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Gap solitons under competing local and nonlocal nonlinearities

Kuan-Hsien Kuo,1 YuanYao Lin,1 Ray-Kuang Lee,1 and Boris A. Malomed2

1Institute of Photonics Technologies, National Tsing-Hua University, Hsinchu 300, Taiwan
2Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

(Received 20 December 2010; published 27 May 2011)

We analyze the existence, bifurcations, and shape transformations of one-dimensional gap solitons (GSs) in
the first finite band gap induced by a periodic potential built into materials with local self-focusing and nonlocal
self-defocusing nonlinearities. Originally stable on-site GS modes become unstable near the upper edge of the
band gap with the introduction of the nonlocal self-defocusing nonlinearity with a small nonlocality radius.
Unstable off-site GSs bifurcate into a new branch featuring single-humped, double-humped, and flat-top modes
due to the competition between local and nonlocal nonlinearities. The mechanism underlying the complex
bifurcation pattern and cutoff effects (termination of some bifurcation branches) is illustrated in terms of the
shape transformation under the action of the varying degree of the nonlocality. The results of this work suggest
a possibility of optical-signal processing by means of the competing nonlocal and local nonlinearities.

DOI: 10.1103/PhysRevA.83.053838 PACS number(s): 42.65.Tg, 42.65.Sf, 42.70.Qs

I. INTRODUCTION

The concept of photonic crystals (PhCs), i.e., artificial
media with a periodic modulation of local optical character-
istics, provides ways to tailor the dispersion, diffraction, and
routing of electromagnetic waves [1]. As for natural crystals,
fundamental characteristics of the PhCs are the band diagrams,
which reveal gaps where Bloch waves cannot propagate.
In PhCs made of nonlinear materials, self-trapped localized
modes in the form of the gap solitons (GSs) may exist, as a re-
sult of the interplay of the Kerr-type nonlinearity and periodic
structures [2–5]. Unlike spatial bright solitons supported by the
balance between the self-focusing nonlinearity and diffraction
in uniform bulk media [6], the dispersion relation induced
by the PhC makes it possible to create GSs in both focusing
and defocusing media. Combining assets of PhCs and regular
solitons, GSs have a potential for applications to soliton-driven
photonics. New technologies enabling reconfigurable optical
lattices, such as photorefractive crystals [7] and nematic liquid
crystals [8], also open new ways to control the dynamics of
solitary waves by adjusting the lattice depth and period.

While the modulational [9] and oscillatory instabilities
[10,11] impose limits on the use of the GSs, the stability and
mobility of the GSs may be enhanced in nonlinear media
featuring a nonlocal response [12–15]. The nonlocal nonlin-
earity is important when the correlation radius of the material’s
response function becomes comparable to the transverse width
of the wave packet [16,17]. The nonlocal nonlinearity gives
rise to specific features in the soliton dynamics, including the
modification of the modulational [18], azimuthal [19], and
transverse [20] instabilities. Suppression of the collapse of
multidimensional solitons [21], a change of the character of
interactions between them [22], formation of soliton bound
states [23], merger of colliding solitons into a standing
wave [24], and families of dark-bright soliton pairs [25]
were also predicted recently. Experimental observations of
the nonlocal response have also been demonstrated in sundry
media, including photorefractive media [26], nematic liquid
crystals [27], and thermo-optical materials [28,29], with a large
tunable range of the nonlocality degree.

