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Matched slow optical soliton pairs via biexciton coherence in quantum dots
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We theoretically investigate the simultaneous formation and stable propagation of slow optical soliton pairs in
semiconductor quantum dots with a four-level biexciton-exciton cascade configuration. Owing to the destructive
interference set up by two continuous wave control fields that couple to a biexciton state, the linear as well
as nonlinear dispersion can be dramatically enhanced simultaneously with the absorptions of two weak probe
fields being almost suppressed. These results reveal that the detrimental distortions of the two weak-pulsed
probe fields due to dispersion effects can be well balanced by the self-phase modulation effect under very low
input light intensity, which leads to the slow temporal optical soliton pairs with matched group velocity and
amplitude. We also show that the propagation of slow optical solitons can be strongly modified by the biexciton
coherence.
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I. INTRODUCTION

Optical solitons refer to a special kind of optical fields
that propagate undistorted over a long distance and remain
unaffected after the collision with each other in nonlinear
media. Such a remarkable propagation effect has been the
subject of intense theoretical and experimental studies from
nonlinear optics [1,2], matter waves [3], and microcavities
[4,5] due to their potential applications in information pro-
cessing and communication. The formation of temporal optical
solitons, first observed in optical fiber, is the consequence of
the balance between nonlinearity and dispersion. However,
conventional optical soliton generation required high-powered
lasers since the nonlinear effect in passive media (optical fibers,
for example) is extremely weak. As a result, optical solitons
generated in this way generally travel with group velocity
very close to the speed of light in vacuum and, thus, long
propagation distance is needed.

To access slow lights, in the past few years, considerable
attention has been paid to the study of optical propagation via
electromagnetically induced transparency (EIT) in resonant
atomic systems, in which an on-resonance excitation scheme
is used [6]. Based on the striking features under weakly driven
EIT conditions [7–15], the possibility of generating slow
optical solitons has been explored recently [16–22]. Because
of their robust nature with a slow propagating velocity, the
slow optical solitons may have the potential to be promising
candidates of well-characterized, distortion-free optical pulses
and, hence, have important technological applications in
optical and telecommunication engineering.

It should be noted that the tremendous success of EIT
studies in resonant atomic systems has stimulated considerable
experimental and theoretical efforts in extending these studies
to semiconductor devices. Many approaches for realizing EIT
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in semiconductor devices have been proposed theoretically
and reported experimentally [23–29]. One of the important
motivations comes from mature semiconductor manufacturing
technologies [30–44], for which the interaction between semi-
conductor devices and optical light fields is strongly enhanced
in comparison with atomic systems due to the achievable large
dipole moments [45]. Nonlinear optical experiments can be
performed with pulses of a few hundreds of femtoseconds,
which are long compared to the inhomogeneous broadening
but short enough so that the electron-phonon interaction, which
acts on a picosecond time scale, can be neglected [46–48],
offering time scales necessary for coherent interaction.

Recently, we have studied the slow optical soliton for-
mations and the dispersion management of optical solitons
in GaAs/AlxGa1−xAs semiconductor structure [49–51]. For
slow-light solitons in semiconductor structures, only one probe
field is used and, hence, one obtains a single nonlinear
Schrödinger equation (NLSE) that admits a single soliton
under the condition where the dispersion effect can be balanced
by the self-phase modulation (SPM) effect. However, one
often encounters propagation of multiple fields in a single
medium for technical applications. In this paper, we show
the simultaneous formation and stable propagation of slow
optical soliton pairs in semiconductor quantum dots (SQD)
with a four-level biexciton-exciton cascade configuration.
We show that the absorption of the two weak-pulsed probe
fields can be almost suppressed while, simultaneously, the
nonlinearity is enhanced due to the destructive interference
set up by two continuous wave (cw) control fields that
couple to a biexciton state. By employing the density operator
formalism for describing the interaction of the system, we also
demonstrate that the SPM effects can balance the dispersion
and result in the slow temporal optical soliton pairs with
matched group velocity and amplitude. More interestingly, the
propagation of slow optical solitons can be strongly modified
by the biexciton coherence.
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This paper is arranged as follows. In the next section,
we give the description of the system and solutions in the
linear regime. In Sec. III, by taking the reasonable and
realistic approximate conditions, we derive the system’s NLSE
describing the envelope’s evolution of two weak-pulsed probe
fields. Then, optical soliton pair solutions with matched group
velocity and amplitude in the system are provided and their
stability and controllability during propagation are discussed
in detail. At the end of this paper, we conclude with a brief
discussion and conclusion in Sec. IV.

II. DESCRIPTION OF THE SYSTEM AND THE
SOLUTIONS IN THE LINEAR REGIME

By referring to experimental demonstration of SQD
samples [52,53], the device we consider here may be a
GaAs/AlxGa1−xAs semiconductor structure with 15 periods
of 17.5-nm GaAs layer and 25-nm Al0.3Ga0.7 barriers, grown
by molecular beam epitaxy. The GaAs layer samples can
be held at 10 K in a helium flow cryostat. The samples
were etched to remove the GaAs substrate layer and allow
transmission. As shown schematically in Fig. 1, the ground
state |0〉, one-exciton states |1〉, |2〉, and biexciton state
|3〉 resemble a four-level cascade configuration. The value
of the biexciton binding energy �E is several meV [54].
In the present system, two pulsed probe fields (p1, p2)
with angular frequencies ωp1,p2, one-half Rabi frequencies
�p1,p2, and two continuous wave coherent couple fields (c1,
c2) with angular frequency ωc1,c2, one-half Rabi frequency
�c1,c2, complete the respective excitations. In this system,
the exciton coherence is the nonradiative coherence, which
can lead to destructive interference in the optical transition
between the one-exciton and bound biexciton states. The
electric-field vector for the probe and couple fields can be
written as Ej=p1,p2,c1,c2 = �j ejEj exp[i(kj r − ωj t)] + c.c.,
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FIG. 1. (Color online) (a) The energy-level diagram for the
investigated GaAs/AlxGa1−xAs SQD. (b) The schematic of the
corresponding energy levels and transitions in the SQD. The SQD
sample with four levels interacts with two cw laser control fields
coupling, respectively, |1〉 ↔ |3〉 and |2〉 ↔ |3〉 (angular frequencies
ωc1,c2 and Rabi frequencies 2�c1,c2) and two pulsed probe fields
driving the transition |0〉 ↔ |1〉 and |0〉 ↔ |2〉 (angular frequencies
ωp1,p2 and Rabi frequencies 2�p1,p2).

