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Bragg solitons in nonlocal nonlinear media
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We derive nonlocal coupled-mode equations for a Bragg grating embedded in a medium with nonlocal
nonlinearity. Using these equations, we study the oscillatory instability of nonlocal Bragg solitary waves and
demonstrate that collisions between them result in fusion into a standing pulse (or breather), possibly with
generation of additional jets, in a broad range of parameters. The results are explained by considering the effect
of spatial dispersion induced by the nonlocal nonlinear response.
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I. INTRODUCTION

Photonic crystals (PhCs) have become a ubiquitous con-
cept in modern optical physics and engineering. Using the
Bragg reflections, one can engineer desirable modifications
of dispersion relations for the transmission of light in PhC
media. In particular, the group velocity can be controlled by
detuning the wave from the exact Bragg resonance [1]. With
the properly designed dispersion at relevant wavelengths,
PhCs provide unique possibilities for the implementation of
optical sensing [2], photonic circuits [3], optical signal pro-
cessing, and optical computation networks [4,5]. As a result
of the interplay of the material Kerr nonlinearity and the
band-gap spectrum of the PhC, robust gap solitons or, more
generally speaking, Bragg solitary waves (BSWs) can be
formed in the band gap, as was predicted theoretically [6,7]
and demonstrated experimentally in optical fibers with the
grating written in the cladding [8]. On a par with the tempo-
ral BSWs, spatial Bragg solitons were predicted too in Kerr-
nonlinear planar waveguides equipped with a spatial grating
[9,10].

Combining the benefits of PhC modes and ordinary soli-
tons, the BSWs have a great potential for fundamental and
applied studies in photonics. The stability of BSW families
against oscillatory perturbations [11-13] and the related
modulational instability [14] have been studied in detail.
BSWs in supergratings [15-21] and the mobility of solitons
in lattice potentials [22], as well as collisions between soli-
tons in the standard model [23] and in generalized ones, with
the cubic-quintic nonlinearity [24] or dispersive reflectivity
[25], have been studied too. BSWs have drawn special atten-
tion due to their ability to generate slow-light solitons in
apodized [26-28] and chirped [20] gratings, as well as by
decelerating the pulses by way of collisions between them
[23,25].

It is also known that nonlocal nonlinearity helps to sup-
press symmetry-breaking instabilities of solitons when the
correlation radius of the dielectric response becomes compa-
rable to the transverse size of the soliton [29,30]. In the pres-
ence of the nonlocality, interactions between solitons vary
broadly due to the action of long-ranged forces [31]. An
example of such nonlocal media is a nematic liquid crystal
with tunable nonlocality, which results from the control of
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the molecular orientation by the external electrical field [32].
Regarding gap solitons, nonlocal nonlinearity may stabilize
them against the modulational instability due to reduction in
the effective nonlinearity [33,34], and enhance their mobility,
which may be explained by the diminution of the Peierls-
Nabarro (PN) potential barrier in PhC [33,34].

In this work, we first aim to derive nonlocal coupled-
mode (CM) equations, following the general procedure of
the derivation of the Bragg model equations in the spatial
domain, from nonlinear Schrodinger equations governing the
wave transmission in a one-dimensional PhC with the shal-
low modulation of the refractive index and nonlocal nonlin-
earity, which is done in Sec. II. Then, in Sec. III we investi-
gate oscillatory instabilities of a numerically found family of
BSWs in nonlocal nonlinear media with a generic nonlocal
response of the diffusion type. In Sec. IV we study collisions
of counter-propagating BSWs in the medium of this type. A
parameter region in which two colliding BSWs merge into a
standing wave is identified, turning out to be much larger
than in the standard model [23]. We explain the significantly
enhanced interaction between BSWs in this nonlocal me-
dium in terms of its effective spatial dispersion. The results
clearly suggest that the nonlocal nonlinear response can sup-
press oscillatory instabilities in BSWs, and that a weak non-
local nonlinearity offers a promising way to generate slow-
light solitons via collision between BSWs.