In this work, we aim to study GS modes in the first band
gap of the model, including local self-focusing and nonlocal
self-defocusing nonlinearities. When the nonlocality radius
is zero, we assume equal magnitudes of the self-focusing
and self-defocusing terms, i.e., complete cancellation of the
nonlinearity, hence no solutions in the band gap. For a small
degree of the nonlocality, the existence, bifurcation, and shape
transitions of the emerging bright GSs are analyzed. With the
competing local and nonlocal interactions of opposite signs,
the family of on-site GS modes remain stable, obeying the
“anti-Vakhitov-Kolokolov” criterion [30], for the case where
the nonlocal perturbation of the refractive index is small but
becomes unstable near the upper edge of the band gap. How-
ever, the bifurcation generating the GSs near the other edge
of the band gap features an inverted slope of the bifurcation
curve for a relatively small degree of the nonlocality, in which
case the on-site GSs are unstable. The off-site GS family
features single-humped, double-humped, and flat-top profiles
for different degrees of the nonlocality. We also investigate
the situation in the space of the soliton’s propagation constant
and power, for the varying nonlocality degree, in order to
illustrate the mechanism underlying the complex bifurcation
pattern and related cutoff effects (termination of some solution
branches). Using results reported in this work, we discuss the
possibility to design GS-based signal-processing schemes by
dint of manipulating the nonlocal interactions.

In addition to optics, GSs of matter waves have also been
theoretically studied [31] and experimentally created [32] in
Bose-Einstein condensates (BECs) formed by atoms with
repulsive interactions, trapped in optical-lattice (OL) poten-
tials. In addition to the known contact interaction in the
BECs of alkali-metal atoms, the interaction of chromium
atoms, 52Cr, includes a dipole-dipole interaction, which is
intrinsically anisotropic and nonlocal. The condensate of 52Cr
was created and investigated using magnetic [33–36] and
all-optical [37] traps; see also review [38]. By adjusting
the orientation of the dipoles, one can effectively control
the nonlocal dipole-dipole interactions. For the dipolar BEC
trapped in OLs, the competition between the contact and
long-ranged dipole-dipole interactions not only dramatically
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change the band structures of nonlinear Bloch waves [39] but
also modifies families of matter-wave solitons [40].

The rest of the paper is organized as follows. In Sec. II,
the model including the competing local and nonlocal non-
linearities is described. Properties of the on-site and off-site
GS families supported by the local self-focusing nonlinearity
are recapitulated to show a transition of mode profiles in
the first band gap. Results produced by the interplay of the
local self-focusing and nonlocal self-defocusing nonlinearities
for on-site and off-site GS families are reported in Secs. III
and IV, respectively. Tracing the change of the corresponding
GS shapes in the parameter planes, we explain the character
of the corresponding bifurcation and identify a possible
control mechanism for the optical-signal processing. Section V
concludes this work.

II. THE GAP-SOLITON FAMILY WITH THE LOCAL
SELF-FOCUSING NONLINEARITY

Considering a wave packet propagating along the η axis
in the nonlinear PhC structure, we assume that the embedded
medium gives rise to two kinds of the nonlinearity simulta-
neously. This system is modeled by the modified nonlinear
Schrödinger equation [15],

i
∂�

∂η
= −1

2

∂2

∂ξ 2
� + V (ξ )� + σn(ξ )� + ρ|�|2�, (1)

n − d
∂2n

∂ξ 2
= |�|2, (2)

where �(η,ξ ) is the slowly varying amplitude of the electric
field and V (ξ ) is the periodic potential, and a perturbation of
the refractive index, n(ξ ), accounts for the diffusive nonlinear
response with the nonlocality degree (which scales as a squared
nonlocality radius) designated by parameter d. Sign param-
eters σ,ρ = +1 and −1 correspond to the self-defocusing
and self-focusing nonlinearities, respectively. Below, we fix
σ = +1 and ρ = −1 for a system with the nonlocal self-
defocusing and local self-focusing nonlinearities.

Stationary solutions with propagation constant −µ are
looked for as �(η,ξ ) = �(ξ )e−iµη. For periodic potential
V (ξ ) = 4sin2(k0x) with k0 = 1 fixed by rescaling, the lin-
earized version of Eq. (1) gives rise to the band-gap structure,
with the first finite band gap being 1.3047 < µ < 3.1896.
In this band gap, GSs can exist in form of on-site and
off-site modes being supported solely by the local non-
linearity, i.e., with σ = 0 [9]. For the self-focusing Kerr
nonlinearity, we display examples of both the on-site and
off-site GS solutions in Fig. 1. The relationships between µ

and the power of these modes, P = ∫ ∞
∞ dξ |�|2, are shown

in the form of the bifurcation curves in Fig. 1(g), with
labels A through F referring to typical GS mode profiles in
subplots (a)–(f).