where kj , Ej , and ej are wave vector, envelope amplitudes,
and polarization direction of the j th probe or control fields,
respectively, and c.c. represents complex conjugate. The time
evolution of the system, expressed using the density operator
ρ, is governed by the Liouville equation which, under the
electric-dipole and rotating-wave approximations, leads to the
following equations for the density matrix elements ρij :

ρ̇11 = −γ1lρ11 + i�∗
p1ρ01 − i�p1ρ10 + i�∗

c1ρ31 − i�c1ρ13,

(1)

ρ̇22 = −γ2lρ22 + i�∗
p2ρ02 − i�p2ρ20 + i�∗

c2ρ32 − i�c2ρ23,

(2)

ρ̇33 = −γ3lρ33 + i�c2ρ23 − i�∗
c2ρ32 + i�c1ρ13 − i�∗

c1ρ31,

(3)

ρ̇10 = id1ρ10 + i�p1ρ00 + i�∗
c1ρ30 − i�p2ρ12 − i�p1ρ11,

(4)

ρ̇20 = id2ρ20 + i�p2ρ00 + i�∗
c2ρ30 − i�∗

p2ρ20 − i�p1ρ21,

(5)

ρ̇30 = id3ρ30 + i�c1ρ10 + i�c2ρ20 − i�p2ρ32 − i�p1ρ31,

(6)

ρ̇32 = id4ρ32 − i�∗
c2ρ33 + i�∗

c2ρ22 − i�∗
c1ρ21 + i�∗

p2ρ03,

(7)

ρ̇21 = id5ρ21 − i�p1ρ20 − i�c1ρ23 + i�∗
c2ρ31 + i�∗

p2ρ01,

(8)

ρ̇31 = id6ρ31 + i�∗
p1ρ03 + i�∗

c1ρ33 − i�∗
c2ρ12 − i�∗

c1ρ11,

(9)

with ρij = ρ∗
ji , d1 = �1 + iγ1, d2 = �2 + iγ2, d3 = �3 +

iγ3, d4 = (�3 − �1) + iγ4, d5 = (�1 − �2) + iγ5, and d6 =
(�1 − �3) + iγ6. γj (j = 1,2,3) denotes the total decay rate of
exciton and biexciton coherence, which are added phenomeno-
logically in the above density matrix equations (1)–(9). In
SQDs, the overall decay rate is given by γ1 = γ1l + γ d

10, γ2 =
γ2l + γ d

20, γ3 = γ3l + γ d
30, γ4 = (γ2l + γ3l + γ d

23), γ5 = (γ2l +
γ1l + γ d

21), and γ6 = (γ3l + γ1l + γ d
31). The former γjl denotes

the lifetime broadening linewidth, which is due primarily to
longitudinal optical photon emission at low temperature. The
latter γ d

ij is the dephasing broadening linewidth, which may
originate from electron-electron scattering, electron-phonon
scattering, as well as inhomogeneous broadening due to scat-
tering on interface roughness. Generally, γ d

ij is the dominant
mechanism in a semiconductor solid-state system in contrast
to the atomic systems. �j = ωpj − (ωj − ω0) (j = 1,2) and
�3 = ωpj + ωcj − (ω3 − ω0) are the one- and two-photon
detunings, respectively (h̄ωj is the energy of the states |j 〉).
A more complete theoretical treatment taking into account
coherent nonlinear optical processes for the dephasing rates
induced by Coulomb correlations is thought to be interesting,
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but beyond the scope of this paper. The effects of Coulomb
correlations on coherent nonlinear optical processes have been
investigated extensively in earlier studies and can be described
by microscopic theories based on dynamics controlled trun-
cation schemes and also on the use of N -exciton many-body
eigenstates [55–58]. We would rather take phenomenological
values (available from earlier experiments) for the dephasing
rates here since we are interested in showing applications of
the this SQD system as an efficient device for generating
optical solitons. We stress that the above phenomenological
model to the interaction of the electromagnetic fields with
the semiconductor structure has proven to be well suited to
modeling quantitatively experimental results [23–25,32].

The electric-field evolution is governed by the Maxwell
equation

∇2E − 1

c2

∂2E
∂t2

= 1

ε0c2

∂2P
∂t2

, (10)

with

P = N
∑
j=1,2

μ0j ρj0 exp[i(kpj · r − ωpj t)]

+μ3j ρj3 exp[i(kcj · r − ωcj t)] + c.c. (11)

being the electric polarization intensity, where N , c, μij , and
ε0 are the concentration, velocity of light in vacuum, electric-
dipole matrix element associated with the transition from |j 〉
to |i〉, and vacuum dielectric constant, respectively, and kpj =
kj − k0 and kcj = kj − k3. Under the slowly varying envelope
approximation [59], the Maxwell equation can be reduced to
the first-order equation. Thus, we can obtain the slowly varying
envelope equation for describing the two probe fields evolution

∂�p1(z,t)

∂z
+ 1

c

∂�p1(z,t)

∂t
= iκ01ρ10, (12)

∂�p2(z,t)

∂z
+ 1

c

∂�p2(z,t)

∂t
= iκ02ρ20, (13)

where κ0j = N�pj |epj · μ0j |2/(2ε0h̄c) (j = 1,2). For sim-
plicity, we have assumed kpj = ezkpj .

