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Gap solitons in optical lattices embedded into nonlocal media
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We analyze the existence, stability, and mobility of gap solitons (GSs) in a periodic photonic structure built
into a nonlocal self-defocusing medium. Counterintuitively, the GSs are supported even by a highly nonlocal
nonlinearity, which makes the system quasilinear. Unlike local models, the variational approximation predicts
the GSs in good agreement with numerical findings due to the suppression of undulating tails of the solitons.
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I. INTRODUCTION

Solitons are self-guided wave packets propagating in
nonlinear media that maintain their self-trapped shape. In
particular, optical solitons are supported by the balance
between the material nonlinearity and diffraction in the spatial
domain or dispersion in the temporal domain [1]. As concerns
spatial solitons in planar waveguides, it is well known that
the self-focusing Kerr nonlinearity supports bright ones,
while a defocusing nonlinearity admits dark solitons. Even
in the absence of integrability, solitons readily feature quasi-
particle collisions, with the outcome depending on the relative
phase between them. These properties suggest using solitons
in various applications for all-optical data-processing schemes
and telecommunication systems [2].

Efficient control of the transmission and localization of light
may be provided by photonic crystals (PhCs) built as structures
with periodic modulation of the refractive index (RI). They
open ways to tailor the dispersion, diffraction, and routing
of electromagnetic waves [3]. Nonlinear PhCs, composed of
appropriate materials, have revealed a wealth of nonlinear
optical phenomena, including the self-trapping of localized
modes in the form of the gap solitons (GSs) [4—6]. These modes
can be formed in self-focusing and defocusing media alike,
due to the possibility of the change in the sign of the effective
dispersion and diffraction in PhCs [7]. Experimentally, GSs
were first created in the temporal domain as solitons in a short
piece of a fiber Bragg grating [8]. Technologies based on the
use of reconfigurable (photoinduced) lattices, that have been
implemented in photorefractive crystals [9] and nematic liquid
crystals [10], offer new ways to control GSs in the spatial
domain by varying the lattice depth and spacings.

Combining the benefits of PhCs and solitons, GSs have con-
siderable potential for use in photonics. GSs of matter waves
have also been theoretically studied [11] and experimentally
created [12] in Bose-Einstein condensates formed by atoms
with repulsive interactions trapped in optical-lattice potentials.
Bifurcations and stability of optical GSs were analyzed in PhCs
with the local Kerr nonlinearity [13]. However, the limited
mobility of GSs in the transverse directions, due to their
pinning to the underlying lattice potentials [14], is an obstacle
to the use of GSs in switching and routing operations [15,16].

Recently, it has been predicted that solitons supported
by a nonlocal nonlinearity, self-focusing or defocusing, in
combination with effective diffraction induced by either the
total internal reflection (ordinary solitons) [17] or band-gap
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spectrum [18], may move much easier across the lattice.
Nonlocal effects come to play an important role as the
characteristic correlation radius of the medium’s response
function becomes comparable to the transverse width of the
wave packet [19]. Experimental observations of nonlocal
responses have been demonstrated in various media, including
photorefractive crystals [20], nematic liquid crystals [21], and
thermo-optical materials [22,23]. The nonlocal nonlinearity
induces new features in the wave dynamics, modifying the un-
derlying modulational [24], azimuthal [25], and transverse [26]
instabilities. Suppression of the collapse of multidimensional
solitons [27], a change of interactions between them [28], the
formation of soliton bound states [29], the merger of colliding
solitons into a standing wave [30], and families of dark-bright
soliton pairs [31] were also predicted recently.

The nonlocality is known to improve the stability of
solitons due to the diffusion mechanism of the underlying
nonlinearity. In the limit of strongly nonlocal nonlinearity, the
system becomes an effectively linear one [32]. In such an
extreme limit, the existence of GSs (for the defocusing sign
of the nonlinearity) is questionable. In this work, we identify
families of bright on-site and off-site GSs in self-defocusing
nonlinear media by means of numerical methods and analytical
methods. With the infinite range of the nonlocality, we
demonstrate the existence of spatial GSs with a finite beam
width. The analytical consideration is based on the variational
approximation (VA) with a Gaussian ansatz, which is similar
to how it was applied to the matter-wave GSs in Refs. [33,34].
Unlike the case of the local defocusing nonlinearity, in the
nonlocal case the Gaussian ansatz works well not only deep
inside of the band gap but also close to its edge. The stability
and mobility of the GS families in the nonlocal medium are
investigated too.