II. DERIVATION OF NONLOCAL
COUPLED-MODE EQUATIONS

To derive the nonlocal version of CM equations, we start
with the usual nonlocal model in the spatial domain, which
includes a periodic potential representing the grating. In the
normalized form with dimensionless coordinates, the equa-
tions are

i¢z == %qsxx + [I’l —€ COS(GX)]QS’

%, (1)

where ¢ is the local amplitude of the electromagnetic wave,
z the propagation distance, x the transverse coordinate, and

n_dnxx=|¢
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n(x,z) a local perturbation of the refractive index induced by
the nonlocal response. Coefficient d determines the correla-
tion length, ~1/d, of the respective nonlocal kernel, while
G and € are the wavenumber and strength of the grating,
respectively.

To derive the CM equations from Egs. (1), we assume, as
usual, that in the first band gap the solution to the nonlocal
equations is represented by a superposition of two counter-
propagating wave packets [35],

b(x,z) = %e[U(x,z)exp(ti/Z) + V(x,z)exp(—- iGx/2)],
()

and substitute it into Eq. (1). Keeping only first derivative of
the slowly varying amplitudes, we obtain

dU GaU (G\? € o €
i—+i-— == | U=-|=|(noU+neV)+-V=0,
Jz 2 dx 2 4 2
3)
9V GavV [G)? € ‘i €
i——i—— == | V= || (nyV+neU)+-U=0,
9z 2 dx 2 4 2
4)
d2n0
—d— =|U+ |V, 5
m-d2 = |UP 4| s)
d2n1 « 1Gx
nl—dﬁzUVxe , (6)

where n is the slowly varying part of the local perturbation
of the refractive index. Assuming that the bandwidth of Fou-
rier transforms of functions U and V is much smaller than G,
Eq. (6) can be easily solved by means of the Fourier trans-
form, n; =(1+dG*»)~'UV* exp(iG§), or more explicitly

A

U V' ® 8k,-G)
ny=

1+ di?

, (7)

where ® stands for the convolution and 7, l}, and \7 are the
Fourier transforms of n;, U, and V, respectively. Making use
of this approximation, one can readily derive the CM equa-
tions for the nonlocal medium in the final form

oU U 1 [V[?
i—+i—o—Z|n+ 5 |U+V=0, (8)
dn  d¢& 2 1+ Dg
U 9V 1 |U?
i——i——~|ng+———|V+U=0, 9)
an  9E 2 1+ Dg
072710
D— =|UP+|V]?, 10
m =D =|UP+] (10)

where n, is the slowly varying part of the local perturbation
of the refractive index, and 7= €z/2, é=ex/G, D=dée*/ G2,
and g = G?/e. Starting with the wave equation incorporating
the instantaneous nonlocal response, instead of Eq. (1), one
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FIG. 1. In panels (a) and (b), the plots of real and imaginary
parts of fields U(&) and V(&) (denoted by the respective Gothic
symbols) represent generic examples of the Bragg solitons in the
local and nonlocal models, respectively, with D=0.5, #=0.3, and
v=0.2. The solid and dashed curves show, respectively, the real and

imaginary parts of U(&) and V(9).

will end up with a counterpart of the CM system in Eqs.
(8)—(10) in the temporal domain, with 7 being the scaled
temporal variable. In the latter case, the model is valid pro-
vided that it describes the nonlinear evolution which is much
slower than the relaxation of the nonlocal changes in the
refractive index. In the limit of the local response, the latter
model can be reduced to the standard system of local CM
equations in the Kerr medium, with the ratio of the (self/
cross-)phase-modulation coefficients equal to 1/2 [6,7].
BSWs residing in the first Bragg band gap—generally
speaking, with spatial tilt or velocity v—can be looked for

as {U(&; 1), V(& n)}={U(&),V(&)}exp(ig7n). In the linear ap-
proximation, Eq. (10) decouples from Egs. (8) and (9). The
linearization of the two latter equations give rise to the same
band gap and constraint on the spatial tilt (velocity) of ob-
lique (moving) modes as the standard CM system, i.e., sev-
erally, ¢g><1 and v*>< 1. Thus, the propagation constant for
BSWs may be chosen in the same form as in standard solu-
tions [6,7], g=cos 6, which covers the whole gap while pa-
rameter 6 varies in interval 0 < #<<sr. Thus, one may param-
eterize the entire soliton family by the pair of # and v.