In order to provide a clear picture of the interplay between
the dispersion and nonlinear effects of the SQD system
interacting with four optical fields, we must solve Eqs. (4)–(6)
and (12) and (13). Before solving these nonlinearly equations,
let us first examine the linear excitations of the system,

which may provide useful hints of the weak nonlinear theory
developed in the next section. To this aim, we assume that the
Rabi frequencies 2�p1,p2 of the pulsed probe fields are much
smaller than those of the couple fields 2�c1,c2, and electrons
initially populated the energy level |0〉 (i.e., ρ00 � 1). Then,
under the perturbation expansion ρij = �kρ

(k)
ij , where ρ

(k)
ij is

the kth-order part of ρij in terms of �p1,p2, it can be shown that
ρ

(0)
ij = 0 (i �= j ) and ρ

(k)
11 = ρ

(k)
22 = ρ

(k)
33 = 0. Considering the

first order of the pulsed probe fields and taking time Fourier
transform of Eqs. (4)–(9) and (12) and (13),

ρ
(1)
ij (t) = 1√

2π

∫ ∞

−∞
β

(1)
ij (ω)e−iωtdω, i,j = 0,1,2,3 (14)

�k(t) = 1√
2π

∫ ∞

−∞

k(ω)e−iωtdω, k = p1,p2 (15)

with ω being the Fourier transform variable, we have

(ω + d1)β(1)
10 + 
p1 + �∗

c1β
(1)
30 = 0, (16)

(ω + d2)β(1)
20 + 
p2 + �∗

c2β
(1)
30 = 0, (17)

(ω + d3)β(1)
30 + �c1β

(1)
10 + �c2β

(1)
20 = 0, (18)

β
(1)
32 = β

(1)
21 = β1

31 = 0, (19)

∂
p1

∂z
− i

ω

c

p1 = iκ01β10, (20)

∂
p2

∂z
− i

ω

c

p2 = iκ02β20. (21)

The solutions to Eqs. (16)–(18) are given by

β
(1)
10 = �∗

c1�c2
p2 − Dc2(ω)
p1

D(ω)
, (22)

β
(1)
20 = �c1�

∗
c2
p1 − Dc1(ω)
p2

D(ω)
, (23)

β
(1)
30 = − (ω + d2)�c1
p1 + (ω + d1)�c2
p2

D(ω)
, (24)

with Dc1(ω) = |�c1|2 − (ω + d1)(ω + d3), Dc2(ω) =
|�c2|2 − (ω + d2)(ω + d3), and D(ω) = |�c1|2(ω + d2) −
|�c2|2(ω + d1) − (ω + d1)(ω + d2)(ω + d3). Here, βij

and 
a,b,c are the Fourier transforms of ρij and �p1,p2,
respectively. With the help of Eqs. (22)–(24), Eqs. (20) and
(21) can be solved analytically, yielding


p1(z,ω) = 
p1(0,ω)[W+(ω) exp(izK−) − W−(ω) exp(izK+)] − 
p2(0,ω)[exp(izK−) − exp(izK+)]

W+(ω) − W−(ω)
, (25)


p2(z,ω) = 
p2(0,ω)[W+(ω) exp(izK+) − W−(ω) exp(izK−)] + W+(ω)W−(ω)
p1(0,ω)[exp(izK−) − exp(izK+)]

W+(ω) − W−(ω)
, (26)

with

K±(ω) = ω

c
+ −[κ01Dc2(ω) + κ02Dc1(ω)] ± G(ω)

2D(ω)
, (27)

W±(ω) = κ01Dc2(ω) − κ02Dc1(ω) ± G(ω)

2κ01�
∗
c1�c2

, (28)

where
G(ω) =

√
[κ01Dc2(ω) − κ02Dc1(ω)]2 + 4κ01κ02|�c1|2|�c2|2.


p1,p2(0,ω) are the initial conditions for two pulsed
probe fields at the entrance of the SQD structure z = 0.
There exist two modes (the K± modes) described by the
linearized dispersion relations K = K+(ω) and K = K−(ω),
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FIG. 2. (Color online) The ratio of the absorption coefficients α−/α+ for the two different modes versus the amplitude |�c2| of the cw
control field c2 (a) for several different amplitudes |�c1| with γ3 = 3.5 × 10−3γ1 and for (b) the different decay rates for biexciton coherence
γ3 with |�c1| = 90γ1. The other parameter values are κ01 = κ02 = 3.4 × 106 cm−1 meV, γ1 = γ2 = 0.054 meV, �1 = 3.1γ1, �2 = 12γ1, and
�3 = −0.05γ1.

respectively. In most operation conditions, they can be
expanded into a rapid conversion power series around the
center frequencies ωp1,p2 of the pulse probe fields; that is,
ω = 0. We thus have

K±(ω) = K±
0 + K±

1 ω + 1
2K±

2 ω2 + O(ω3), (29)

where K±
j = (∂jK±/∂ωj )|ω = 0 (j = 0,1,2) give the disper-

sion coefficients in different orders. Generally, α± = Im[K±
0 ]

and Re[K±
0 ] represent the phase shifts per unit and absorption

coefficients, respectively. The group velocities (V ±
g ) of the K±

modes are given by 1/Re[K±
1 ]. The group-velocity dispersion

can be described by Re[K±
2 ], which results in the spreading of

the pulsed probe fields as the distance z increases. By applying
an inverse Fourier transform to 
p1,p2,

