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Instability suppression of clusters of vector-necklace-ring solitons in nonlocal media
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We study the instability suppression of vector-necklace-ring soliton clusters carrying zero, integer, and
fractional angular momentums in nonlocal nonlinear media with an arbitrary degree of nonlocality. We show that
the combination of nonlocality and mutual trapping of soliton constituent components can completely stabilize
the vector-necklace-ring soliton clusters which are otherwise only quasistable in local media. Our results may be
useful to studies of the novel soliton states in Bose-Einstein with dipolar long-range interactions.
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I. INTRODUCTION

Recently, propagation and interactions of optical solitons
in spatially nonlocal media [1,2] have drawn considerable
attention due to their potential applications in optical beam
steering and all-optical networks [3,4]. Moreover, the nonlo-
cality appears to play a significant role in the formation of
Bose-Einstein condensates with long-range dipolar interac-
tion [5,6]. The nonlocality has profound impacts on soliton
dynamics [7] and can support a range of novel solitonic
structures, such as discrete solitons [8,9], azimuthons [10], and
vortex solitons [11–13]. Stability enhancement of localized
structures including fundamental, vortex, and rotating solitons
in Bose-Einstein condensates with a nonlocal interaction has
already been investigated in a number of works [14,15].
Vector solitons, a localized wave structure consisting of few
incoherently coupled components, have also been investigated
in nonlocal media [16,17]. It has been also shown that
nonlocality plays an important role in the stabilization of
vector solitons for both one [18–20] and multidimensional
beams [21].

Necklace solitons, azimuthally modulated beams with
ringlike configurations, were shown to expand with propaga-
tion in nonlinear media due to the repulsive force between
the neighboring bright “petals” [22,23]. Their dynamics
depend crucially on the nonlinearity of the media [24–26].
However, it was shown that vector interactions (i.e., cross-
phase modulations) can drastically affect the propagation
of necklace-ring soliton clusters [27]. In nonlocal media
only scalar necklacelike solitons have been studied until
now [10,13,28,29].

In this paper we study the dynamics of vector-necklace-ring
soliton clusters carrying zero, integer, and even fractional
angular momentum in nonlocal media with an arbitrary degree
of nonlocality. We use the variational approach to derive an-
alytical formulas for the vector-necklace-ring soliton clusters
and analyze their stabilities by direct numerical simulations.
We show that the combination of nonlocality and vector
interactions (i.e., mutual trapping of constituent components
of vector beam) can completely stabilize the necklace-ring
soliton clusters which are otherwise only quasistable in
local media.

II. BASIC MODEL AND VARIATIONAL APPROACH

We consider a vector soliton consisting of N mutually
incoherent optical components propagating in a nonlocal
nonlinear medium. In cylindrical coordinates the propagation
for slowly varying beam envelopes En(x,y,z) can be written in
the form of following normalized coupled nonlocal nonlinear
Schrodinger equations (n = 1,2, . . . ,N ) [27,30],
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x2 + y2, ϕ = tan−1(y/x), and
δn(I ) = ∫

R(r − r′)I (r′,z)d2r′ represents the nonlocal non-
linear refractive index change. R(r) is so-called nonlocal
response function whose width determines the degree of
nonlocality. In particular, R(r) = δ(r) corresponds to the
local Kerr medium. We seek the solution of Eq. (1) in the
form of an incoherent superposition of the necklace-type
components [27],

En = U (r)�n(ϕ)eikz, (2)

satisfying the self-consistency condition,∑
n

|�n(ϕ)|2 = 1. (3)

Here k denotes the propagation constant. The total intensity of
the nonlocal vector solitons is I = |U (r)|2, which depends on
the radial coordinate only. Taking into account the condition
in Eq. (3), �n(ϕ) can be expressed as

�n(ϕ) = an cos(mϕ) + bn sin(mϕ), (4)

where m (integer) is the topological charge, an and bn are the
complex coefficients satisfying the conditions

∑
n Re{anb

∗
n} =

0 and
∑

n |an|2 = ∑
n |bn|2 = 1 which define the exact solu-

tions of the nonlocal nonlinear system for any N [27]. In
this paper, for convenience and without loss of generality,
we consider the two-components model (N = 2) with equal
powers in each component. Then the complex coefficients aj

and bj (j = 1,2) satisfy the following relation:

a1 = (1 + p2)−1/2, b1 = ipa1, (5)

