| #5(2) | 2dz

one site

[M+(1/2)d
J |p(2)|*dz=(2M + 1)
—[M+(1/2)1d

=(2M+1)d[2c§]=1, (5)

one can obtain a condition for all the coefficients. Usually,
only few modes in the expansion are enough to give conver-
gent results. For the illustrations demonstrated later, we coin
the expansions with M=1,2,3,... as the 3—,5-,7—,...
mode approximation, respectively.

We multiply Eq. (1) with ¢,(x,y) and integrate over x and
y directions to obtain

hZ 2 N .
(-, ) d(z) = {‘77* Vo (%) +;ii|¢<z>|2

+Ngdf dXde’g(X’)’)zf Vd(;”j)

xqu<?'>|2d3r']¢<z>. (6)
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We can see that the transverse part modifies the coupling
constant of the contact interaction term; but even with the
approximation in the transverse part, the system is still hard
to solve due to the nonlocal dipolar interaction. The treat-
ment in the conjugate space [16] is applied to solve Eq. (6).
We first define the nonlocal potential as

Vnon]ocal(;) = f Vd(;, ;')|‘I’(;')|2d3r’ . (7)

Here the dipole-dipole interaction potential V,; depends on

the relative position 7—r'. Thus the above integral is in con-
volutional type. It can be calculated by inverse Fourier trans-
form of the product of the Fourier transform of |W(7)|> and
V(7). The Fourier transform of V() is

Ul = f drV(net’

. ~ 5 sin(ga) ~ cos(qa)}
=—47(1 -3 cos a)[ (qa)’ (qa)?
:—4?7T(1—3>c0s2 @), (8)

where «a is the angle between the vector ¢ and the aligned
dipoles. The last form comes from the mean-field theory be-
cause the value of ga is small practically [16]. The density
function in momentum space is defined as

n(q)= f ¥ (et

= f drdy y(x.y)2eare2) f dz| p(2) e

=n,(q1,.92)n,(q3), )

where with the transverse approximation, we have

202 2
n,(q1.q2) = e~ L/, (10)

Using the periodic property,

(j+3/2)d ‘ ' (j+1/2)d '
f |¢(Z)|2€lq3de - elq3df |d)(z)|2€lq3zdz,

(j+1/2)d (j-1/2)d
(11)
we find
. 2M + 1)gsd 1
n.(g3) =2 sin
2 (2M + 1)gsd
— 1)k

. D", | (12)

vty 27— v)/d + g3

Then, from the convolutional theorem, we have

1 .
Vnonlocal(;) = Q f d3qu(é))n(§)e_lq.r- (13)

In this way, we can define in Eq. (6) the effective axial po-
tential as
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Vq f(Z) = f dxdy ¢g(x’y)2vnonlocal(;) . (14)

After some reduction steps, we obtain

-1 2. 2.2 .
Vodz) = P f e 1@+ aIL2)(1 = 3 cos? a)n,(gs)e ™

Vi(z) + Vy(2), (15)

where we define

and
! gI+adL22) 2 igye 3
Vg(z)=ﬁ e DN (gs)cos® ae™ ' dg. (17)
The V, is easily worked out as

2
VI(Z)=_3TEV|¢(Z)|2- (18)

For V,(z), we need more manipulations. Due to the cylindri-
cal symmetry, we can choose p=(sin y,0,cos ) without loss
of generality, where 7 is the angle between the direction of
dipoles and the z axis, i.e.,

cos” a= (g sin y+ g3 cos Y)*/(qi + ¢3+ q3).