�p1,p2(z,t) = 1√
2π

∫ ∞

−∞
exp(−iωt)
p1,p2(z,ω)dω, (30)

we can achieve the linearized results of pulsed probe fields

�k(z,t) = �
(+)
k (z,t) + �

(−)
k (z,t), k = p1,p2 (31)

�
(±)
p1 (z,t) = F±

(
t − z

V
(±)
g

)
exp[iK±

0 z], (32)

�
(±)
p2 (z,t) = W±(0)�(±)

p (z,t), (33)

with

F± = ±�p2(0,t) ∓ W∓(0)�p1(0,t)

W+(0) − W−(0)
(34)

and W±,∓(0) = W±,∓|ω=0. It can be seen from Eqs. (31)–
(34) that, when the given input fields �p1,p2(0,t) satisfy
the condition �p2/�p1 = W±,∓(0) leading to F±,∓ ≡ 0,
there exists no K∓ mode excitation, and the two pulsed
probe fields in the SQD medium are �p1(z,t) = �p1(0,t −
z/V ±

g ) exp[iK±
0 z] and �p2(z,t) = W±�p1(z,t). Even in the

situation where we use only one input, i.e., �p2(0,0) = 0 →

�p2(0,t)/�p1(0,t) �= W±, both K+ and K− modes will si-
multaneously be excited in the SQD medium. This requires that
a multiple-single-channel-induced-transparency based four-
wave-mixing (FWM) process be operative. However, there
exist parameter regimes in which the absorption coefficients
2α± = 2Im[K±

0 ] differ significantly from each other, and one
of the modes always decays much faster than the other. Thus,
we can only consider a single-mode excitation by neglecting
a short propagation distance.

For the temperatures up to 10 K, the electric den-
sity kept below 4 × 1018 cm−3, the typical parameters for
GaAs/AlxGa1−xAs QDs can be chosen as γjd = 50 μeV,
γjl = 4.1 μeV, μj0 = 1 × 10−16 esu cm; as a result, we can
obtain γj = 0.054 meV, κ0j = 3.4 × 106 cm−1 meV (j =
1,2). In addition, we choose �1 = 3.1γ1, �2 = 12γ1, and
�3 = −0.05γ1. Under small biexciton decoherence condi-
tions, Fig. 2 plots the absorption coefficients ratio α−/α+ =
Im[K−

0 ]/Im[K+
0 ] versus the amplitude |�c2| for several

different amplitude values of another cw control field [see
Fig. 2(a)] and different decay rates for biexciton coherence γ3

[see Fig. 2(b)] in this biexciton-exciton cascade configuration.
It is clearly seen that the absorption coefficient ratio increases
as the amplitudes of the two cw control fields increase, and
the absorption coefficients satisfy α− 
 α+ as shown in
Fig. 2, which illustrates the K− mode decay more quickly
than the K+ mode, thus, we can safely neglect the K−

mode after a short characteristic propagation distance. These
results are the behavior of multiphoton quantum destructive
interference between the two different excitation channels:
coupling excitation channel and back-coupling excitation
channel. Physically, when the probe field �p2 is the same
intensity, an efficient back-coupling excitation channel to
one-exciton state |1〉 becomes important (i.e., |0〉 → |1〉
mediated by the biexciton state |3〉 via �p2 + �∗

c2 + �∗
c1),

which is π out of phase with respect to the coupling excitation
channel |0〉 → |1〉 provided by �p1. These processes lead to
simultaneous suppression of amplitudes of one-exciton states
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FIG. 3. (Color online) Absorption coefficient α+ versus the amplitude |�c2| of the cw control field c2 (a) for several different amplitude
values of another cw control field |�c1| with γ3 = 3.5 × 10−3γ1 and for (b) the different decay rates for biexciton coherence γ3 with |�c1| = 90γ1.
The other parameters are the same as in Fig. 2.

|1〉 and |2〉 from multiphoton destructive interference through
the two pathways that connect each of the two states. This is
an important difference between the destructive interference
mediated by the biexciton coherence and the conventional EIT
process, where the destructive interference resulting from it
occurs between two one-photon channels. As a consequence,
the two weak-pulsed probe fields propagate with the matched
group velocity Vg = V +

g .
In Fig. 3, we plot the absorption coefficient α+ as a

function of the amplitude |�c2| [see Fig. 3(a)] of the cw
control field c2 for several different amplitude values |�c1|
of another cw control field c1 and different decay rates
for biexciton coherence γ3 [see Fig. 3(b)]. Figure 3 shows
that the amplitudes of absorption coefficients are in the
order of 10−4 μm−1, and the absorption can be largely
suppressed under appropriate conditions in this four-level
SQD system. The suppression of the exciton absorption can,
in principle, arise from destructive interference induced by
a biexciton coherence. This is analogous, but by no means
equivalent, to EIT in atomic systems since, in our case, the
nonradiative coherence is induced via interactions between
excitons [55,60]. Figures 2(b) and 3(b) illustrate this point,
and from Figs. 2 and 3, one can find that the absorption
coefficient α+ can be modified not only by the amplitude of
the cw control fields, but also by the biexciton coherence. We
should note that the biexciton decoherence rates γ3 have been
assumed much less than the exciton decoherence rate γ1,2,
i.e., 3 × 10−3γ1 ∼ 4 × 10−3γ1. Within current experimental
technology, the characteristic biexciton lifetimes 1/γ3 of SQD
are typically longer than a few nanoseconds, and numerous
observations also indicate that the biexciton lifetime may reach
values of 10 ns or even higher [61,62]. Here, a larger biexciton
decoherence rate can lead to more pronounced absorption as
shown in Figs. 2(b) and 3(b).