Under the self-focusing nonlinearity, these GSs bifurcate
from the upper edge of the first band gap (in other words,
from the lower edge of the second finite Bloch band), where
the spatial-dispersion law features the anomalous sign [41].
In the entire first band gap, the odd on-site GS modes,
shown in Figs. 1(a)–1(c), feature two major peaks within
one lattice cell. Tails of these modes become conspicuous
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FIG. 1. Examples of on-site [(a)–(c)] and off-site [(d)–(f)] gap-
soliton solutions and the corresponding potential V in the case of the
local self-focusing Kerr nonlinearity, depicted by black and gray lines,
respectively. The propagation constant of each mode is indicated by
labels A through F in panel (g), where the relations between the
propagation constant and power are plotted by the solid and dashed
curves, respectively, for the on-site and off-site modes. Panel (i) shows
a close-up of the area enclosed by the dashed box in (g). Here and in
other figures, shaded areas represent Bloch bands bordering the first
finite band gap.

when the propagation constant moves close to the upper
edge of the band gap. On the other hand, a shape transition
is demonstrated by the off-site even GS modes. Near the
lower edge of the band gap, the GS solution has a single
major peak coinciding with a local maximum of the periodic
potential, as shown in Fig. 1(d). By tracing the variation of the
propagation constant and power along the relation for these
off-site modes shown by the dashed line of Fig. 1(g) to point
F, it is seen in Fig. 1(f) that the center of the modal profile
breaks into two peaks. The double-peaked solution is formed
due to the balance between the repulsive potential barrier
and self-trapping induced by the Kerr nonlinearity, as the
characteristic self-trapping length becomes larger than a half of
the lattice period (roughly equivalent to the width of the barrier
potential). In between, we observe a smooth shape transition
of the GS from the single-humped shape in Fig. 1(d) to a nearly
flat-top one in Fig. 1(e), and, finally to the double-peaked mode
in Fig. 1(f).

The off-site GSs exist when the nonlinear self-trapping is
stronger than the repulsion induced by the potential barrier,
giving rise to an effective a potential well holding the localized
modes, as seen in Figs. 1(d)–1(f). On the other hand, the
effect of the lattice potential is stronger than that of the
nonlinearity in the case of the on-site modes, which, together
with the contribution of the gradient energy, determines
their shapes in Figs. 1(a)–1(c). When the refractive index
correction gets weaker in accordance with the power reduction,
the concave lattice potential create a potential barrier to
tailor and split the wave function into a form of the states
that similar to a binding profile from two on-site modes
in Fig. 1(b).
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III. ON-SITE GAP SOLITONS UNDER COMPETING
LOCAL AND NONLOCAL NONLINEARITIES

In this section, we introduce the self-defocusing nonlocal
nonlinearity, setting σ = 1 in Eq. (1). Obviously, in this case
the total nonlinearity cancels out to zero in the limit of
d = 0. At d > 0, the overall nonlinearity is self-focusing,
because the diffusive nonlocal kernel produces a spatially
wider and less intensive perturbation of the nonlinear refractive
index, in comparison with that corresponding to the local
nonlinearity. Then, similarly to the situation in the linear model
outlined above, one may expect the corresponding GS modes
to bifurcate from the upper edge of the first band gap, where the
effective spatial dispersion is anomalous. In Fig. 2, we show
examples of on-site GSs supported by the competing local
focusing and nonlocal defocusing nonlinearities for different
degrees of nonlocality, d = 0.1,1,40, and the case of ρ = 0
(the local nonlinearity only) for the comparison.

For different degrees of the nonlocality, the profiles of the
on-site GS solutions vary slightly, remaining similar to their
counterparts in the local model. On the other hand, Fig. 2(f)
demonstrates that the power required for the formation of the
GSs is higher in the model with the competing nonlinearities
than in the local one because the net nonlinearity is effectively
reduced by the competition of the nonlocal nonlinear response
with the local Kerr term. In the limit of the ultimate nonlocality,
d → ∞, the P (µ) curve converges to that in the local model
(with ρ = 0). The latter feature is explained by the fact
that, in this limit (which corresponds to the model of the
so-called “accessible solitons” [16]), the nonlocal nonlinear
response amounts to a weak constant background, which
shifts the propagation constant by the amount proportional
to P/

√
d [15].