023825-11050-2947/2011/83(2)/023825(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.023825


SHEN, KONG, JENG, GE, LEE, AND KROLIKOWSKI PHYSICAL REVIEW A 83, 023825 (2011)

and

a2 = pa1, b2 = ±ia1, (6)

where 0 � p � 1 is a real parameter [27].
The important characteristic of the vector solitons with

nontrivial phase structure is its total angular momentum [23],
which can be represented as

M =
∑

n

Mn = P (m) m

2

∑
n

{a∗
nbn − anb

∗
n}, (7)

where P (m) = 2π
∫ ∞

0 U 2rdr is the power of a scalar vortex
with the topological charge m. The ratio of the total angular
momentum and the total power, M/Ptot, can be regarded as an
analog of spin for an optical beam, where

Ptot =
∑

n

Pn = 1/2
∑

n

(|an| + |bn|)P (m) = P (m). (8)

The value of the spin depends crucially on the parameter p.
The spin is zero for p = 0 and can be zero or integer when
p = 1. Moreover, a fractional number of spin exists when
0 < p < 1 [27].

We first seek analytically the approximated solution of the
vector soliton clusters using the variational approach [31]. It
is easy to show that the Lagrangian density corresponding to
Eq. (1) can be represented as [30]
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In subsequent analysis we will assume a Gaussian
form of the nonlocal response function R(r) = (πσ 2

0 )−1

exp (−r2/σ 2
0 ) [13] and an ansatz of a ringlike vortex

form for the amplitude of the vector solitons U (r) =
Arm exp

(−r2/2σ 2
)

[30], where σ0 and σ are the degree of
nonlocality and the beam width, respectively. By calculating
the effective Lagrangian L = ∫ ∞

−∞ Ldxdy and using the
Euler-Lagrange equations [32], we find the amplitude of the
vector-necklace solitons as a function of the parameters σ0

and σ . We then employ this variational solutions as an initial
condition to investigate the soliton dynamics by numerically
integrating the nonlocal Schrödinger equation Eq. (1) using
the split step beam propagation method. The simple solution
with m = 1 and p = 0, represents incoherent superposition of
two dipole solitons, whose evolution dynamics was discussed
in our previous work [30]. In this work we are interested
in the potential instability suppression of vector-necklace-
ring soliton clusters consisting of a large number of petals.
Therefore we consider here the case of m = 6 although our
results are applicable to an arbitrary value of m.

III. NUMERICAL RESULTS AND DISCUSSION

Results of our numerical simulations are presented in
Figs. 1–7. In these plots the label “scalar” refers to the spatial
intensity distribution of the single-component beam or soliton.

In case of vector soliton the labels |E1|2 + |E2|2, |E1|2, and
|E2|2 denote its total intensity distribution as well as those of
its constituent components, respectively.

In Figs. 1–3 we demonstrate the instability suppression of
vector-necklace-ring soliton clusters with zero total angular
momentum (p = 0) in nonlocal media with various degrees
of the nonlocality (i.e., σ0 = 0.7, 1.8, and 10, respectively).
In these graphs we plot the spatial intensity distribution of
the corresponding scalar and vector beams for a comparison.
In all of our simulations, we set the initial beam width at
σ = 1. The dynamics of the vector-necklace solitons is also
compared with the expansion of a scalar-necklace beam with
12 lobes and the breakup of a scalar vortex. It is obvious that the
nonlocality can improve the stability of both the vector solitons
and the scalar beams. However, it will not prevent expansion
of the scalar-necklace beam, if the degree of nonlocality is
too weak, as shown in Figs. 1(a) and 2(a), and it will ensure
stability only in the strongly nonlocal regime, as shown in
Fig. 3(a). For instance, the scalar vortex beam breaks up into
eight filament beams for a weak nonlocality with σ0 = 0.7 in
Fig. 1(b). This dynamics is similar to that of local nonlinear
media [27]. When the degree of nonlocality (σ0) increases, the
stability of the vortex beam is enhanced as shown in Fig. 2 for
the case of σ0 = 1.8. In Fig. 2(b), the vortex only breaks up
into four filament beams with a moderate nonlocality at the