It should be noted that Eq. (27) is obtained in the linear
regime of the system under the weak-field and adiabatic
approximations while ignoring the higher-order terms of probe

fields. In order to preserve shapes of the two pulsed probe
fields, we need to include SPM, which may balance the spread
effect due to the group-velocity dispersion described by the
K+

2 coefficients to generate a pair of matched optical solitons.
In the next section, we will explore the higher-order terms of
�p1,p2 while systematically keeping terms up to ω2 in Eq. (29)
for the purpose of demonstrating the formation of temporal
optical soliton pairs in the four-level SQD system.

III. NONLINEAR DYNAMICS AND MATCHED OPTICAL
SOLITON PAIRS

We now discuss the nonlinear evolution of the two pulse
probe fields in the situation that the K− mode decays very
quickly and can be neglected after a very short propagation
distance as shown in Fig. 2. The pulsed probe field �p1 under
these conditions has the form

�p1(z,t) = �
(+)
p1 + �

(−)
p1 ≈ �

(+)
p1 = U exp [iK+(0)z], (35)

where U is a slowly varying function so that[
i

∂

∂z
+ K+(ω)

][
i

∂

∂z
+ K−(ω)

]
�p1 � exp [iK+(0)z]

× [K−(0) − K+(0)]

[
i

∂

∂z
+ K+(ω) − K−(0)

]
U. (36)

By substituting this form of the probe field �p1 into the
propagation equations (12) and (13), we can obtain [63]

i
∂U

∂ξ
− 1

2
K+

2

∂2U

∂η2
− χ exp(−α+ξ )|U |2U = 0, (37)

�p2(z,t) = W+(0)�p1(z,t) = W+U exp(iK+
0 z), (38)

with ξ = z, η = t − z/Vg , where α+ = Im[K+
0 ], Vg =

1/K+
1 , and K+

2 denote the absorption coefficient,
group velocity, and group-velocity dispersion, respectively.
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K+
j = j [∂jK+(ω)/∂ωj ]ω=0 (j = 1,2), K+(ω) and W+(0) are

given by Eqs. (28) and (29), and

χ =
[
|A|2 + |Ad1 + 1|2

|�c1|2 + |d3 − A
(|�c1|2 − d1d3

)|2
|�c1|2|�c2|2

]
K+

0 ,

(39)

with A = K+
0 /κ01. Equation (37) has complex coefficients and

generally does not allow soliton solutions. However, as we
show in Fig. 3, for the present system, practical parameters can
be found so that α+ may be made small, i.e., exp(−α+L) � 1,
and the imaginary parts of the complex coefficients are much
smaller than the corresponding real parts, which yield K+

2 =
K+

2r + iK+
2i � K+

2r and χ = χr + iχi � χr . By defining u =
U+/U0, σ = η/τ0, and s = ξ/LD , Eq. (37) can be written in
the dimensionless form corresponding to the standard NLSE
governing the pulsed probe fields evolution

i
∂u

∂s
− gD

∂2u

∂σ 2
− gNL|u|2u = 0, (40)

where LD = 2τ 2
0 /|K+

2r | is dispersion length. In addition, we
have assumed LD is equal to LNL, i.e., the balance of
dispersion and nonlinearity, in order to favor the formation of a
soliton, where LNL = 1/(U 2

0 |χr |) is the nonlinear length, with
2U0 = (1/τ0)(2|K+

2r |/|χr |)1/2 being the typical Rabi frequency
of the probe fields. Dimensionless coefficients of Eq. (40) are
given by gD = sign(K+

2r ) and gNL = sign(χr ), respectively.
Equation (40) is the well-known NLSE that is completely
integrable and allows bright and dark soliton solutions, de-
pending on the sign of gDgNL. When gDgNL > 0, one obtains
the single bright soliton solution u = √

2sech(σ ) exp(−is) or,
in terms of the probe fields,

�p1(z,t) = 1

τ0

√
|K+

2r |
|χr | sech

[
1

τ0

(
t − z

V +
g

)]

× exp

[
iK+

0 z − i
z

LD

]
, (41)

�p2(z,t) = W+(0)
1

τ0

√
|K+

2r |
|χr | sech

[
1

τ0

(
t − z

V +
g

)]

× exp

[
iK+

0 z − i
z

LD

]
, (42)

which describe both probe fields p1 and p2 that have the same
waveform propagating with common slow group velocity V +

g .
When gDgNL < 0, one obtains the single dark soliton solution

�p1(z,t) = 1

τ0

√
K+

2r

χr

tanh

[
1

τ0

(
t − z

V +
g

)]

× exp

[
iK+

0 z − i
z

LD

]
, (43)

�p2(z,t) = W+(0)
1

τ0

√
K+

2r

χr

tanh

[
1

τ0

(
t − z

V +
g

)]

× exp

[
iK+

0 z − i
z

LD

]
. (44)

Checking our assumption that leads to Eqs. (37)–
(40) is indeed practical. Below, we give a practical
example for a realistic GaAs/AlxGa1−xAs SQD sys-
tem, with γ1 = γ2 = 0.054 meV, γ3 = 3.5 × 10−3γ1, and
κ01 � κ01 = 3.4 × 106 cm−1 meV. Besides, taking �1 =
3.1γ1, �2 = 12γ1, �3 = −0.05γ1, |�c1| = |�c2| = 90γ1, and
τ0 = 300 fs, we have χ = χr + iχi = (1.97 + 0.024i) ×
10−24 μm−1 s2, and K+