In Fig. 2(f), the bifurcation curve shows an abrupt change
of the slope both for d = 1 and d = 0.1 (in the latter
case, near point E). In a small region to the left of this
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FIG. 2. Examples of on-site [(a)–(e)] gap solitons in the case of
the competing local and nonlocal nonlinearities (black lines) and
the corresponding potential V (gray lines) for different degrees of
the nonlocality d = 0.1,1,40, and the case of ρ = 0 (local only). The
corresponding values of propagation constant µ are labeled (A)–(E)
in panel (f). The dashed line in (f) is the asymptotic curve for d = 0.1.
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FIG. 3. Amplitude growth rate of small-perturbation modes on
the gap solitons in the case of the competing local and nonlocal
nonlinearities for the degrees of the nonlocality d = 0.1. The inset
shows the close-up of stability analysis along with the corresponding
power-propagation constant relations.

point, the slope changes its sign to dµ/dP > 0, and the
corresponding on-site GSs are unstable. It is known that the
bifurcation curves for GS families supported by the local
self-focusing nonlinearity obeys an inverted “anti-Vakhitov-
Kolokolov” criterion [9], dµ/dP < 0, under which the on-site
GSs are stable (see also Ref. [30]). To elucidate, we analyzed
the stability of the numerically found GS families by consid-
ering small-perturbation modes and calculating their eigenval-
ues. Specifically, we show in Fig. 3 the linear stability analysis
spectrum over the entire first band-gap regime. It is clearly
illustrated in the inset of Fig. 3, unstable small-perturbation
eigenmodes are obtained only within the region where the
power dependence dµ/dP > 0 and therefore confirms the
inverted “anti-Vakhitov-Kolokolov” criterion. The evolution
of these on-site gap solitons generated by direct numerical
simulations further shows the collapse of on-site solitons
falling out of the “anti-Vakhitov-Kolokolov” regime.

When the propagation constant of the GS is close to the
upper edge of the band gap (on the right-hand side of the slope-
change point), the slope of the P (µ) becomes negative again.
In that case, the GS is broad, spanning a few lattice periods,
and resembles gap wave modes [31], as seen in Fig. 2(e).
The abrupt slope change smooths out with the increase of the
nonlocality degree, disappearing at d � 5, due to the fact that
the nonlocal perturbation of the refractive index becomes small
for the strong nonlocality.

For a sufficiently small degree of the nonlocality, d,
Fig. 2 shows that the power required to form the GSs
increases with the decrease of d, diverging at d → 0. In
the regime of the weak nonlocality, the effective competing
nonlinearity can be approximated, to the first order in d,
as [25] n(ξ )|�|2 − |�|2� ≈ d

(|�|2)
ξξ

, which implies that
the soliton’s power scales as 1/d. An asymptotic curve based
on this approximation is shown by the dashed line in Fig. 2(f)
to illustrate the bifurcation of the on-site GSs near the upper
edge of the first band gap.

IV. OFF-SITE GAP SOLITONS UNDER COMPETING
LOCAL AND NONLOCAL NONLINEARITIES

Next, we aim to study off-site GSs in the first finite band gap
under the action of the competing nonlinearities. As mentioned
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FIG. 4. (Color online) Off-site gap solitons in the model with
the competing local self-focusing and nonlocal self-defocusing
nonlinearities for the points marked in panel (c): A and B (a) and
C and D (b). The bifurcation curves for two very different values
of the degree of the nonlocality, d = 0.05 and 20, are shown in (c)
to indicate the cases with and without the new branch. Thin and
thick portions of P (µ) curves pertain to the solitons with single- and
double-peak profiles, respectively.