We first integrate over (q,,q,) in polar coordinates, with
(q1,92)=k(cos 6,sin 6), and obtain

f e[—(q?w%)Li/Z] cos? adq,dq,

* K2 sin® y+ 2¢> cos?
— f i WS YAIGCT Y, )
0 k™ + g3

The final approximated format for V,(z) is derived in the
following:

1 . .
V,(z) = Py f e 5n,(g3)[1(g3)sin® y+ 2J(g3)cos® yldgs

~ sin y|p(2) /L3 (20)

where we define I(g3) and J(g3) as
” 2 2 272
1(q5) = J e_(kzLilz)%kdk = iz + B an E{_ 613%} ’
\ 0 k* + g5 2 2
(21)

w

o0 2
(1272 q3 1
J(gqs) = j e WhD —Z—kdk=— ~1(g3), (22)
0 K+ Cl% ;

w
with the exponential integral,

®
E[-x]=- f ert with x > 0. (23)

We can see that for small value of g3, I(q3)~1/L2 and
J(g3)~0; while for a large value of g3, 1(g3)—2/(q3L})
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FIG. 1. (Color online) The band diagram with V=1, vy
=0.7377 (rad), and ng.,=1. The blue (lowest solid line), red
(dashed lines), and black (upper solid lines) lines are calculated by
1-mode, 3-mode, and 5-mode, respectively. It shows that all the
calculated results are close to each other when only the lowest three
bands are considered.

~0 and J(g3)~ 1/L%. The expression of n.(g;) shows the
dominant value at smaller values of g5. Finally we obtain the
effective one-dimensional equation for the dipolar BEC at-
oms in a quasi-one-dimensional optical lattice:

2.2 T T T T
C -
2.02 D =
N =
c &
=
M
il
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i

(24)

2 2

. (e
_ %dzz +V s1n2(g>(24)

(n—tiw,)d(z) = [

2
Z8aP(cos v)

N 2) 8s
+ — —_
L;2v|¢(Z)| {2# 3

where P, is the Legendre polynomial of the first kind. We
arrived at the conclusion that with the approximated trans-
verse part, the dipolar effects can be manipulated into an
effective contact term with adjust parameter 7y.

III. METHOD OF SOLUTION

In the previous section, we derived the effective Gross-
Pitaevskii equation in Eq. (24) for condensate dipolar atoms
in a quasi-one-dimensional lattice. In the following, we em-
ploy the many-mode expansion method for the Bloch func-
tions to solve the corresponding energy band structures [5].
The energy functional of the effective one-dimensional sys-
tem is
ﬁZ

2m

dé
dz

2
E[¢]= { +Vo Sin2<ﬂ>|¢(z)|2
all sites d

11]g 2
+ EL_i{j_;r - ggsz(Cos 7)}|¢(Z)|4}dz, (25)

here we have defined
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FIG. 2. (Color online) Part of the lowest band diagram with V=1, y=0.7377 (rad), and ng,;=1. The red dashed and black solid lines
are derived from 3-mode and 5-mode models. The absolute value of the Bloch wave function of some interested modes is also plotted.
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FIG. 3. (Color online) (a) Part of the first excited band diagram
with V=1, y=0.7377 (rad), and ng,p= 1. The red dashed and black
solid lines are derived from 3-mode and 5-mode models. (b) The
absolute value of the Bloch wave function of some interested modes
is also plotted.

f |p(2)PPdz=N. (26)
all sites

In the following, we will use the recoiled energy E,
=1?h?%/(2md?) as the energy unit, and L(=d/ ) as the length
unit. The unit cell is then [—7/2,77/2] and the quasimomen-
tum k lies in [—1,1]. The energy density functional per site €
becomes
/2 2
0= [ L1 s vy sin? o)

T (mp L1 dz
55 |¢(z)|“]dz, (27)
with the definition of number density per site
1 (m/2)
n=— f |¢(2)[dz. (28)
T 72
where the effective coupling constant is
1 g 2
AyY) ="V —-8.P . 29
geff(Y) Li,LE,{ Py 38d »(cos 7’)} (29)

In the many-mode method, the order parameter is written in
the Bloch form:

P(z) = e™ipp(2),
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Pz +m) = p(2),
[ i2uz
Yp(2) = \n 2 ¢ e (30)
M
The energy functional per atom can be recast as

1 1
€= cAk+2v)*+ Vo~ ZVOE [e(Cpir+ )]

n
+ Egeff|:] + 2, 2 ,C,ucvc,u’cv"sﬂﬂﬂ,l&v’ s (31)

MV /,LI,V,

where in the double summations, we have w# v and u'
# V', respectively. For a fixed number of modes in the Fou-
rier expansion, the energy functional (k) is minimized with
respect to the coefficients ¢,’s for a given value of quasimo-
mentum K.