2 = K+
2r + iK+

2i = (14.5 + 0.42i) ×
10−26 μm−1 s2. Clearly, for all complex coefficients, the imag-
inary parts are indeed much smaller than their corresponding
real parts. At the same time, we obtain α+ = 0.000 72 μm−1,
LD = LNL = 1.23 μm. With these parameters, the standard
NLSE in Eq. (40) with gDgNL > 0 is well characterized, and
hence the existence of bright solitons in the SQD system is
supported. The propagating velocity of the soliton is given by

Vg � 4.3 × 10−2c, (45)

which means that the optical soliton pairs propagate with
the matched, slow propagating velocities in comparison with
the light speed c in vacuum. With these parameter values, in
Fig. 4(a), we show the result of numerical simulation on the
soliton wave shape |�p1/U0| versus dimensionless time t/τ0

and distance z/(2LD) with the full complex coefficients by
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FIG. 4. (Color online) Surface plot of the probe intensity |�p1/U0| versus dimensionless time t/τ0 and distance z/(2LD) obtained by
numerically solving Eq. (37) without neglecting the imaginary part of coefficients with (a) γ3 = 3 × 10−3γ1, (b) γ3 = 4 × 10−3γ1. Other
parameters in (a) and (b) are the same, which are given in the main text.
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taking Eq. (41) as an initial condition. One can find that, in
this case, the soliton is fairly stable during propagation without
absorption. The result of numerical simulation shows excellent
agreement with the exact soliton solution in Eq. (41). However,
when the decay rate for the biexciton coherence increases,
the bright soliton intensity reduces in a short propagation
distance, as shown in Fig. 4(b). The results of Fig. 4(b) can be
explained as follows: The degree of the induced transparency is
determined by both γ3 and |�c1|, and the biexciton coherence
can be destroyed due to the increasing decay rate. Note that,
although the destructive interference here resembles that of
an atomic system, the biexciton coherence itself is a direct
result of many particle Coulomb correlations and can thus lead
to behaviors qualitatively different from those of an atomic
system [55].

The collision property between two solitons is one of the
most intriguing aspects in soliton dynamics. With the same
parameter values as in Fig. 4(a), we have also investigated
the collision feature between two bright optical solitons in the
present SQD system by using numerical simulations. Figure 5
shows the waveforms for two different solitons with an initial
separation for the same soliton amplitude and out of phase. In
this case, the two solitons exhibit repulsive interaction. From
Fig. 5, one can find that two solitons walk into each other
in an initial stage and then separate from each other while
recovering their initial waveforms. In addition, the spacing
increases with distance monotonically due to the repulsive
interaction. More interestingly, as the appropriate phase
(position), a repulsive or attractive interaction can be realized
in the collision [1,2], leading to a modulation or switching
in a Mach-Zehnder configuration when the phase-shifted
soliton interferes with another reference soliton [64]. Thus,
we may provide more practical opportunities to implement
all-optical switching and electro-optical modulated solid-state
devices due to the flexibility in the semiconductor quantum
structures [45].

It should be noted that we have neglected the contributions
due to the time derivative terms O(∂/∂t) in deriving the
nonlinear term (39). These contributions can lead to sig-
nificant propagation effects at large propagation distances.
For instance, the first-order time derivative will give an

−8
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8 0    
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80
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1.5
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0

|Ω
p
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0|2

FIG. 5. (Color online) Surface plot of the solitary wave intensity
|�p1/U0|2 versus dimensionless time t/τ0 and distance z/(2LD) for
the collision between two solitons by solving Eq. (37) with γ3 =
3 × 10−3γ1. Other parameters are the same as in Fig. 4(a).

additional group-velocity correction [1], whereas other terms
will contribute the high-order nonlinear and dispersion effects
on the evolution of the pulsed probe fields. In order to study
the influence of high-order nonlinear and dispersion effects,
we must go beyond the standard NLSE, i.e., Eq. (40). By a
detailed calculation, we rewrite Eq. (40) as

i
∂u

∂s
+ ∂2u

∂σ 2
+ |u|2u + i

×
[
θ0u − θ1

∂|u|2u
∂σ

− θ2u
∂|u|2
∂σ

− θ3
∂3u

∂σ 3

]
− θ4

∂u

∂σ
= 0,

(46)

where the dimensionless coefficients in Eq. (46) are given
by θj = 2LD/Lj (j = 0,1,2,3,4) with L0 = 1/ImK+

0 , L1 =
τ 3

0 χr/(B1rK
+
2r ), L2 = −τ 3

0 χr/(B2rK
+
2r ), L3 = 6τ 3

0 /K3r , and
L4 = τ0/K1i the characteristic lengths of linear absorption,
nonlinear dispersion, delay in nonlinear refractive index, third-
order dispersion, and differential absorption, respectively. The
expression of K0,1r,2r,3r is determined by Eq. (29). Bjr (j =
1,2) represent the real part of Bj and the explicit expression
Bj has been given in the Appendix. If the parameters of the
system are chosen to make Lj (j = 0,1,2,3,4) much larger
than LD , i.e., θj � 1, the fourth and fifth terms in Eq. (46) can
be taken as a perturbation. Under this condition, Eq. (46), when
these perturbation contributions are neglected, reduced to the
NLSE given in Eq. (40). With the same parameter values, in
Fig. 8 we have plotted the coefficients θj (j = 0,1,2,3,4) as
functions of pulse duration τ0. From Fig. 6, we found that with
the above set of parameters and for longer pulse duration, i.e.,
τ0 � 280 fs, the linear and differential absorptions presented
by θ0 and θ4 become relatively important [as shown in
Fig. 6(a)]. Correspondingly, the effects due to the nonlinear
dispersion, delay in nonlinear refractive index, and third-order
dispersion represented by θ1, θ2, and θ3 become negligible [as
shown in Fig. 6(b)]. Thus, Eq. (40) is sufficiently accurate for
pulse duration τ0 � 280 fs. If one reduces the pulse durations
of the probe fields, the relative importance of these two groups
of effects will be reversed.

