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Quantum phase transitions of light in the Dicke-Bose-Hubbard model
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We extend the idea of quantum phase transitions of light in an atom-photon system with a Dicke-Bose-
Hubbard model for an arbitrary number of two-level atoms. The formulations of eigenenergies, effective Rabi
frequencies, and critical chemical potentials for two atoms are derived. With a self-consistent method, we
obtain a complete phase diagram for two two-level atoms on resonance, which indicates the transition from
Mott insulator to superfluidity and with a mean excitations diagram for confirmation. We illustrate the gener-
ality of the method by constructing the dressed-state basis for an arbitrary number of two-level atoms. In
addition, we show that the Mott insulator lobes in the phase diagrams will smash out with the increase of atom
numbers. The results of this work provide a step for studying the effects with combinations of Dicke-like and
Hubbard-like models to simulate strongly correlated electron systems using photons.
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I. INTRODUCTION

Quantum phase transition (QPT) is the phase transition
that can only be accessed at absolute zero temperature by the
change of an external parameter or a coupling constant
driven by quantum fluctuations [1]. QPT has attracted inten-
sive studies in interacting many-body problems, originally
for strongly correlated electronic systems in condensed mat-
ter physics [2], and more recently for a weakly interacting
ultracold atomic system [3]. Typically, it is difficult to con-
trol and probe such exotic quantum phenomena in strongly
correlated systems of electrons. Optical lattices, artificial
man-made crystals by interfering laser beams, offer a versa-
tile platform for studying trapped Bose gases. In this situa-
tion a Bose-Hubbard model including on site two atoms in-
teraction and hopping between adjacent sites is used for
describing the many-body dynamics from a Mott insulating
to a superfluid phase in a gas of ultracold atoms with peri-
odic potentials [4].

Instead photons are noninteracting bosons, and there is no
possibility to have any quantum phase transitions in purely
photonic systems. For a pure Bose system, the conducting
phase at zero temperature is presumably always superfluid
[5]. However, engineered composites of optical cavities,
few-level atoms, and laser light can form a strongly interact-
ing many-body system to study the concepts and methods in
condensed matter physics from viewpoint of quantum optics.
In this case, a photonic condensed-matter analog is possible
realized with state-of-the-art photonic crystals embedded
with high-Q defect cavities. Therefore photons interacting
with atoms should be much easier to study and probe the
critical quantum phenomena such as QPTs in conventional
condensed matter systems [6]. The simplest light-atom sys-
tem is photons interacting with a single two-level atom
(TLA), described by the Jaynes-Cummings model [7,8].
With an array of high-Q electromagnetic cavities each con-
taining a single TLA in the photon-blockade regime, quan-
tum phase transitions of photonic insulator (excitations local-
ization) to superfluid (excitations delocalization) are
predicted by the Bose-Hubbard model [9,10] and the XY spin
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model [11]. Recently the related quantum transitions also
have been predicted in a Heisenberg spin 1/2 Hamiltonian
[12], two species Bose-Hubbard model [13], and solved ex-
actly in the one-dimensional case [14].

As the number of TLASs increases, collective effects due
to interactions of atoms among themselves give rise to in-
triguing many-body phenomena [8]. In quantum optics the
Dicke model describes the collective spontaneous emission
of an initially excited ensemble of N TLAs interacting with a
common photon field [15] and has triggered numerous inves-
tigations of various physical effects. A collection of atoms
prepared in a certain initial state could decay collectively like
a huge dipole with the emission of radiation not proportional
to the atom number N but to N2, with a phase transition
between a normal to a superradiant state [16]. Actually,
when the maximal distance between any two TLAs is much
less than a typical wavelength, the coupling interaction for
the photon field no longer depends on the individual coordi-
nate of the atoms but on the collective pseudospin coordi-
nate. One has to add these pseudospins of N TLAs up to a
single large pseudospin which is described by the collective
angular momentum operators [8].