The BSW family was constructed as a numerical solution
to Egs. (8)—(10) with boundary conditions U(*), V(*®)
=0. The results may be adequately represented by fixing g
=4 in Egs. (8)—(10). Examples of the corresponding local
and nonlocal solutions are displayed, respectively, by solid
and dashed lines in Figs. 1(a) and 1(b), for D=0.5, 6=0.3,
and v=0.2. The boldfaced and lightfaced curves show the

real and imaginary parts of U(£) and V(£). The entire family
of the nonlocal Bragg solitons is represented in Fig. 2 by
means of the curve showing the total power,

sz V(P + V(O e, ()

versus parameter = arccos ¢. In the presence of the nonlo-
cality, the power necessary for the formation of BSWs in-
creases against their counterparts in the local medium, simi-
lar to the situation known in other nonlocal models [29-34].

The nonlocal response function employed in the above
analysis is assumed to correspond to a steady state, with the
duration of the nonlinear interaction much longer than the
time scale of the diffusional relaxation of perturbations of the
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FIG. 2. The total power, Q, of the Bragg solitons in local (solid)
and nonlocal (dashed) media versus the intrinsic parameter, 6,
which is determined by the propagation constant, g=cos 6, for non-
locality D=0.5, and v=0.

refractive index. Real optical media to which this nonlocal
model applies are photorefractive crystals [37,38], whose
nonlocal nonlinearity results from the photovoltaic effect and
diffusion-driven charge transport with a typical response
time on the order of hundreds nanoseconds [39]. In other
media—for instance, liquid crystals [40-42], thermal-optical
materials [43,44], and even plasmas [45]—direct observation
of nonlocal nonlinearities of the diffusion type was also
reported.

III. OSCILLATORY INSTABILITY
OF THE BRAGG SOLITONS

Oscillatory instabilities is a well-known property of mul-
ticomponent solitons, which ensues from a collision of two
originally stable eigenvalues of small-perturbation modes
[12,14]. In the model of the local medium, the oscillatory
instability was found within the framework of the standard
CM system [11,12,36]. However, the analysis of this insta-
bility, based on either the Fourier decomposition or a finite-
difference scheme, was reported to provide poor accuracy
and spurious eigenvalues [11,36,46]. Therefore, for the
BSWs in the present nonlocal model, we study the oscilla-
tory instability by finding zeros of the Evans function in the
wedge space [47,48], using the linearization of the CM
equations.

First, solutions are substituted into the CM equations in an
explicitly complex form, U =R +iP, ,‘7=R2+iP2, which
converts Egs. (8) and (9) into a matrix equation,

1 1 o, 0
T- E"OI]Y‘F 2(1 +Dg2)( 0 ag>Y°’
(12)
where Yo(€, 7)=[R,,R,,P;,P,]", the matrices are defined as

( 0 0'0) ( 0 0'3)
M= s = s
— 0y 0 — 03 0

I_(O’o 0) J_((Tl O) (13)
a 0 (o) ’ - 0 gy ’

J 0
{M— +K— -
an 9¢
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FIG. 3. The oscillatory instability of the Bragg solitons with
zero velocity. Real (a) and imaginary (b) parts of the eigenvalues
represent unstable perturbations in the local Kerr medium (dashed-
dotted lines), and two branches of the instability (boldfaced and
lightfaced solid lines) in the nonlocal nonlinear medium. Dashed
lines in (b) refer to the imaginary part of the (stable) eigenvalues for
solitons in the integrable massive Thirring model, see the text.