We perform additional numerical simulations starting
directly from Eqs. (1)–(9) and (12) without using any ap-
proximation. Figure 7(a) is propagation of z = 4 μm for the
probe field intensity |�p1/U0|2, with Eq. (41) as the input
condition. One can find that, except for small ripples appearing
on its peak due to higher-order dispersions and high-order
nonlinear effects that have not been included, the optical
solitons produced here are rather stable as expected. We also
show in Fig. 7(b) the simulation result of the collision between
two bright optical solitons with the same initial condition as in
Fig. 5. One can see again that the result is in a great agreement
with the results shown in Fig. 5 and, thus, the full model in
Eqs. (4)–(6) and (12) supports nearly shape-preserving soliton
propagation.

Note that, by using the above parameters, it is easy
to show that W+(0) � 1. Then, we can obtain �p1(z,t) �
�p2(z,t). Thus, we have obtained a slowly propagating
optical soliton pair with almost completely matched am-
plitude, waveform, and propagating velocity. This kind of
matched slow optical soliton pairs not only are of theoret-
ical importance but also may be double (due to the two
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FIG. 6. (Color online) The coefficients θj (j = 0,1,2,3,4) versus pulse width τ0: (a) θ0 and θ4, (b) θ1, θ2, and θ3.

different carrier frequencies) the capacity for the applica-
tions of well-characterized and distortion-free slow optical
wave packets in high fidelity optical buffers, transmission
lines, switches, quantum information storage, and quantum
computation [1,2].

In order to further demonstrate the formation and evolution
of the matched slow optical soliton pairs in the SQD system
and check their stabilities, we show in Fig. 8 the analytical
solutions of Eqs. (37) and (38) (dashed lines) and the full nu-
merical solutions (solid lines) obtained by directly integrating
Eqs. (1)–(9) and (12) without using any approximations. In
Fig. 8, we also show the numerical solutions without including
nonlinear terms (dotted lines). We should note that the initial
conditions used in the numerical calculations are z = 0 and t =
0, �p1(0,t)/U0 = �p2(0,t)/U0 = sech(t/τ0). Two features of
Fig. 8 are most noteworthy. First, each curve contains two
indistinguishable traces, representing the perfectly matched
slow optical soliton pairs. Second, the curves without nonlinear
terms exhibit severe pulse spreading as expected. The results
of Fig. 8 indicate that the biexciton coherence plays a major
role and also clearly validates the significance and importance
of our theory.

IV. DISCUSSION AND CONCLUSION

Before conclusion, we give a brief discussion on the re-
quired threshold optical power density to support stable soliton
propagation. In the parameter regime for the fundamental
bright soliton discussed above, the flux of energy of the
probe optical field associated with a single bright soliton
is given by the Poynting vector integrated over the cross
section of the quantum well sample: P = ∫∫

dS(Ep × Hp) ·
ez, where ez is the unit vector in the propagation direction. In
leading-order approximation, the field is transverse and one
has Ep = (Ep1 + Ep2,0,0), then Hp = (0,Hp1 + Hp2,0) with
Hpj = ε0cn(ωpj )Epj (j = 1,2), where n(ωpj ) is the refractive
index of the probe field at frequency ωpj . It is easy to obtain
the average flux of energy over a carrier-wave period

P̄ = P̄maxsech2

[
1

τ0

(
t − z

V +
g

) ]
, (47)

where the peak power reads as

P̄max = 2ε0cS0[n(ωp1)|Ep1|2 + n(ωp2)|Ep2|2]

= 4h̄2ε0cS0K
+
2r

τ 2
0 χr

[
n(ωp1)

|μ10|2 + n(ωp1)(W+)2

|μ20|2
]
, (48)

−8
−4

0 
4

8 0

2

4

6

8
0

0.5

1

z/(2L
D
)

t/τ
0

(a)

|Ω
p

1/U
0|2

−8
−4

0  
4  

8 0

2

4

6

8

0

0.5

1

1.5

z/(2L
D
)

t/τ
0

(b)

|Ω
p

1/U
0|2

FIG. 7. (Color online) (a) Surface plot of the solitary wave intensity |�p1/U0|2 versus dimensionless time t/τ0 and distance z/(2LD)
obtained by numerically integrating Eqs. (1)–(9) and (6). (b) Collision between two solitons. The parameters are set γ4 = γ5 = γ6 = γ1; other
parameters are the same as in Fig. 4(a).
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FIG. 8. (Color online) Comparison of analytical solutions of
Eqs. (40)–(42) (dashed lines) and the full numerical solutions (solid
lines) obtained by directly integrating Eqs. (4)–(9) and (12) and (13)
without using any approximations. The dotted lines are numerical
solutions without including nonlinear terms. Each curve contains
three indistinguishable traces, that is, |�p1/U0|2 and |�p2/U0|2. The
parameters are the same as in Fig. 4.

with S0 the cross-section area of the sample and n(ωpj ) the
refractive index of the j th probe field. We find that the peak
power is directly proportional to the dispersion coefficient K+

2r

and inversely proportional to the square of the pulse width
τ0 as well as the self-phase modulation coefficient χr . By
using the above numerical values of the system parameters and
taking S0 = π × 10−7 cm2, we obtain P̄max = 47 mW. Thus,
we argue that very low input power is needed for generating
a matched optical soliton pair in our SQD system. This
is drastically different from the conventional optical soliton
generation technique using optical fibers where laser pulses
are needed to reach very high peak power in order to bring out
the nonlinear effect needed for soliton formation.