The Dicke model itself can offer the possible insights in
the nature of QPT. With a size-consistent Hamiltonian for the
Dicke model, squeezing of the photon field carries signatures
of the associated quantum critical phenomena [17]. QPTs of
the Dicke-like and Bose-Hubbard-like models are both well-
studied in optical and condensed matter systems, but the
combination of these two models are never studied. In this
work, we extend the idea of QPTs of light in atom-photon
interacting systems proposed recently [9—11], from a single
TLA interaction system described by the Jaynes-Cummings
model to an arbitrary number of TLAs by the Dicke model.
The problem we address here is N identical TLAs which
couple to a single mode quantized radiation field within ideal
photon cavities in the photon blockade regimes. With a self-
consistent method, we numerically demonstrate that Mott-
insulator to superfluid quantum phase transitions exist even
in the Dicke model for an arbitrary number of two-level at-
oms interacting with photons. Detailed calculations of sys-
tem eigenenergies, effective Rabi frequencies, and the criti-
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cal chemical potentials for two TLAs are derived. The results
of this work provide a more general picture for simulating
strongly correlated electron systems using photons.

This work is organized as follows, in Sec. II, we describe
the Dicke-Bose-Hubbard model used for studying QPT of
light. The eigensystem solutions based on the dressed-state
bases for two atoms are derived in Sec. III. Results of mean-
field phase diagram, average excitations, and the extension to
an arbitrary number of TLAs are given in Sec. IV. Section V
gives the conclusion.

II. DICKE-BOSE-HUBBARD MODEL

Followed by the proposal by Greentree er al. [9], the
Bose-Hubbard model can be extended to realize the Mott-
insulator to superfluid phase transitions in a two-dimensional
(2D) photonic band-gap cavity network by including atom-
photon interaction. The Hamiltonian for our extended Dicke-
Bose-Hubbard model is given by combining photon hopping
between identical cavities in the photon-blockade regimes
and the repulsive on-site TLAs interaction with the presence
of one-site energy chemical potentials,

H=2 H - k> aja;— u2 N, (1)
i ij i

where i,j are the index for the individual cavities and range
over all sites, N, is the total number of atomic and photonic
excitations. The second and third terms in the Hamiltonian,
Eq. (1), are Bose-Hubbard-like Hamiltonians. The conserved
particles in our system is the on-site total excitations N;
=ala+J}J7, where a] and a; are the photon creation and
annihilation operators, and J; =E_j0';,fl- =307 are the collec-
tive raising and lowering angular momentum operators, re-
spectively. These conserved quantities are not pure photons,
but the dressed photons which are mixtures of atoms and
photons. We have assumed that all the intercavity hopping
energy of photons k;=k and the chemical potential in the
grand canonical ensemble u; = u have no difference between
cavities. The implementation of such a photonic condensed-
matter analog was originally proposed in Ref. [9]. The first
term in Eq. (1) is the onset Hamiltonian for N TLAs inter-
acting with a single mode field within a photon cavity, given
by the Dicke model, i.e.,

H™ = eJ7J; + waja; + BlaJ} +alJ;), (2)

where ¢ is the transition energy for the TLAs and w is the
radiation field frequency. The cavity mediated atom-photon
coupling energy 3 is assumed to be real here. A superfluid
order parameter ¢ which is indeterminate at the point of the
phase transition is introduced for the studying of the QPTs in
our Dicke-Bose-Hubbard Hamiltonian. The system is in the
superfluid phase for a nonzero order parameter ¢# 0, while
in the insulator phase for a zero order parameter ¥y=0. With
the mean field assumption (aj): ", we take decoupling ap-
proximation to investigate our Dicke-Bose-Hubbard Hamil-
tonian, i.e., aja;="a;+ ya] - |¢4* which is proportional to .
Then the on-site mean-field Hamiltonian of Eq. (1) reads
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Here we assume that the superfluid order parameter is a real
number, =y, since the averaged electrical fields are real.
This mean-field Hamiltonian is assumed to be the same for
every site. Furthermore, without bothering the number of
nearest neighbors around each ideal photon cavity, we select
three nearest neighbors per cavity in our simulation for the
reason that it dose not actually affect our numerical results
[9]. The interaction part B(aJf+alJ;) in Eq. (2) actually
does not change the field energy and commutes with arbi-
trary functions of the photon-number operator. Hence we
choose the eigenstates of the total excitations N; to be the
bare states for the Dicke-Bose-Hubbard Hamiltonian. Conse-
quently the subspace of N, excitations spanned by N,;+ 1 vec-
tors is given by the direct product of atom and field states,
i.e., |atom)|photon) [18,19].