II. THE MODEL AND NUMERICAL RESULTS
FOR GAP SOLITONS

We consider a wave packet propagating along axis z in
a PhC structure embedded into a medium with the self-
defocusing cubic nonlocal nonlinearity. A model widely
adopted for the description of such media is [24,35]
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FIG. 1. Typical example of the spectrum, with quasi-wave
number k, induced by the linearized version of Eq. (3), with V;, = 4.
Shaded areas are covered by the band gaps.

where W is the amplitude of the electromagnetic wave, x is
the transverse coordinate, n(x,z) is a perturbation of the local
RI corresponding to the intensity-response function with an
exponential kernel, and d is a parameter which determines
the degree of the nonlocality of the response. All the physical
quantities and spatial coordinates are made dimensionless by
normalization procedures with respect to the input beam width,
wavelength, and Kerr coefficient of the nonlinear material [1].
The limit of d — o0 corresponds to the well-known Zakharov
system, which is a fundamental model in plasma physics (for
Langmuir waves) and other fields [36]. The PhC structure
is represented by the periodic transverse potential, V(x) =
Vo sin? x (x is normalized so as to make the period equal to 7).
Stationary solutions with propagation constant y are sought as

on-site mode
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W(x,z) = exp(—iuz)p(x), which gives rise to the stationary
version of Egs. (1) and (2):

u¢==—%¢m—%Wﬁm%va+n¢, 3)
9%n
n—-d5;5:=|¢ﬁ. )

If the nonlinearity is omitted, Eq. (3) decouples from n(x)
and becomes a linear equation, which supports Bloch-wave
solutions, ¢(x) = f(x)exp(ikx), where k is the quasi—-wave
number and f(x) is a periodic function with period m. As
an example, we take Vy = 4 and display the corresponding
dispersion relation, including the lowest three bands, in Fig. 1.
From this diagram, it is seen that finite band gaps are
introduced by the periodic potential; in particular, the first
finite band gap covers a broad interval, 1.305 < p < 3.19.
The nonlinearity may give rise to x periodic modes [37]
or localized GSs [38], with u falling into the band gaps.
Starting with the GS solution in the middle of the gap, we have
found different families of bright solitons numerically by using
the standard relaxation technique with boundary conditions
¢(£o0) = 0.InFig. 2, we demonstrate generic examples of the
GS modes found in the first finite band gap. Local (withd = 0)
and nonlocal (for d = 40) on-site-centered GSs are shown near
the bottom of the gap in Figs. 2(a) and 2(d), in the middle of the
gap in Figs. 2(b) and 2(e), and close to the top edge in Figs. 2(c)
and 2(f), with propagation constants u = 1.31, u = 2.5, and
n = 3.1, respectively. The simplest higher order GS solutions
of the nonlocal model (off-site-centered solitons) are presented
in Figs. 2(g)-2(i). The two distinct types of the solitons, on
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FIG. 2. Typical examples of GS modes in the first finite band gap: (a)—(c) on-site solutions in the local model (d = 0), (b)—(f) on-site
solutions for d = 40, and (h) and (i) off-site solution for d = 40. Solid lines show the field profiles, while the corresponding profiles of the RI

perturbation, n(x), are plotted by dashed lines.
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FIG. 3. Total power of on-site GSs vs the nonlocality parameter,
d, for three distinct values of the propagation constant taken,
respectively, near the bottom edge of the first finite band gap’s edge
(u = 1.31), in the middle of the gap (i = 2.5), and approaching the
top band edge (u = 3.1).

site and off site, are defined by the position of their centers
with respect to the underlying periodic potential [17,39].
Similar to solitons in nonlocal media with the self-focusing
nonlinearity [24,35], the amplitudes of the GSs in the present
model increase at a higher degree of the nonlocality, d. As
a result, the related total power, P = ffooo |W(x)|?dx, is a
growing function of d, as shown in Fig. 3. In comparison to
the local nonlinear medium, with d = 0 [see Figs. 2(a)-2(¢c)],
the width of the RI perturbation, w,, becomes broader with the
increase of d, for the focusing [24,35] and defocusing signs
of nonlinearity alike, due to the diffusion type of the nonlocal
response. Relations between w, and d are shown in the first
column of Fig. 4. In contrast to the solitons in self-focusing
nonlocal media [17,18], the beam width of the GSs in the
present case, wy, decreases with the increase of d, as shown
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FIG. 4. Left column [(a), (c), and (e)]: the width of the RI profile,
w,, in GSs, versus nonlocality parameter d. Right column [(b), (d),
and (f)]: the width of the field component of the GS, wy, vs d.
Numerical and variational results are shown by solid and dashed
lines, respectively. The value of the propagation constant is fixed in
each panel as indicated.
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in the second column of Fig. 4. At very large values of d, the
beam width in the GS approaches a constant value.