For the numerical calculations, we assume that the optical
lattice is constructed with lasers of wavelength 800 nm, and
the lattice constant becomes d=400 nm. We are considering
the chromium atoms with atomic magnetic dipole moment of
6 Bohr magneton, and trap frequency w, =27 X712.5 Hz
from experimental parameters [11-14]. Thus the transverse
length scale is L,,=0.523 um. With these parameters, we
have

o) =9.868 X 107(a/ag) — 1.4913 X 107°P,(cos y),
(32)

where ap is the Bohr radius. Note that even for the case of
attractive contact interaction (negative scattering length), be-
cause —0.5< P,(cos y) <1, it is possible to tune the angle y
between the aligned dipoles with cylindrical axis, such that
the g,/ is positive for the appropriate value of scattering
length, the system will still be stable. Physically it means
that the dipole-dipole interaction is repulsive and overcomes
the attractive contact interaction with the chosen value of 7,
then the 3-body collisional loss induced collapse can be pre-
vented. Also, we can tune the scattering length a and align
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FIG. 4. (Color online) Part of the second excited band diagram
with V=1, y=0.7377 (rad), and ng,s= 1. The red dashed and black
solid lines are derived from 3-mode and 5-mode models. The abso-
lute value of the Bloch wave function of some interested modes is
also plotted.
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FIG. 5. (Color online) The band diagram with Vy=1 and ng,
=2 derived from 3-mode models. Some amplitudes of the Bloch
wave function are also plotted.

angle y such that g,— 0. The effects of contact interaction
and dipole-dipole interaction will then cancel out each other
such that the nonlinear effect has totally disappeared.

To show the properties of Bloch bands in dipolar lattices,
we assume the scattering length a to be tuned by the Fesh-
bach resonance technique to a=15.1ap such that the contact
term and effective dipolar interaction are comparable to each
other in our model. Thus our effective nonlinear coupling
coefficient in the above equation becomes

Ger(¥) = 1.4913 X 1071 = Py(cos y)].

IV. RESULTS

We first calculate the three lowest band structures for
ng.;=1 and potential height Vy=1. The condition can be

(33)
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reached, for instance, with n=1000 and adjusting the align-
ment angle y between the dipoles and the cylindrical axis to
be 42.3°. Figure 1 depicts the energy bands calculated with
1-mode, 3-mode, and 5-mode expansions, respectively. We
can see that the difference in results from the 1-mode,
3-mode, and 5-mode is very small. The swallow tail structure
appears near the zone boundary of the ground band and near
the zone center of the first excited band. Figure 2 shows
more detailed results of the ground band. We can see that the
3-mode results show no swallow tail at the zone boundary.
The calculation with at least 5-mode expansion is necessary.
We plot also the amplitude of the Bloch wave function
|¢h5(2)| for several interested values of wave number k. The
use of absolute value is because the Bloch wave is in general
complex. So, for a pure real or pure imaginary Bloch wave
function, the particle current density, j=de(k)/fdk, vanishes.
The Bloch wave amplitude at k=0 is designated as A. Near
the zone boundary and with k=0.99, they are designated as
B, B'. D corresponds to k=1, that is, at the zone boundary.
Near the tip, they are designated as C and C'. Especially, at
A and D, there is no particle current density.