In the following, we choose two TLAs as an example,
N=2, for a clear illustration. The extension of the Dicke-
Bose-Hubbard Hamiltonian for an arbitrary number of TLAS
is given in Sec. IV, which can be easily calculated by the
same approach. For two TLAs, the bare states are
|0,e®2)|n-2), |g,e)ln—1), and |g®2,0)|n) with photon num-
ber n which runs from 0, 1, 2, 3 to 0. In our notation the
collective angular momentum eigenstates that describe the
two TLAs are denoted as |O,e®2> for the case that the two
atoms are in the excited state, |g,e) for the case only one
atom is in the excited state, and | g®2,0) for the case that the
two atoms are in the ground state. These three bare states are
the normalized symmetric eigenstates of the noninteracting
part eJ7J; + wafai in Eq. (2). We neglect the dipole-dipole
interaction, J;L J; ,i#j, and represent the two TLAs interact-
ing with the same cavity field simultaneously in an idea pho-
ton cavity. For arbitrary excitations, in order to calculate the
transition amplitude of Eq. (3), we use these three complete
symmetry degenerate bare states replete with photons as the
bases, i.e.,

0,e“%)|0),

g.0)[1),g9%,0)[2),

|0,e22)1),|g,e)[2),]g%%,0)3),

0,e®?)|k - 2),

g7e>|k - 1>’ g®2’0>|k>v

|0,e%%)|n -2),

g.e)n-1), g®2,0>|n).

Here totally 3n bare-state bases form a group for the whole
Hilbert space. Based on these on-site bases, we construct a
3n X 3n transition amplitude matrix for Eq. (3) with n=2,
ie.,
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[ 2 — 2 V283 0 — K
V28 2e+w-—3u V4 0 —V2ky
0 V4B 2w — 2u 0 0 —V3k)
— kK 0 0 2 +w — 3p Vap 0
HYT = —VBry 0 VA8 242w —4du VB3
—V3ryp 0 V63 3w — 3
—V2ry 0 2+ (n — 2w — np V2(n —1)8 0
VER=DB  2e+(n-lDw-(n+Lu VI8

i 0 V2nj nw — np
+rlep%. 4)

Equation (4) is the starting matrix elements for our Dicke-
Bose-Hubbard Hamiltonian with a mean-field assumption.

III. EIGENSYSTEM SOLUTIONS

In general it is very difficult to diagonalize Eq. (4) and
find out all the desired dressed states even for two TLAs.
However, it may be instructive to diagonalize part of the
Hamiltonian by assuming =0 for the mean-field Hamil-
tonian; and a self-consistent method is applied for the case of
# 0 numerically. In Eq. (4), those entries in the boxes cor-
respond to the block diagonal form of Eq. (2) with u=0
therein, and the numbers of excitations in each block in-
creases by one. As a matter of fact, we use the entries of the
last box to calculate the corresponding eigenenergies and
eigenstates. Nevertheless, the analytic eigensystem solutions
for nonzero detuning are very complicated, and we now fo-
cus on the case of zero detuning. In the follows we assume
the system is on resonance, i.e., the atomic frequency is the

e“Hln=2)+ 555 * R(n.3)]

same as the field frequency e=w. In an idea photon cavity,
when the two TLAs are excited, the rest of the photons will
be dressed by the two TLAs. The interaction, the last term in
Eq. (2), couples the three bare states in the same excitation n
manifold. The eigenstates and eigenvalues are derived in
Eqgs. (5)—(8) for the center (E,),
(E|« ,),|*,n)) branches. The eigenspectrum splits naturally
into three branches, corresponding to the upper branch E|, ,,
center branch Ej ), and the lower branch E|_ .

|t,n =

where we introduce an effective Rabi frequency as R(n, %) to
have a clear picture of the photon-atoms interaction in our
two TLAs system, which for n photons has the form

R(n,lg> =14/82n- 1)+(E) .

Figure 1 shows the normalized eigenenergy spectrum for two
TLAs with the extended Dicke-Bose-Hubbard Hamiltonian.
The interaction part, B(aJ? +a:fJ17 ), in Eq. (2) leads the 3n
bare states to couple together and form the normalized
dressed states. These three dressed states for the n=1 exci-

9)

V-l £

E|O,n> =nw, (5)
—n = 1]0,e2)n = 2) + Vnlg®%,0)|n)
= , ., (6)
\2n-1
(2n+1)w = BR(n,%)
|£n) = > 3 (7)
g.e)n—1)+\n—1|g2,0)|n)
(8)

Rn )l ’

tation manifold in Egs. (5)—(8) can be reduced to the so-
called triplet states and the isolated singlet state,
Our definition for the dressed states which extend to n=0 is
shown in Fig. 1, and we define the ground state for the
dressed-state system as with Ejg 0,=0. With a nontrivial
form of the raising operator, the ground state for the Dicke
Hamiltonian is qualitatively different from other dressed
states in Eq. (6). The branches emerge at large resonant fre-
quency, and the splitting increases with larger photon num-
ber, n, given by the effective Rabi frequency.