We should note that the slowly varying envelope
approximation (i.e., ∂�p1,p2/∂z � kp1,p2, ∂�p1,p2/∂t �
ωp1,p2�p1,p2) has been used for obtaining Eqs. (12) and (13)
governing the evolution of the probe fields. In the case of the
soliton solutions given above, such a condition corresponds
to λp1,p2 � Vgτ0 and ωp1,p2τ0 
 1. It is easy to check that
the soliton solutions presented above satisfy these conditions.
With the parameter values of the system specified in Sec. III,
we have ωp1 ωp2 ≈ 2 × 1015 Hz, λp1 λp2 = 0.94 μm, and
Vg = 4.3 × 10−2c. Since τ0 = 300 fs, we obtain Vgτ0 =
3.87 μm and ωp1,p2τ0 = 0.6 × 103, which validate fairly
well the slowly varying envelope approximation condition.
In addition, with the parameters provided above, we have
the spatial length of the soliton Ls ≡ V +

g τ0 = 3.87 μm,
the disperion length LD = 1.23 μm, and the absorption
length LA = 2/α+ ≈ 2.8 × 103 μm. In the setup for possible
experiments, light can be injected along the z axis (the
wave vector kp1,p2,c1,c2 parallel to the plane of the SQD
structure), and we consider a transverse magnetically polarized
probe field incident with respect to the growth direction
(y axis). This configuration is preferred due to a relatively

long propagation distance (on the order of millimeters), larger
than the dispersion length LD and spatial length of the soliton
Ls , to observe the soliton formation.

It is worth to point out that there are some relevant works on
solitons and breathers in semiconductors [65,66]. For example,
in Ref. [65], Adamashvili et al. considered the condition of
self-induced transparency (SIT) in multilevel quantum dots, in
which a single optical field with 2π or 0π area is needed to
induce the required coherent pulse propagation, while here we
use four input optical fields, i.e., two cw control and two probe
fields, which construct the destructive interference channels
via biexciton coherence and lead to a giant suppression of
the linear absorption and simultaneously an enhancement of
SPM coefficient for the probe fields. Furthermore, the degree
of the destructive interference is determined by both the decay
rate for the biexciton coherence γ3 and the amplitude of
the cw control fields |�c1,c2|. More interestingly, we stress
that, under suitable conditions, it is possible to generate a
stable soliton pair using only one input, i.e., �p2(0.0) = 0,
but with a lower efficiency [67]. This generally requires that a
multiple-single-channel-induced-transparency based on four-
wave-mixing process be operative [68]. If this is achievable, the
soliton formation and propagation follow as described above.

In conclusion, we have proposed a scheme to produce a
pair of matched slow optical solitons via biexciton coherence
in a solid-state SQD structure. By coupling two cw control
fields to a biexciton state, the linear as well as the nonlinear
dispersions are dramatically enhanced simultaneously with the
absorptions of two pulsed probe fields being almost suppressed
under appropriate conditions in the medium. In order to obtain
the corresponding nonlinear evolution equations, we have
employed the perturbation approach to the density matrix
equations. We have also shown that detrimental distortions of
probe fields due to strong dispersion effects under weak driving
conditions can be well balanced by SPM effects, resulting
in a pair of optical solitons with matched group velocity
and amplitude. Aside from this, we demonstrated that there
exist parameter regimes in which the optical soliton pair can
propagate stably through the present system with slow group
velocities (Vg ∼ 10−2c), in contrast to optical fibers where the
group velocity of the supported soliton is close to the speed of
light in vacuum.
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APPENDIX: EXPRESSION OF THE COEFFICIENTS
IN Eq. (46)

The expressions of the coefficients in Eq. (46) are given by

B1 = −(κ01Dc2 + κ02Dc1) + G

2D
(Q1 + Q∗

1) − |Dc1|2 + |Dc2|2 + |�c1|2
(
d2

1 + |�c2|2
) + |�c2|2

(
d2

2 + |�c1|2
)

2(κ01Dc2 + κ02Dc1)D
χ, (A1)
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B2 = −(κ01Dc2 + κ02Dc1) + G

2D
(2Q1 + Q∗

1) − |Dc1|2 + |Dc2|2 + |�c1|2
(
d2

1 + |�c2|2
) + |�c2|2

(
d2

2 + |�c1|2
)

4(κ01Dc2 + κ02Dc1)D
χ, (A2)

with Dcj = Dcj (ω)|ω=0 (j = 1,2), D = D(ω)|ω=0, G = G(ω)|ω=0, and

Q1 = − d3

2Dκ01κ02

[
d2

(
1

Vg

− 1

c

)
+

(−(κ01Dc2 + κ02Dc1) + G

2D
− 1

c

)]∗
+ (κ01Dc2 + κ02Dc1) + G

2Dκ01κ02

(
1

Vg

− 1

c

)

+ 1

2κ01κ02D

[
− d3

(
d2

Vg

− d2

c
− −(κ01Dc2 + κ02Dc1) + G

2D
− 1

c

)
+ |�c1|2

(
1

Vg

− 1

c

)
− κ01κ02

|�c1|2d2 + |�c2|2d1

2D

]∗
,

(A3)

where the asterisk represents a complex conjugate.
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