UZ(P§+R§ 0 ) (14)
¢ 0  Pj+R})

gy, 01, and o3 being the standard Pauli matrices.
Looking for eigenmodes of small perturbations corre-
sponding to instability eigenvalues N\ as

Y(£7m) = (Yo(d) + (O M)eld, (15)

the linearization of Eq. (12) is rewritten as

d . e
d_fy = [Aloca](gs )\) + Anonlocal(§9)\a)))]y’ (16)
with Ajoc(€, ) =K [S($)+¢gI-A\M] and
1 g, Oy 1
S = ¢ ) + —ngl +
G) 2(1 +Dg2)(0'h o, 210 J
1 R\Ryo ay,
+ 2( 1121 J; ), (17)
1 +Dg (A P1P20'1
0 P,R
o, = ( 2 1). (18)
PR, O

As for the nonlocal part, it can be written using the convo-
lution with the response function, R(&)=(2D) "2e~lé/P,
which corresponds to the second equation in system (1).
Thus, four elements of the vector corresponding to the non-
local term in Eq. (16) are cast in the following form
(1=1,2,3,4):

[Anonlocal(g’)\ay)y]l = E YOl(g)

k=1,2,3.4

XJ IENYo(&)R(E- &)dE'

(19)

Although the use of the Evans function for nonlocal equa-
tions has been proposed for the study of master mode-
locking equations in a model of a solid-state laser cavity,
including nonlocal terms [49], the numerical implementation
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of the method may encounter difficulties in the sense that the
unnormalized Evans function vanishes for small eigenvalues
and diverges for large ones. To avoid these problems, we
here construct the Evans function in the wedge space,
A%(C*), and utilize the normalization process proposed
in Ref. [48]. Accordingly, the nonlocality is replaced by
a projection function, P(§), such that the last term in
Eq. (16) becomes local with matrix [A 0ca(€:N) ], =P(€)
Yor(&)Yo(€). Then, the evolutions equation in the wedge
space can be written as

d
—w=APw, 20
pr (20)

with initial conditions given by an asymptotic solution to the
eigenvalue problem based on Eq. (16),

ap t+dap a3 aq
azp apn t+asz a3y
AD = 27 ay3
—ds; az 0
—ay 0 az
0 | as)

where ay; are elements of Ajoci(€,N)+ A oniocal(€5N).

Since the trace, Tr{A ca+Aponiocall> 1S Zero, the Evans
function can be defined and constructed as the wedge prod-
uct of two limit forms of a solution to Eq. (20) [47,48],

E(N) =W(§— 0)AW(E—07)
6 6

=2 2 W(E— 09, W(E— 00y, (23)

k=1 I=1

where 21622342243226121, 22522522—1, and ElkZO
otherwise.

Eigenvalues A\ are points at which the Evans function van-
ishes. The nonlocal projecting function, P(¢), is found by
numerically iterating the evolution in Eq. (20) until it con-
verges. The eventual results are plotted in Fig. 3, for the
oscillatory instability of BSWs with the zero velocity
(v=0) in the local and nonlocal models, the latter one taken
with D=0.5. For the local system, the results displayed in
Figs. 3(a) and 3(b) are tantamount to those previously re-
ported in Refs. [11,12,36]. Although the threshold value for
the onset of the instability in the nonlocal BSWs, 6,;,=0.52,
is close to its counterpart in the local model [11], it is worthy
to note that the moderate nonlocality (D=0.5) reduces the
growth rate of the oscillatory instability [see the boldfaced
line in Fig. 3(a)] roughly by 60%, cf. the dashed-dotted line
in the same figure. This stabilization may be interpreted as
resulting from the effective attenuation of the nonlinearity in
the nonlocal system [29,34]. Another noteworthy feature re-

ap+ay
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W(x ) ={F, F, F,.isgn(q)(F, — F,).i sgn(q)(F,, - F),

p-mtp
-2,F, +F,}", (21)
with
Fo=NF V(N =ilg)* + 1~ ilg]
and

+ — [N N2
F,=\N% V(N +ilg])*+1+ilq

s

where subscripts p and m denote the largest positive and
negative eigenvalues from the spectrum of Eq. (16). The op-
erator in wedge space A*(C*), which appears in Eq. (20), is

—dajs —dy 0
apn 0 —aiy
0 ap ap (22)
ayp+ass aszy —dyy |
ay3 A+ ayy as
—ay as az3+dgy

vealed by the stability analysis for the BSWs in the nonlocal
medium is the second (weaker) instability branch [the light-
faced curve in Fig. 3(a)], which bifurcates from the stable
spectrum at #=0.67.