in Sec. II, the profile of the off-site GS solutions changes from
single-humped to double-humped as propagation constant
µ approaches the upper edge of the band gap. To indicate
the change of the profile caused by the introduction of the
competing nonlocal nonlinearity, in Fig. 4(c) we use thin
and thick lines to distinguish portions of the P (µ) curves
representing such single- and double-humped profiles. Again,
in the limit of the strong nonlocality, the correction to the
refractive index induced by the nonlocal nonlinearity is widely
spread in the space and very small with respect to the effect of
the Kerr nonlinearity, which makes the competition negligible.
For example, for d = 20 [see Fig. 4(c)], both the P (µ) curve
and the corresponding shape transition of the off-site GSs
are close to their counterparts in the local model. A smooth
transition of the GS solutions from the single-peaked shape to
a flat-top one and then to the double-peaked (in-phase) shape
can be traced, in the latter case.

However, for a smaller degree of the nonlocality, which
makes the self-defocusing nonlocal response comparable to
the Kerr nonlinearity, the analysis reveals the existence of
more than one branch of the off-site GSs. For small values
of d, such as d = 0.05 shown in Fig. 4(c), one branch (the
bold red curve in the figure) extends continuously from the
upper to lower edge of the band gap. The modal profile for
this branch remains double humped, such as the one shown
by dashed lines of Figs. 4(a) and 4(b) for markers B and D
in (c), respectively. Besides this branch of the double-humped
GS modes, there is a separate branch representing solutions
with a lower formation power and single-humped profile, as
shown by solid lines in Figs. 4(a) and 4(b) for markers A and
C in panel (c).

Thus, the single- and double-peaked GSs, which constitute
parts of the single GS family in the local model, split
into two disjoint families in the model with the appreciable
competition between the local and nonlocal nonlinearities. In
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FIG. 5. (Color online) (a) Off-site GSs under the competing
local self-focusing and nonlocal self-defocusing nonlinearities, cor-
responding to the points A, B, and C in panel (b), where the P (µ)
curves for the nonlocality degree d = 2 are shown. The thin and thick
lines distinguish portions corresponding to single- and double-peaked
modes, respectively. The inset in (b) is a close-up of the region around
the marked points.

the intermediate case, corresponding to a moderate degree of
the nonlocality, such as for d = 2 shown in Fig. 5(b), the P (µ)
curve for the double-humped GSs breaks into two segments:
one starts from the lower edge of the band gap and ends at a
cutoff point corresponding to marker B in the figure, and the
other starts from the upper edge and ends at another cutoff
point, which is designated by marker �. The cutoff points
may be accounted for by bifurcations involving additional
higher-order modes, which we did not aim to find in this work
dealing with fundamental on- and off-site GSs. Another P (µ)
branch chiefly represents the single-humped GSs, but it also
contains a portion to the right of point A, which corresponds
to double-humped modes.

The inset of Fig. 5(b) clearly shows that there are three
branches of double-humped modes. The first one bifurcates
from the upper edge of the band gap and ends at the point
marked �; the second one extends from the lower edge
of the band gap and terminates at point labeled by �; the
final branch bifurcates as the flat-top solution from the point
marked the asterisk (∗) and terminates at the site marked �.
The first two branches that bifurcate from either edge of the
band gap abruptly terminate inside the band gap, where the
characteristic width of the nonlinear response is larger than or
comparable to half the lattice period, which makes the balance
between the nonlinear and lattice-induced effects impossible.
The last branch, which starts as the flat-top mode, ends due
to the divergence of the total power as a result of vanishing
nonlinearity, similarly to the cutoff considered in Ref. [42].