III. VARIATIONAL APPROXIMATION

It is well known that undulating tails in the shape of
GSs, induced by the underlying periodic potential, make the
Gaussian ansatz inappropriate as an approximation for GSs,
especially close to band-gap edges [33]. However, Fig. 2
demonstrates that the nonlocal nonlinearity makes GSs in the
present model more localized, suggesting that they apply to
the VA. The Lagrangian density for Eq. (1) is

| 1
L= §<¢;¢ — 6:0") + KIB + 5(8.)

I’L2

. d
+Vosin® (o 41l = S — = ()
Following this argument, we adopt the Gaussian ansatz for

field ¢ and RI perturbation n,

2
o(x,z) = A(z)exp[— x2 + ib(z)xz] ,
2wi(z)
2 (6)

with A(z), b(z), and w(z) standing for the amplitude, chirp,
and width of the field component of the GS, whereas C(z)
and w,(z) are the amplitude and width of its RI counterpart.
By substituting the ansatz into Lagrangian density (5) and
performing the standard calculations [40], we arrive at VA-
generated relations between the parameters,

1 (Bd+2u})’  P(3d+2uw))
2wy Swi(2w? — d)2 2wy, (d + 2141,2,)3
2w, (3d + 2w?
D2 G2 v, o
(d +2w?)
2w2(2u? — d)
2 n n
U VI e ©

Using Egs. (7) and (8), in Fig. 5 we draw the surface plot for
the width of the RI profile, w,, as a function of total power P
and nonlocality parameter d, at a fixed value of i, and compare
it to the numerical results. As expected, the VA produces good
results for the GSs taken in the middle of the band gap, for
instance, at © = 2.5.

In addition, by using the power and propagation constant
found numerically in Sec. II, we show in Fig. 4 that both
numerical and variation solutions represent the same trend
for the widths of both components of the GSs. In particular,
for w =2.5 and pu = 3.1, as shown in Figs. 4(c)—4(f), w,
increases as the square root of the nonlocality strength, d, in
agreement with Ref. [32]. In contrast, w;, drops to a finite value
as d increases. However, for u = 1.31, which is very close to
the edge of the first finite band gap, the trend is completely
different. This difference is explained by the known fact that
GSs with the propagation constant taken very close to edges
of band gaps are similar to the linear Bloch waves in the
linear lattice, as seen in Fig. 2(d). When the amplitude of the

063803-3



LIN, JISHA, JENG, LEE, AND MALOMED

u=2.5

FIG. 5. (Color online) The surface plot for the width of the RI
component of the GS,w,, at u = 2.5, as predicted by variational
Egs. (7) and (8). The chain of dots represents full numerical solutions.

respective undulating tails in the GS shape is comparable to its
main peak, the Gaussian ansatz definitely fails. Nevertheless,
close to the top edge of the first finite band gap (for instance,
at © = 3.1), the ansatz still works well because the major peak
in the GS profile remains much higher than the undulating
tails in the entire nonlocality regime. Thus, the applicability
condition for the Gaussian-based VA in the system with the
self-defocusing nonlocal nonlinearity is clear: It is usable as
long as the GS propagation constant is not taken too close to
the bottom edge of the first finite band gap.

In the extremely nonlocal regime, the field component
in the GSs is much narrower than the RI profile. In this
case, the RI profile may be approximated as n(x) & R(x) =
e ¥V j(2/d), where R(x) is the RI response function.
The corresponding width of the RI profile is w, ~ 2v/d In2.
Then, using the quasilinear limit similar to that developed in
Ref. [32], one can predict the threshold power necessary for
the formation of the GS,

Py = 2(u — po)Vd, 9)

where 1t is the propagation constant at the edge of the first
finite band gap. The comparison to the numerical results in
this extremely nonlocal regime is shown in Fig. 6.
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FIG. 6. Threshold power necessary for the formation of the GSs
vs the nonlocality parameter, d. The solid and dashed lines depict,
respectively, the numerical results and asymptotic approximation (9).
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growth rate

FIG. 7. (a) Instability growth rate and (b) PN energy barrier vs
the nonlocality strength, d, for different values of the total power, P.