A well-known fact is that the local version of Egs. (8) and
(9) goes over into the integrable massive Thirring model
(MTM) if the self-modulation term is dropped in the equa-
tions [in terms of Egs. (8) and (9), this simply means drop-
ping ny]. In the framework of the MTM, all solitons are
stable. In fact, the calculation of the respective eigenvalue,
defined as in Eq. (15), yields it in a purely imaginary form,
Mvrm=i(1—cos 6) [50,51]. It may be interesting to compare
imaginary parts of the eigenvalues in the nonlocal and local
versions of the present model with Ay, Which is shown by
the dashed line in Fig. 3(b). One can observe that, at 6
<0.67, the deviation of Im{\} of the first oscillatory-
instability branch from Ay is stronger in the local nonlin-
ear medium (the dashed-dotted line) than in the nonlocal
model, which corresponds to the boldfaced solid line in Fig.
3(b)—particularly, in the instability region,
60> 0.527—which is also related to the fact that the instabil-
ity of the local BSW is stronger.

IV. COLLISION OF BRAGG SOLITONS
IN THE NONLOCAL MEDIUM

Different outcomes which are possible as results of colli-
sions between BSW can be identified as elastic passage,
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FIG. 4. (Color online) Typical examples of collisions between
solitons in Eq. (10) with D=0.5, for the following sets of soliton
parameters (0,v): (a) (0.14, 0.1), (b) (0.257r, 0.1), (c) (0.857, 0.1),
(d) (0.5, 0.1), (e) (0.57r, 0.3), and (f) (0.57r, 0.5), which corre-
spond to points A, B, C, D, E, F, and G in Fig. 6. Panel (g) is the
enlargement of (c).

merger, symmetry breaking, and destruction, depending on
velocities, amplitudes, and the relative phase of colliding
solitons [23,25]. In this section, we consider the basic situa-
tion of the two BSWs with the opposite speeds and equal
amplitudes and phases, to highlight new effect induced by
the nonlocality.

Generic examples of the collisions are displayed in Fig. 4,
for moderately strong effective nonlocality, D=0.5. At small
amplitudes, the collisions are elastic [see Fig. 4(a)]. Above a
certain amplitude threshold, the pair of BSWs merges into a
single beam with zero velocity and conspicuous intrinsic vi-
brations, as shown in Fig. 4(b). The collisions between
BSWs which are taken close to the upper edge of the band
gap gives rise to splitting, i.e., the formation of a breather
beam with zero velocity, and pairs of radiation beams ejected
at very large transverse velocities, as seen in Fig. 4(c). The
enlargement in panel Fig. 4(g) reveals that the radiation is
actually emitted in the form of two transverse pairs of beams.

The mechanism underlying the splitting may be inter-
preted as an effective spatial dispersion, which stems from
the nonlocal response of the medium. It can be estimated by
term D[#(|U[*+|V|*)/9&*] in the asymptotic expansion of
the nonlocal refractive index [30]. In the collision region, the
nonlinear interference of the two solitons produces a strongly
localized beam with a wide spectrum of spatial modes. As a
result, waves propagating at different transverse velocities
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FIG. 5. Regions of the merger (M, dark gray) and merger with
splitting (MS, light gray) for colliding Bragg solitons in the local
and nonlocal media, with D=0 (enclosed within bold line) and D
=1, respectively.