The effective Rabi frequency induced here can be used as
a measurement for the energy splitting between the two

033827-3




SOI-CHAN LEI AND RAY-KUANG LEE

Normalized eigenenergy

4
Resonant frequency® / B

FIG. 1. (Color online) Eigenspectrum for two TLAs in the
Dicke-Bose-Hubbard model, as a function of the eigenenergy (nor-
malized to £) to the normalized resonant frequency w/ 3 for differ-
ent photon numbers. The eigenspectrum splits naturally into three
branches, which are shown as positive E|, ,y (upper), center Ejg
(centered), and negative E|_,, (lower) with the corresponding
dressed states, |+,n), |0,n), and |—,n), respectively.

states. For different photon numbers, the dressed states de-
scribed in Egs. (5)—-(8) oscillate with a different Rabi fre-
quency which is not only proportional to the photon number
of the field but also with a dependence on the dimensionless
resonant frequency w/ B as well. The dependence of the ef-
fective Rabi frequency on the photon number # for different
normalized resonant frequency w/ S is shown in Fig. 2. From
bottom to up we count the corresponding effective Rabi
frequency for different photon number eigenstates of |-, 1),
|-,2), |-,3), and so on.

With the dressed-state formalism in Egs. (6)—(8), we can
explain the features of Mott-insulator to superfluid QPTs by
a simple explanation [21]. Under the action of the Hamil-
tonian and the atomic population inversion operator, the
whole Hilbert space splits into one- and two-dimensional
subspaces with n photons which are decoupled. The prob-
ability amplitude of terms |0,e®?)|n—2) and |g®?,0)|n) in
Egs. (6) and (8) achieves a saturate value when the number
of photons increases. These dressed states are time indepen-
dent and with constant amplitude, therefore when the atom-
field system is prepared in a dressed state the atom remains

10°
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n=1

Effective Rabi frequency,R (n,0/ )

10 - - -
-10 -5 0 5 10
Resonant frequency, ® /

FIG. 2. (Color online) Effective Rabi frequency R(n,w/B) de-
fined in Eq. (9) vs normalized resonant frequency w/f.
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FIG. 3. (Color online) The critical chemical potential
uo(n,w/ B) vs normalized resonant frequency w/ 8. The value of u,
saturates as w/f and n increase.

stationary [22]. Since we know these dressed states and their
corresponding eigenenergies in Egs. (5)—(8), the correspond-
ing wave function and the dynamics of the system will be
just the superposition of them in addition to a phase term
exp(=iEjfg +3 ).

In order to determine the ground state, we assume that
E|_ ,y<E|; n, 1.e., the negative branch has lower eigenenergy.
The three degenerate bare states for the n excitation
manifold form the dressed states at three energies, i.e.,
n;—;—%[R(n, e)_e] ng, and n%+%[R(n, %)—ﬁ] The princi-
pal feature of the Rabi frequency spectrum in Fig. 2 is easily
understood in terms of the dressed states |+,n) and |-,n) in
Eq. (8) which are separated in energy by an amount R(n, %)
On the other hand, the center branch appears to be one of the
two branches E, ,_y and E|_,, asymptotically.

To derive analytical solutions for the dimensionless criti-
cal chemical potential, we use the same definition in Ref. [9]
and substrate the negative branch energies, i.e., the critical
chemical potential equals to E|_,.y—E|_ ), for that the sys-
tem will change from n to n+1 excitation per site and have
the formula for different photon numbers, i.e.,

T = [ TR(0 s 1.5) - k(o )]
- 2\2n(n-1) |

(10)

As one can see in Fig. 3, the critical chemical potential satu-
rates to a constant value as the normalized resonant fre-
quency and the photon number increase. This should be a
suitable parameter for experimental observation [23]. In or-
der to calculate the ground state wave function of our gen-
eralized Dicke-Bose-Hubbard Hamiltonian we numerically
solve Eq. (4) by applying a self-consistent method. When the
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FIG. 4. The convergence of the ground state energy for different
photon numbers.

photon number of the system increases, the ground state en-
ergy E, will converges to the true ground state of the system.
In Fig. 4, we show the typical convergence of the ground
state energy by increasing the photon numbers, which would
quickly reach the minimum ground state energy for photon
number up to n=30. When stimulated with light, the interac-
tion of each cavity with an ensemble of these atoms gives
rise to a composite optical-atomic state as in Egs. (5)—(8).
However, if the photon number n is smaller than or just equal
to the atom number N, the quantum phase transition of light
from Mott-insulator to superfluid does not occur. Instead the
quantum critical phenomena of the Dicke model exhibits an
infinite sequence of instable quantum-phase-like transitions

[18].