Even though off-site GSs are in general unstable both in
local [9] and nonlocal [13] nonlinearities despite the inverted
“anti-Vakhitov-Kolokolov” criterion, the corresponding insta-
bility growth rate is proportional to the GS’s power after a
certain threshold value [10,13]. Due to the unstable nature
of off-site GSs, we study the instability of GSs by the linear
stability analysis for the branches off-site GSs and identify
the final state of these off-site GSs by beam propagation
simulation. The linear stability spectrum in Fig. 6 shows the
amplitude growth rate of the small-perturbation eigenmodes
found on those off-site GS’s revealed previously. For a smaller
degree of nonlocality, d = 0.05, illustrated in Fig. 6(a), the
two distinct branches are unstable and the corresponding
eigenmodes on single-peaked GSs have a higher amplitude
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FIG. 6. (Color online) Eigenvalues of small-perturbation mode on
the off-site GSs under the competing local self-focusing and nonlocal
self-defocusing nonlinearities, of which the degree of nonlocalities
are (a) d = 0.05 and (b) d = 2. The color and line style to distinguish
each branch is as is defined in the corresponding P (µ) curves in
Figs. 4(a) and 5(b), respectively.

growth rate which diverges near its cutoff point in the band-gap
region. The GSs on these two branches collapse fast as
they propagate due to a larger growth rate. Likewise, in
Fig. 6(b), when a moderate degree of nonlocality, d = 2, is
considered, the single-peaked GSs branch acquires a stronger
instability than that of the two separated double-peaked GSs
branches. The two double-peaked GSs branches, though both
feature the worst instability near their cutoff points in the band-
gap region, reflect very different relations to the corresponding
GS’s power, which we believe is stemmed from the cutoff of
the branches.

The beam propagation simulations further illustrate that
GSs of the single-peaked branch and double-peaked modes
with a higher energy fall into collapsed states. Nevertheless,
mode conversions from unstable off-site GSs into stable on-site
GSs are observed for the branch plotted in blue in Fig. 5(b).
Three examples of beam propagation simulations are illus-
trated, resulting in either collapsed states Figs. 7(a) and 7(b)
or a mode conversion behavior; Fig. 7(c). Information such as
mode transition or conversion is beyond what linear stability
analysis may reveal. Even though it is also believed that
interesting dynamical behavior associated with the GSs can
be delineated through a direct beam propagation simulation,
yet to be more focused, a thorough investigation of propagation
behavior goes beyond the scope of this work.

The nonlocal nonlinearity competing with the local Kerr
term not only reduces the strength of the nonlinearity but
also tailors the effective nonlinear response to induce binding

FIG. 7. (Color online) Three examples of the beam propagation
simulations for off-site GS solutions shown in Fig. 5(a), in which
modes A, B, and C correspond to intensity plots in (a), (b), and (c),
respectively.

forces outside the lattice-potential barriers, which is a more
favorable environment for the existence of double-peaked
modes. Therefore, the three GS branches outlined above are
formed due to the interplay of the potential barrier created
by the lattice potential and the binding potential induced by
the effectively reduced Kerr nonlinearity. In this case, the
GS solutions belonging to the branch originating from the
lower edge of the band gap have a larger amplitude and
are more tightly localized. The width of the corresponding
response range of the self-defocusing nonlocal nonlinearity
is larger than that of the Kerr response. Such a double-
peaked branch cannot exist in the strong-nonlocality limit,
and we numerically find that values of the nonlinearity degree
supporting this branch are bounded by d < 9.2. As the power
decreases (the propagation constant increases), the widening
of the the GS mode makes the overall nonlinear response
effectively local, suppressing the capability of the nonlocal
nonlinearity to tailor its response to a shape necessary for
supporting the solitons. Then, when the GS width becomes
smaller than or comparable to half the lattice period, the
double-peaked modes cease to exist because the balance
between the lattice potential and nonlinearity-induced per-
turbation of the refractive index supports only single-peaked
modes.