FIG. 1. (Color online) Dynamics and symmetry-breaking insta-
bility of (a) a scalar-necklace-ring soliton E(z = 0) = U (r) cos(6ϕ),
(b) a scalar vortex E(z = 0) = U (r) exp(i6ϕ), and (c) a vector-
necklace-ring soliton in the weakly nolocal regime (σ0 = 0.7). The
plots labeled “scalar” depict the spatial intensity distribution of the
single-component beam; labels |E1|2 + |E2|2, |E1|2, and |E2|2 denote
the total intensity distribution of the vector beam and those of its
constituent components, respectively.
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FIG. 2. (Color online) Dynamics of the scalar beams and vector-
necklace-ring solitons for the degree of nonlocality σ0 = 1.8 with a
zero angular momentum (p = 0). (a) A scalar-necklace-ring E(z =
0) = U (r) cos(6ϕ), (b) a scalar vortex E(z = 0) = U (r) exp(i6ϕ),
and (c) a vector-necklace-ring soliton defined by Eqs. (5) and (6).

propagation distance z = 10, however, it will break up earlier
for a shorter propagation distance, z = 7, when the nonlocality
is weak σ0 = 0.7.

These results confirm the well-known fact that the nonlo-
cality can effectively suppress the azimuthally instability of
a vortex. We also find that the vortex is more stable than the
necklace beam during the propagation when the nonlocality
is weak or moderate by comparing the results shown in both
Figs. 1 and 2. Figure 2 also shows that the vector-necklace-ring
solitons is stable at the propagation distance z = 10, with a
moderate degree of nonlocality of σ0 = 1.8. On the other hand,
the scalar beams are still unstable at the same propagation
distance.

Compared to scalar beams, the above results show that
the mutual self-trapping of the vector components leads to an
enhanced stability for the vector solitons. This property is also
seen in a weakly nonlocal case, as depicted in Fig. 1(c). Our
simulations also clearly show that the stability of the vector-
necklace beams increases with the degree of nonlocality.
For examples, the vector beam only breaks up into eight
filament beams after a propagation distance z = 7 for σ0 = 0.7
Fig. 1(c); it remains stable at the propagation distance z = 10
in the regime of moderate nonlocality σ0 = 1.8 [Fig. 2(c)].

As shown in Fig. 3(d), the strong nonlocality can average
out all spatial variations of the beam intensity distribution,
leading to the peak of nonlinear refractive index in the
center even though there is a singularity in the center
of the vector beam. Thus the strong nonlocality induces
an effective attractive potential [30], which can completely

FIG. 3. (Color online) Dynamics and evolution of (a) a scalar-
necklace-ring, (b) a scalar vortex, and (c) a vector-necklace soliton
with a zero total angular momentum (p = 0) in the high nonlocality
regime σ0 = 10. The initial fields are the same as those in Figs. 1
and 2. The nonlinearity-induced refractive index changes for different
values of the degree of nonlocality are shown in (d). Notice that
nonlocality averages out the light intensity modulation.

suppress the repulsion between the neighbor beam “petals”
with a π phase flip of the scalar beam [22,27] and prevent
the breakup of vector beams, leading to the formation of
completely stationary vector soliton clusters, Fig. 3(a)–3(c).

To illustrate the stabilizing effect of nonlocality on solitons
in Fig. 4 we plot the stationary propagation distance for
both, a scalar vortex soliton with m = 6 and a vector soliton
(with p = 0) as a function of degree of nonlocality. It is
evident that the stationary propagation distance increases with
a larger nonlocality, resulting in the stabilization of solitons.
In addition, it is also clear that the stability of vector solitons is
enhanced as a comparison to their scalar counterparts. We
also simulated numerically the propagation of the solitons
with different topological charges m and found that the
stability decreases with a higher value of m. This follows
the well-known trend discussed in earlier works on vortex
solitons where it has been established that solitons with a
higher angular momentum (m) breaks down much faster along
propagation.