IV. RESULTS
A. Mean-field phase diagram

After deriving the formulations for two TLAs in our sys-
tem, we calculate the phase diagram for the Dicke-Bose-
Hubbard Hamiltonian in Eq. (3) for two TLAs by applying
the mean-field theory and the self-consistent method, as
shown in Fig. 5. Clear quantum phase transitions can be seen
in the diagram for different normalized intercavity hopping
energy of photons «/ 3 and different relative chemical poten-
tial (u—w)/B. Here the notation SF refers to a superfluid
phase with strong interaction of photon hopping; and the
notation MI refers to a Mott-insulator phase with an equal
number of photons in each cavity, such as the case of one
TLA and one photon in each cavity [9,11]. The Mott-
insulator to superfluid phase transitions occurring for the
case of the photon number are much larger than the atom
number, N<n. We give a simple picture for the QPTs of
light in our system. As photons pass through an array of
high-Q cavities with two TLAs per site, there is an upper
limit for the energy of the two TLAs as all the atoms have
been excited by two photons to the upper level. When the
third photon enters the cavity, the excited two TLAs will
dress up photons and force them to hop due to a large Kerr
nonlinearity [13,24]. At the end, interacting photons are not
independent to each other due to the interactions from effec-
tive on-site repulsion (a photon blockade mechanism) and
intercavity hopping with their proximity. In such a way the
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Relative chemical potential, (p-o)/p
Superfluid order parameter, ¢

Photon hopping, x/B

FIG. 5. (Color online) Phase diagram of the mean-field Hamil-
tonian for the ground state on resonance, shown by the normalized
intercavity hopping energy of photons /3 and the relative chemi-
cal potential (u— )/ B. The notation SF refers to a superfluid phase
with strong interaction of photon hopping while MI refers to a
Mot-insulator phase with an equal number of photons in each cav-
ity. In the insulator region |0,0), |-,1), and |—,2) denote the nega-
tive branches of the dressed states where the system will change
from n to n+1 excitation per site simultaneously filling photons in
cavities and resulting in a finite gap of the spectrum.

two TLAs are strongly correlated. In the limit of infinite
photon number, n— <, Eq. (10) becomes

i ( ‘”) 0
im u\n,—|=0,
o B\ g

and from Fig. 3 we can see that when n=30 the chemical
potential almost goes zero. It means that photons start to hop
between cavities, which implies a phase of superfluid.
Change of the critical chemical potential results in the
change of the on-site numbers of photons, as shown in Fig.
5. Regarding the on-site chemical energy w, the regions to
the right correspond to chemical potential u# 0 [1]. In the
insulator region |0,0), |-, 1), and |-,2) denote the negative
branches of the dressed-states where the system will change
from n to n+ 1 excitation per site, simultaneously filling pho-
tons in cavities and resulting in a finite gap of spectrum. The
superfluid phase is the eigenstates of a; and excitations over
the |—,n) branches in Fig. 5. The probability of finding the
average photon number 7 in this regime obeys Poisson dis-
tribution. With increasing laser intensity x< 3, we have
strong interactions. It is the most important regime with rich
dynamics where the on-site repulsion dominates with an
equal numbers of photons in each cavity as one can see on
the left in Fig. 5. This region is corresponding to a constant
density of photons filling in cavities simultaneously. In this
situation each site has exactly the same integer number of
photons with a strongly on-site coupling regime. A finite gap
of spectrum is formed and photons here are incompressible,
resulting in an insulator phase on the other hand [3,5,25].
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B. Average excitations

Another way to indicate QPTs in our Dicke-Bose-
Hubbard Hamiltonian is to study the average excitations. We
minimize the ground state energy with respect to the order
parameter, ¢, and take the derivative of the ground state
energy with respect to u. Theoretically, we can consider the
problem by fixing the chemical potential by varying photon
numbers in the grand-canonical ensemble and the derivatives
value can be expressed by the ensemble average, i.e.,