IV. STABILITY AND MOBILITY OF THE GAP SOLITONS

Having constructed the family of the GSs, we analyze their
stability in the usual way, considering perturbed GSs as

u = ug()e’™ + e[p(n)e™ +gx)e™ e, (10)
n=ngy+ An, (11

where € < 1 is the perturbation amplitude, uo(x) is the
unperturbed solution, and Im{§} is the growth rate of the
perturbations. Although the strengthening nonlocality makes
the GS shape sharper and more strongly localized, we have
found, somewhat counterintuitively, that the on-site GS family
is still stable while its off-site counterpart is not (cf. [13]).
Figure 7(a) demonstrates that the nonlocality significantly
reduces the growth rate of the unstable perturbation mode
for off-site solitons, as in the case of the self-focusing
nonlinearity [18]. Due to its diffusion character, the nonlocality
smoothes down the undulating tails in the RI profile, n(x).
It is this smoothness that stabilizes GSs for either sign of
the nonlinearity. Therefore, as the strength of the nonlocality
increases, the GS solutions become more stable through the
broadening of the effective potential.

The mobility of the GSs in the present model was studied
by calculating the respective Peierls-Nabarro (PN) potential
barrier, which is defined as the height of an effective periodic
potential generated by the underlying lattice. The potential
barrier determines the minimum energy needed to move the
center of mass of a localized wave packet by one lattice site
[41]. As usual, we can calculate the PN barrier as the difference
of values of the model’s Hamiltonian (H ) between on-site and
off-site modes [17], that is,

0H = Heven —

o0 1 S|
HE/ (——
. 2

- E|u|2n — Vx|u|2)dx. (13)
As seen in Fig. 7(b), in the first finite band gap the PN barrier
is reduced in comparison to the case of the local nonlinearity,
d = 0, which is a natural manifestation of the nonlocality.

Hogq, (12)

ou
0x

V. CONCLUSION

We have reported the analysis of the existence, stability,
and mobility of one-dimensional GSs in the periodic po-
tential structure combined with the self-defocusing nonlocal
nonlinearity. We have found that the GSs become more
tightly localized in space, with a higher formation-power

063803-4



GAP SOLITONS IN OPTICAL LATTICES EMBEDDED ...

threshold. The results have been obtained in numerical form
and reproduced, with a reasonable accuracy, by the VA. Using
the linear-stability analysis and calculating the PN potential
barrier, we have demonstrated that the GSs become not
only more stable but also more mobile with the increase
of the nonlocality. The comparison with the limit of the
extreme nonlocality was reported too. Taking into regard the
possibilities offered by the currently available technology
for fabricating nonlocal nonlinear media with controllable
properties, such as photorefractive crystals, nematic liquid
crystals, and thermo-optical materials, the results reported
in this work may suggest new possibilities for the design of
soliton-based photonic devices. For instance, photorefractive

PHYSICAL REVIEW A 81, 063803 (2010)

materials like SBN or LiNbO3 [42] or liquid-filled photonic
crystal fibers [43] may serve as experimental platforms to
realize our proposed configuration with a self-defocusing
nonlinearity and periodic index modulations. It may also be
interesting to extend the model and the analysis of GSs in it
(including vortex solitons) to two-dimensional geometry.

ACKNOWLEDGMENTS

This work is partly supported by the National Science
Council of Taiwan with contrasts NSC 95-2112-M-007-058-
MY3, NSC 95-2120-M-001-006, and NSC 98-2112-M-007-
012.

[1] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers
to Photonic Crystals (Academic, San Diego, CA, 2003), and
references therein.

[2] A. D. Boardman and A. P. Sukhorukov, eds., Soliton-Driven
Photonics, NATO Science series, Il Mathematics, Physics and
Chemistry, Vol. 33 (Kluwer Academic Publishers, Dordrecht,
the Netherlands, 2001).

[3] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic
Crystals: Molding the Flow of Light (Princeton University Press,
Princeton, NJ, 1995).

[4] C. M. de Sterke and J. E. Sipe, in Progress in Optics, edited by
E. Wolf (North-Holland, Amsterdam, 1994), Vol. 33, p. 203.

[5] S. F. Mingaleev and Y. S. Kivshar, Phys. Rev. Lett. 86, 5474
(2001).

[6] R. Slusher and B. Eggleton, eds., Nonlinear Photonic Crystals
(Springer-Verlag, Berlin, 2003).