tend to separate from the beam. Although without the spatial
dispersion in the local nonlinearity, very weak radiation jets
can also be observed, for moving solitons with a large am-
plitude, outside the merger region in Fig. 5 — for example, at
6=0.35m, v=0.05—the merge with splitting is indeed spe-
cific to nonlocal nonlinear media with the spatial dispersion.
In other words, the nonlocality-induced spatial dispersion
can suppress the PN potential barrier and enhance the wave’s
mobility [25,34,52,53], allowing radiation jet to escape. Si-
multaneously, this is a mechanism for dumping excess en-
ergy in the course of the collision. The possibility to eject the
radiation jets facilitates the formation of merged standing-
light solitons, as a result of the collision between moving
BSWs. In Figs. 4(d)-4(f), which display the collisions with a
fixed propagation constant but different velocities, one can
also observe that, under the action of the spatial dispersion,
the central fused beam becomes weaker, while the outward
jets get stronger with the increase in the collision velocity.
In Fig. 5 we outline regions in the parameter space where
the collisions between BSWs in the local and nonlocal model
lead to the merger—region M—or a related outcome, the
merger accompanied by the emission of transverse jets, in
region MS (merger and splitting). For the standard local CM
system, Fig. 5 shows that the merger is confined to a small
range of 0.177<<#<0.327, at small values of collision ve-
locity v (the area inside the bold line) [23]. With the intro-
duction of the nonlocality, the shaded area in Fig. 5 demon-
strates, at D=1, an abrupt expansion of the combined merger
region (M and MS) to 0.147 < #<0.97r, v <0.6. This effect
is explained by the long-range attraction between wave com-
ponents in the nonlocal medium, while the partial splitting in
region MS is an effect of the enhanced spatial dispersion.
For a weaker nonlocality, e.g., D=0.5, the combined
merger area is still much larger than its counterpart in the
local model, as seen in Fig. 6. A notable feature, represented
by the intrinsic white area in the latter panel, is that, in the
region of 0.647 = 6= 0.8, the colliding BSWs fail to merge
into a stable beam, completely splitting into multiple jets. In
the case of D=1 (Fig. 5), this region disappears because the
attractive interaction overwhelms the spatial dispersion. Fig-
ure 7 illustrates that more power is carried away by the ra-
diation jets as the collision velocity increases. On the other
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FIG. 6. Regions of the merger (M, dark gray) and merger with
splitting (MS, light gray) for colliding Bragg solitons in the nonlo-
cal medium with D=0.5

hand, for solitons with higher energy, the central fused beam
retains a bigger power share at large transverse velocities
(v>0.3), due to the strong long-range attraction.

In addition to the data displayed in Figs. 5-7, it is relevant
to mention that the minimum integral power required to form
the merged beam [see Eq. (11)] was found to be QOn
=1.4214, 2.1125, and 2.1209 for D=0, 0.5, and 1, respec-
tively. The increase of Q.;, with the strength of the nonlo-
cality is explained by the fact that one needs a higher power
to overcome the above-mentioned spatial dispersion [32].

V. CONCLUSION

In this work, we have derived the CM equations for the
Bragg grating embedded in a nonlocal nonlinear medium.
Within the framework of these equations, we have studied
oscillatory instabilities of the nonlocal BSWs (Bragg solitary
waves) and investigated collisions between them. It was
demonstrated that nonlocal effect drastically stabilize the
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FIG. 7. The power share carried away by radiation jets at D
=0.5, for 6=0.3, 0.4, and 0.5 (solid, dashed, and dashed-dotted
curves, respectively).

BSWs by reducing the growth rate of unstable eigenmodes
of small perturbations, and that collisions between the soli-
tons in the nonlocal setting can generate standing-light
beams and pulses in a much broader range of the underlying
parameter space than in the local medium. At the expense of
the increased power, even solitons colliding at large veloci-
ties readily merge in the nonlocal medium. The effect of
partial splitting of the merged beam into multiple transverse
jets, which was also observed in the simulations, is realized
as a manifestation of the nonlocality-induced spatial disper-
sion. The results indicate that Bragg solitons in nonlocal me-
dia have a potential for achieving the fundamental physical
objective of the formation of standing-light pulses and
beams, with feasible applications to all-optical data
processing.
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