IE (K, 1)

. (11)
0-"“ “b:(/lmin

p= -

The mean excitations for two TLAs in our systems are
shown in Fig. 6. It can be clearly seen that the density of the

10,eM]0). g e)1), -+

10,e*M[1.[g* N, e)]2), -+ [g.e*M)N),

0,e®M)|n - Ny, |g® NV e)n-N+1), -

Strong coupling with many excitations is expected to be first
observed for a small number of N [26], there we provide
numerical results for a comparison from a smaller to a larger
value of atom numbers N. By taking the limitation of an
arbitrary number of TLAs with fixed photon numbers up to
30, we obtain the Mott-insulator to superfluid phase dia-
grams for the number of TLAs from N=3 to 10 in Fig. 7,
respectively. Increasing the number of TLAs with the same
amount of deposited photons results in an insulating to su-
perfluid phase transition which is characterized by the MI-SF
transitions of regular bosons on the regions above the first
lobe. The value of « at the tip of the nth Mott lobe varies as
~ for large N. There is no energy barrier to the addition of
extra photons and superfluidity occurs at arbitrarily small «
[5]. When the limits N—c0 and B fixed, the Dicke Hamil-
tonian in the thermodynamics limit removes macroscopic su-
perposition states of the radiation fields, then one has a single
macroscopic coherent radiation state and the superposition of
dressed states disappears [27]. We can thus conclude that as
the number of TLAs increases, superposition states may be
disappearing and classically emerges.

V. CONCLUSION

With the Dicke-Bose-Hubbard Hamiltonian, we show that
the Mott-insulator to superfluid quantum phase transitions

g,e®(N_1)>|N_ 1>’

0,e*M|k - N, |g® NV )k -N+1), -
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incompressible Mott-insulator phases does not change with
the change of the relative chemical potential, and the value
of the relative chemical potential jumps discontinuously
through a lobe. Regions with varying p have coherent states
as ground state configurations. In fact, we use the mean ex-
citations to confirm the numbers of photons in each Mott
lobe, and it is the mean excitation p. On can view these
average excitations for the evidences of the phase transitions
and lobes manifest in Fig. 5.

C. Extension to arbitrary number of TLAs

For an arbitrary number of TLAs, N, and arbitrary number
of photons, n, we use the following general bases for Eq. (3)
to solve our Dicke-Bose-Hubbard Hamiltonian:

N, 0)|N),

N 0N+ 1),

gD+ N - 1),

gV, 0)k),

g, e® NN+ N-1),

g, 0)n).

with photons can be realized in an extended Dicke model for
an arbitrary number of two-level atoms. We illustrate the
generality of the method by constructing the dressed-state
basis for an arbitrary number of two-level atoms. Moreover,
we show that as the number of TLAs increases, superposition
states may be disappearing and classically emerge. With
more controllable light-wave technologies, the understanding
of quantum phases transitions of light with distinctive prop-

2 excitation

1 excitation

0 excitation

mean excitations, p

FIG. 6. (Color online) The mean excitations for two TLAs. The
first few plateaus indicate constant density regions of the excitations
0, 1, and 2 which correspond to the ground state configurations
0,0), |-, 1), and |-,2), respectively.
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(@) 3TLAs

(c) S5TLAs

(e) 7TLAs

b
al

Relative chemical
potential, (u-w)/B

(b) 4 TLAS

(d) 6 TLAs

() 10TLAs

PHYSICAL REVIEW A 77, 033827 (2008)

FIG. 7. (Color online) The
phase diagrams for arbitrary num-
ber of TLAs, (a) N=3, (b) N=4,
(¢c) N=5, (d) N=6, (e) N=7, and
(f) N=10. The axes of horizontal
and vertical are defined the same
as in Fig. 5. The phase boundary
between MI-SF is the superposi-
tion states that disappear and re-
sult in a single macroscopic coher-
ent radiation state for a large
number of TLAS.

10°

Superfluid order parameter,i

Photon hopping, «/B

erties, organizations of the ground state wave function, and
practicable new applications should make it more easy to be
realized. With combinations of Dicke-like and Hubbard-like
models to simulate strongly correlated electron systems us-
ing photons, we believe that there would be more and more
interesting quantum phase transitions of light to be demon-
strated as those in condensed matter physics.
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