[7] E. A. Ostrovskaya and Y. S. Kivshar, Phys. Rev. Lett. 90, 160407
(2003).

[8] B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and
J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).

[9] N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer,
and M. Segev, Phys. Rev. E 66, 046602 (2002).

[10] M. Peccianti, K. A. Brzdkiewicz, and G. Assanto, Opt. Lett. 27,
1460 (2002).

[11] V. A. Brazhnyi and V. V. Konotop, Mod. Phys. Lett. B 18, 627
(2004).

[12] B. Eiermann, T. Anker, M. Albiez, M. Taglieber, P. Treutlein,
K.-P. Marzlin, and M. K. Oberthaler, Phys. Rev. Lett. 92,230401
(2004).

[13] D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar, Phys.
Rev. E 70, 036618 (2004).

[14] H. Sakaguchi and B. A. Malomed, J. Phys. B 37, 1443 (2004);
37, 2225 (2004).

[15] D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature
(London) 424, 817 (2003).

[16] Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Phys. Rev. Lett.
93, 153903 (2004).

[17] Z. Xu, Y. V. Kartashov, and L. Torner, Phys. Rev. Lett. 95,
113901 (2005).

[18] Y. Y. Lin, I.-H. Chen, and R.-K. Lee, J. Opt. A: Pure Appl. Opt.
10, 044017 (2008).

[19] W. Krélikowski and O. Bang, Phys. Rev. E 63, 016610 (2000).

[20] G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A.
Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R.
Neurgaonkar, Phys. Rev. Lett. 71, 533 (1993).

[21] C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91,
073901 (2003).

[22] C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon,
Phys. Rev. Lett. 95, 213904 (2005).

[23] N. K. Efremidis, Phys. Rev. A 77, 063824 (2008).

[24] W. Krélikowski, O. Bang, N. 1. Nikolov, D. Neshev, J. Wyller,
J.J.Rasmussen, and D. Edmundson, J. Opt. B: Quant. Semiclass.
Opt. 6, S288 (2004).

[25] S. Lopez-Aguayo, A. S. Desyatnikov, and Y. S. Kivshar, Opt.
Express 14, 7903 (2006).

[26] Y. Y. Lin, R.-K. Lee, and Y. S. Kivshar, J. Opt. Soc. Am. 25,576
(2008).

[27] O. Bang, W. Krélikowski, J. Wyller, and J. J. Rasmussen, Phys.
Rev. E 66, 046619 (2002).

[28] M. Peccianti, K. A. Brzdkiewicz, and G. Assanto, Opt. Lett. 27,
1460 (2002).

[29] Z. Xu, Y. V. Kartashov, and L. Torner, Opt. Lett. 30, 3171
(2005).

[30] Y. Y. Lin, R.-K. Lee, and B. A. Malomed, Phys. Rev. A 80,
013838 (2009).

[31] Y. Y. Lin and R.-K. Lee, Opt. Express 15, 8781 (2007).

[32] A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).

[33] A. Gubeskys, B. A. Malomed, and I. M. Merhasin, Stud. Appl.
Math. 115, 255 (2005).

[34] S. Adhikari and B. A. Malomed, Europhys. Lett. 79, 50003
(2007).

[35] W. Krdlikowski, O. Bang, J. J. Rasmussen, and J. Wyller, Phys.
Rev. E 64, 016612 (2001).

[36] V. E. Zakharov, Z. Eksp. Teor. Fiz. 62, 1745 (1972) [Sov. Phys.
JETP 35, 908 (1972)]; E. I. Shulman, Dokl. Akad. Nauk SSSR
259, 578 (1981); L. Stenflo, Phys. Scr. 33, 156 (1986).

[37]1 Y. Y. Lin, R.-K. Lee, Y.-M. Kao, and T.-F. Jiang, Phys. Rev. A
78, 023629 (2008).

[38] Y. Zhang and B. Wu, Phys. Rev. Lett. 102, 093905
(2009).

[39] B. J. Dabrowska, E. A. Ostrovskaya, and Y. S. Kivshar, J. Opt.
B: Quantum Semiclass. Opt. 6, 423 (2004).

[40] B. A. Malomed, in Progress in Optics, edited by E. Wolf (North-
Holland, Amsterdam, 2002), Vol. 43, p. 71.

[41] Y. S. Kivshar and D. K. Campbell, Phys. Rev. E 48, 3077 (1993).