Figure 3(a) shows the detailed structure of the first excited
band near the zone center while in Fig. 3(b) we show the
Bloch amplitudes. The swallow tail structure for the first
excited band with ng.=V,=1 appears only near the zone
center instead of near the zone boundary as the ground band.
The amplitude |/5(z)| at the zone boundary is designated as
A. At the value of k=0.01, the Bloch amplitudes are desig-
nated as B and B’, respectively. At the top of the band with
k=0, the Bloch amplitude is designated as D; and near the
tip, they are designated as C and C’. Again, the particle
current density j(k) for A and D vanishes.

In Fig. 4 we plot the detailed band structure of the second
excited band and the corresponding Bloch amplitude for
wave number at the zone center and the zone boundary. At
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FIG. 6. (Color online) Part of the band diagram with Vy=1 and ng,;=2 derived from 3-mode models. The absolute value of the Bloch

wave function of some interested modes are also plotted.
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FIG. 7. The band diagram with Vy=1 and ng,;=4 derived from
3-mode models.

this range of nonlinearity, the second excited band structure
is not affected much. The property is similar to a Bloch elec-
tron in periodic potential. The Bloch wave at A, k=0, is a
pure real function while at B, k=1, is a pure imaginary one.

In Fig. 5, the nonlinearity is increased to ng,,=2 and the
potential height is kept as V,=1. We can see that the swallow
tails of the ground and the first excited bands increased in
size; but the second excited band still shows no special struc-
ture. We plot in Fig. 5 also the Bloch amplitude at the zone
center and the zone boundary, designated as A and B, respec-
tively. The two Bloch waves are purely real indicating that
the particle current density vanishes. Figure 6 depicts the
ground and the first excited band structure together with
some interested Bloch amplitudes. For the ground band, A
designates the zone center, B, B’ are for the values of k
slightly smaller than k=1 at the zone boundary. C and C’
designate the places near the tip. D designates the top of the
ground band at the zone boundary. For the first excited band,
the swallow structure appears near the zone center. F and F’
have values of k=0.01. G and G’ are near the tip, and H
designates the top of the first band at k=0. We further in-
crease the nonlinearity to ng.;=4 and keep the potential
height in Vy=1. We can see that the swallow tail structures
increase much in size as shown in Fig. 7.

PHYSICAL REVIEW A 78, 023629 (2008)

V. DISCUSSION AND CONCLUSIONS

The realization of the dipolar BEC enables the study of an
ultracold system with long-ranged interatomic interactions.
We present in this work the study of the band structures of a
dipolar BEC under quasi-one-dimensional lattices. In addi-
tion to the long-ranged interaction, we take into consider-
ation the effects of transverse distributions mostly for BECs
in quasi-one-dimensional lattice. We found that the dipole-
dipole interaction and the transverse effects modify the ef-
fective coupling constant. The band diagrams of several val-
ues of nonlinear coupling constant and some interested mode
are shown. On the other hand, the many-mode solution for a
pure one-dimensional model has been studied in detail and
not pursued repeatedly in this paper [6].

We found that the alignment angle between the dipoles
and the axial direction provides a tunable parameter for
physical properties through Eq. (33). The nonlinear effect,
and hence the swallow tail in band structures, can be
changed easily by adding a small magnetic field to adjust the
alignment angle. From Eq. (32) of the effective coupling
constant, even for the system with attractive mutual atomic
interaction, it is still possible to adjust the alignment angle y
to obtain a positive value of g, such that the effective mu-
tual interaction becomes repulsive to prevent collapse of the
BEC system. It is also possible to adjust the value of y such
that the nonlinear effect vanished totally and reduced to an
ordinary Bloch lattice.

In summary, due to the dipole-dipole interaction in the
dipolar BEC in optical lattice, the system becomes versatile
tunable. Comparing to the crystalline lattice in condensed
matter physics, the dipolar BEC in an optical lattice will be
an interesting system in band structure study. With such a
tunable swallow-tailed loop in the band structures, interest-
ing dynamics of the condensates between intraband and in-
terbands are believed to be observed within current experi-
mental technologies.
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