To present a clear description of shape transitions for the
off-site GSs, we replot the relationship of power P versus the
nonlocality degree, d, for a fixed propagation constant µ in
Fig. 8. For a smaller propagation constant, such as µ = 1.5
in Fig. 8(a), the power necessary to support a single-humped
off-site GS is always lower than that of its double-humped
counterpart for all values of d. Moreover, above a critical
degree of the nonlocality, d = 7.3 in this case, only a single-
humped GS can be found. Moving µ into the center of the
band gap [for instance, taking µ = 2.69 in Fig. 8(b)] the
critical degree of the nonlocality reduces to d = 1.9, and,
above another critical value, d = 2.35, the single-humped
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FIG. 8. (Color online) The power, P , versus the degree of the
nonlocality, d , at fixed values of the propagation constant: µ = 1.5
(a), 2.69 (b), 2.721855 (c), and 2.75 (d), respectively. The inset in (c)
is a close-up of the region in the vicinity of the merger point.
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FIG. 9. (Color online) The diagram in the plane of the propagation
constant (µ) and power (P ), for the gap solitons, as different values
of the nonlocality degree, d . The inset is a close-up of the gray
region. Route AC corresponds to the transition point marked by
∗ in Fig. 4; routes BC and BDE correspond to the double-peaked
modes marked by � and � in Fig. 5, respectively; the route above
point C corresponds to the single-peaked solution. The marked points
are A with ρ = 0 and B, C, D, and E with d = 2.127, 1, 1.86911,
and 9.2.

mode transforms into a double-humped one, as in the local
model. Increasing the value of the propagation constant to
µ = 2.721855, the two P (d) curves merge at d = 0.3 in
Fig. 8(c). For a larger value of the propagation constant, such
as µ = 2.75 in Fig. 8(d), the two curves intersect at a critical
value d = 0.09763. Above this critical point, the power for
the double-humped off-site GS becomes lower than for a
single-humped one. In this case, the profile of the off-site
GS mode can be switched from single humped into double
humped by adjusting the nonlocality degree, d.

To facilitate the understanding of the present picture, we
consider the plane of the propagation constant µ and power
P for the GS solutions in Fig. 9, varying the nonlocality
degree d. We start by tracing the evolution of the point of
the transition from single-peaked to the double-peaked shape,
marker by the asterisk (∗) in Fig. 5(c). In the absence of the
competing nonlocal nonlinearity, i.e., at ρ = 0 in Eq. (1),
the transition point is (µ = 2.145,P = 5.0460), labeled by
A in Fig. 9, which also corresponds to the limit of d → ∞.
As the nonlocality degree drops to a critical value, d = 1 at
point C (µ = 2.7133,P = 8.8184), the transition point ceases

to exist (i.e., only sharply peaked single-humped modes are
supported by the system), merging into to the end point of
the doubled-humped-mode branch, marked by � in Fig. 5.
Increasing the nonlocality degree from d = 1 at point C, the
end point � in Fig. 5 merges into the other end point � in
Fig. 5 at d = 2.127. The latter merger happens at point B in
Fig. 9. This is the end point of the family of the double-peaked
modes [an example corresponds to the point marked by �
in the inset of Fig. 5 (b)] which originates from point B in
Fig. 9 at the critical nonlocality d = 2.127 and extends toward
point D, which corresponds to d = 1.86911, where it merges
into a new branch of the double-peaked modes emerging (as
long as d < 9.2) from the lower edge of the band gap at point
(µ = 1.3047,P = 19.3262).

V. CONCLUSION

In this work, we aimed to study GS (gap-soliton) solutions
in the first finite band gap of the periodic potential, with the
nonlinearity represented by the competing local self-focusing
and nonlocal self-defocusing terms. The two terms are bal-
anced so, in the limit of the zero nonlocality radius, they exactly
cancel each other. While keeping the effective interaction
self-attractive, the existence, stability, and bifurcation for
on-site and off-site modes were analyzed numerically. Due
to the opposite signs of the local and nonlocal nonlinearities,
an increased power was required for the formation of both the
on-site and off-site GSs. The competing nonlinearities induce a
region where stable on-site modes obeying the “anti-Vakhitov-
Kolokolov criterion” near the upper edge of the band-gap
region become unstable. For unstable off-site GS modes,
which remain unstable under competing local and nonlocal
nonlinearities, a complex bifurcation pattern with cutoff points
was found and explained in terms of the transitions between
the single-humped, flat-top, and double-humped shapes. By
tracing the evolution with the change of the nonlocality degree,
we have shown that it is possible to switch different off-site
GS modes by manipulating the nonlocal interaction against
the local Kerr nonlinearity.
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