[42] N. Zhu, R. Guo, S. Liu, Z. Liu, and T. Song, J. Opt. A: Pure
Appl. Opt. 8, 149 (2006).

[43] C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen,
0. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, Opt.
Express 15, 12145 (2007).

063803-5


http://dx.doi.org/10.1103/PhysRevLett.86.5474
http://dx.doi.org/10.1103/PhysRevLett.86.5474
http://dx.doi.org/10.1103/PhysRevLett.90.160407
http://dx.doi.org/10.1103/PhysRevLett.90.160407
http://dx.doi.org/10.1103/PhysRevLett.76.1627
http://dx.doi.org/10.1103/PhysRevE.66.046602
http://dx.doi.org/10.1364/OL.27.001460
http://dx.doi.org/10.1364/OL.27.001460
http://dx.doi.org/10.1142/S0217984904007190
http://dx.doi.org/10.1142/S0217984904007190
http://dx.doi.org/10.1103/PhysRevLett.92.230401
http://dx.doi.org/10.1103/PhysRevLett.92.230401
http://dx.doi.org/10.1103/PhysRevE.70.036618
http://dx.doi.org/10.1103/PhysRevE.70.036618
http://dx.doi.org/10.1088/0953-4075/37/7/006
http://dx.doi.org/10.1088/0953-4075/37/11/001
http://dx.doi.org/10.1088/0953-4075/37/11/001
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1103/PhysRevLett.93.153903
http://dx.doi.org/10.1103/PhysRevLett.93.153903
http://dx.doi.org/10.1103/PhysRevLett.95.113901
http://dx.doi.org/10.1103/PhysRevLett.95.113901
http://dx.doi.org/10.1088/1464-4258/10/4/044017
http://dx.doi.org/10.1088/1464-4258/10/4/044017
http://dx.doi.org/10.1103/PhysRevE.63.016610
http://dx.doi.org/10.1103/PhysRevLett.71.533
http://dx.doi.org/10.1103/PhysRevLett.91.073901
http://dx.doi.org/10.1103/PhysRevLett.91.073901
http://dx.doi.org/10.1103/PhysRevLett.95.213904
http://dx.doi.org/10.1103/PhysRevA.77.063824
http://dx.doi.org/10.1088/1464-4266/6/5/017
http://dx.doi.org/10.1088/1464-4266/6/5/017
http://dx.doi.org/10.1364/OE.14.007903
http://dx.doi.org/10.1364/OE.14.007903
http://dx.doi.org/10.1364/JOSAB.25.000576
http://dx.doi.org/10.1364/JOSAB.25.000576
http://dx.doi.org/10.1103/PhysRevE.66.046619
http://dx.doi.org/10.1103/PhysRevE.66.046619
http://dx.doi.org/10.1364/OL.27.001460
http://dx.doi.org/10.1364/OL.27.001460
http://dx.doi.org/10.1364/OL.30.003171
http://dx.doi.org/10.1364/OL.30.003171
http://dx.doi.org/10.1103/PhysRevA.80.013838
http://dx.doi.org/10.1103/PhysRevA.80.013838
http://dx.doi.org/10.1364/OE.15.008781
http://dx.doi.org/10.1126/science.276.5318.1538
http://dx.doi.org/10.1111/j.1467-9590.2005.00328.x
http://dx.doi.org/10.1111/j.1467-9590.2005.00328.x
http://dx.doi.org/10.1209/0295-5075/79/50003
http://dx.doi.org/10.1209/0295-5075/79/50003
http://dx.doi.org/10.1103/PhysRevE.64.016612
http://dx.doi.org/10.1103/PhysRevE.64.016612
http://dx.doi.org/10.1088/0031-8949/33/2/010
http://dx.doi.org/10.1103/PhysRevA.78.023629
http://dx.doi.org/10.1103/PhysRevA.78.023629
http://dx.doi.org/10.1103/PhysRevLett.102.093905
http://dx.doi.org/10.1103/PhysRevLett.102.093905
http://dx.doi.org/10.1088/1464-4266/6/10/007
http://dx.doi.org/10.1088/1464-4266/6/10/007
http://dx.doi.org/10.1103/PhysRevE.48.3077
http://dx.doi.org/10.1088/1464-4258/8/2/007
http://dx.doi.org/10.1088/1464-4258/8/2/007
http://dx.doi.org/10.1364/OE.15.012145
http://dx.doi.org/10.1364/OE.15.012145