It should be stressed that even though we only consider
here vortex structures with a particular value of charge m = 6,
our results are applicable to an arbitrary value of m. As an
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FIG. 4. (Color online) Stationary propagation distance of scalar
vortex solitons (m = 6) and the vector soliton (p = 0) versus degree
of nonlocality. The increasing of the stationary propagation distance
indicates a better stability.

example, in Fig. 5, we demonstrate the stationary vector-
necklace solitons with a topological charge m = 8.

Now, we consider the dynamics of beams with a nonzero
angular momentum. When p �= 0, Eq. (6) describes two
types of localized solutions corresponding to two different
signs of b2. While these two solutions have the same spatial
intensity distribution and power, they differ in the value of
the total angular momentum [23,27]. One of these solutions
(b2 = −ia1) has a zero total angular momentum, while the
other solution (b2 = ia1) is nonzero. Moreover, the total

FIG. 5. (Color online) Dynamics and evolution of (a) a scalar-
necklace ring, (b) a scalar vortex, and (c) a vector-necklace-ring
soliton with zero total angular momentum (p = 0) in the high
nonlocality regime σ0 = 10. The topological charge is m = 8.

spin of the latter one can even be a fractional number [27].
Figures 6 and 7 demonstrate the dramatically different dy-
namics of such two solutions when p = 0.75. In this case, we
have the total spins as zero and 5.76 [27].

It is obvious that, similarly to the local case [27], the
vector-necklace beam with a zero total spin is more stable
than that with a fractal spin during propagation for both weak
and moderate nonlocalities. The zero spin vector beam is
stable up to a propagation distance z = 5 in case of a weak
nonlocality and up to the propagation distance z = 10 for
a moderate nonlocality. However, at the same propagation
distances, the vector-necklace beam with a fractional total
spin has already broken up into eight and four filament beams,
respectively.

We also find that the dynamics of vector-necklace solitons
with a fractional spin is very similar to the evolution of
a scalar vortex with p = 0 [see, e.g., Figs. 6(a) and 1(b)].
However, the dynamics of solutions with a zero total spin
follows a totally different scenario, with behaviors simi-
lar to that of a vector-necklace beam with p = 0, [see
Figs. 6(b) and 1(c)]. It should be noted that stationary
vector-necklace beams with zero or fractional total spins can
also be realized in strongly nonlocal media, as shown in
Fig. 7. One can almost ensure the full stability of solitons
in the nonlocal nonlinear system by the fact that in the highly
nonlocal limit the nonlocal nonlinear term which describes
the nonlinearity of the medium becomes a linear one, which is
independent of the light intensity distribution. Then the soliton
behaves as a localized structure propagating within the external

FIG. 6. (Color online) Evolutions of vector-necklace-ring soli-
tons (only the total intensity distributions are shown) with a nonzero
spin in each component (p = 0.75) when the nonlocality is weak
(σ0 = 0.7) [(a) and (b)] and moderate (σ0 = 1.8) [(c) and (d)]. Graphs
(a),(c) and (b),(d) depict intensity distribution of the vector-necklace
rings with nonzero (M = 5.76) and zero total angular momentum,
respectively.
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FIG. 7. (Color online) Stable propagation of vector-necklace
solitons with a nonzero spin in each component (p = 0.75) in a
strongly nonlocal regime (σ0 = 10). The total values of spin for (a)
and (b) are nonzero (M = 5.76) and zero, respectively.

waveguide with the spatial profile of the nonlocal response
function [11].

For the case of p = 1, the solutions for Eqs. (5) and
(6) represent a two-component vortex ring with a zero
or integer total angular momentum [27]. We numerically
investigated their evolution (not shown) and find that their
dynamics is similar to that of the vector-necklace beam
with a zero or fractional total spin (i.e., as shown in
Figs. 6 and 7).

IV. CONCLUSION

In conclusion, we have investigated analytically and nu-
merically the instability suppression of vector-necklace-ring
soliton clusters carrying zero, integer, and even fractional
angular momentums in nonlocal media with an arbitrary
degree of nonlocality. We show that the combination of
nonlocality and mutual trapping of constituent components can
completely stabilize the vector-necklace-ring soliton clusters.
The results presented here may have potential applications
for the studies of optical necklace soliton clusters [33] in
bilayer and multilayer structures [34] and vector matter waves
of multicomponents Bose-Einstein condensations [35] with a
dipolar long-range interaction.
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