PHYSICAL REVIEW A 86, 023829 (2012)

Solitons in cavity-QED arrays containing interacting qubits
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We reveal the existence of polariton soliton solutions in the array of weakly coupled optical cavities, each
containing an ensemble of interacting qubits. An effective, complex Ginzburg-Landau equation is derived in the
continuum limit, taking into account the effects of cavity field dissipation and qubit dephasing. We have shown
that an enhancement of the induced nonlinearity can be achieved by two orders of magnitude with negative
interaction strength, which implies a large negative qubit-field detuning as well. Bright solitons are found to be
supported under perturbations only in the upper (optical) branch of polaritons, for which the corresponding group
velocity is controlled by tuning the interacting strength. With the help of perturbation theory for solitons, we also
demonstrate that the group velocity of these polariton solitons is suppressed by the diffusion process.
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I. INTRODUCTION

To create new devices for quantum information storage
and processing, macroscopically coherent coupled matter-
light states are at the heart of research; see, for example,
Ref. [1]. Cavity quantum electrodynamics (cavity QED), the
study of coherent interactions between matter and quantized
cavity electromagnetic fields, has provided a versatile and
controllable platform to describe many interesting phenomena
in this field, such as micromasers, Purcell effect, squeezed
state generation, atom trapping, and quantum state transfer;
see, for example, Refs. [2,3]. The simplest light-matter system,
one cavity mode interacting with a single two-level atom, is
described by the Jaynes-Cummings model [4]. As the number
of two-level atoms increases, collective effects, due to the
field-mediated interactions of atoms, can be described by the
Dicke Hamiltonian and give rise to intriguing many-body
phenomena [5]. Apart from a single-cavity configuration,
cavity-QED arrays composed of engineered optical cavity
modes, few-level atoms, and laser light modes, may serve as
many-body systems for light [6]. Interesting quantum phase
transitions of light, from Mott insulator, glassy, to super-solid
states, have been demonstrated to analyze critical quantum
phenomena in conventional condensed-matter systems by
manipulating the interaction between photons and atoms
[7-10].

From a practical point of view, two important prerequi-
sites are useful to provide quantum information processing
and transmission. In particular, interactions are essential to
generate necessary quantum correlations and quantum entan-
glement [1]. Second, weakly coupled cavity-QED arrays and
lattices represent suitable candidates for quantum information
transport by using photonic tunneling effect [11]. In particular,
it is worth noticing possible applications of diamond Nitrogen
vacancy (NV) centers for coupled cavity-QED arrays [12].
The qubits based on NV centers are potentially attractive
because they have essentially longer dephasing time (up to
few milliseconds) even at sufficiently high temperatures [13].

Another comprehensive example is the resonant excitation
of a single quantum dot (QD) strongly coupled with a
photonic crystal nanocavity experimentally demonstrated in
Refs. [14-16]. Moreover, measurement of time-dependent
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second-order autocorrelation function in such experiments
enables us to distinguish a photon blockade regime that is
connected with anharmonic energy-level spacing, which is
obviously relevant to nonlinear effects in QD-light interaction
in small-volume cavities. Notice that the detunings between
frequency of coherent probe beam (or frequency of resonant
exciton state) and the bare-cavity frequency are vital parame-
ters in such experiments; cf. Refs. [14,16].

In the future such experiments may permit creation of on-
chip coupled cavity-QED arrays with various architecture for
few-photon light field processing and transport integrated with
telecom lines [17]. It is known that quantum optical solitons are
natural candidates for quantum optical information processing.
Studies of their transmission, formation, and transformation in
coupled cavity-QED arrays are important steps for achieving
this aim. Polariton solitons have some advantages in this
case. In particular, as demonstrated in Ref. [18], polaritonic
nonlinearity can be high enough in comparison with pure
optical nonlinearities achieved (e.g., with pure optical cavity
solitons in vertical-cavity surface-emitting lasers (VCSELs)
[19]), and can help achieve a soliton regime for essentially
smaller particle (polariton) number.

More precisely, here we deal with the problem of polari-
ton soliton formation occurring at the quantum matter-field
interface in semiconductor quantum wells (QWs) embedded
in Fabry-Perot microcavities. Recently polariton solitons
and relevant superfluid behavior of nonequilibrium exciton-
polaritons with narrow-band (GaAs) semiconductor structures
have been observed in a few laboratories [18,20]. The main
physical features of such solitons are connected with the
balance between dissipation effects and external pumping that
occurs for parametrical processes, creating nonequilibrium
exciton-polariton Bose-Einstein condensates (BECs) at lower
polariton branches at temperatures of a few kelvins. The
solitons in experiments are excited within picosecond time
scale and localized in micrometer-scale sizes.

Recently, in Ref. [21] we proposed a two-dimensional
(2D) polaritonic crystal model that represents cluster material
exhibiting high nonlinear properties due to the small but
macroscopic number of two-level atoms strongly coupled
with optical field in the cavity lattice. Basing on the
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Holstein-Primakoff approach, we have shown that such non-
linearity can basically be created by means of two physical
processes: saturation effects occurring due to localization of
the macroscopically small number of atoms at each cavity,
and atom-atom interaction. Experimentally such a system can
be designed by using a 2D photonic crystal host with defect
cavities [22]. Notice that exciton-photon saturation effects
can also be strong enough and accompanied by Coulomb
repulsion processes for coupled cavity QED arrays based
on the appropriate number of multiple QW structures; cf.
Ref. [23]. Coherent matter-field interaction can be achieved
in this case at room temperatures by using wide-band (ZnO)
semiconductor microstructures; cf. [24].

In the paper we consider the problem of soliton formation in
one-dimensional (1D) weakly coupled cavity arrays containing
two-level systems (atoms, QDs, etc) that interact with single-
mode optical cavity fields. Instead of noninteracting (free)
particles, several systems support interacting components,
which are referred to the qubit for simplicity. For the ensemble
of interacting qubits, the Lipkin-Meshkov-Glick (LMG) model
is an example of the system producing maximal pairwise
entanglement under the phase transition of its ground state
[25]. Recently, it has been proposed that the LMG model,
originated in nuclear physics, may describe the Josephson
effect or two-mode Bose-Einstein condensate (BEC) [26]. In
particular, the relevant nonlinear model, which is called in
Ref. [27] the “canonical Josephson Hamiltonian,” evokes great
interest in the framework of efficient spin squeezing [28] and
recent experiments with high-precision measurements [29].
Schemes for realizing a dissipative LMG model in optical
cavity QED [30] and in circuit QED [31] also have been
discussed. By introducing the interaction with a quantized
optical cavity mode, the ground-state phase transition [32],
maximal shared bipartite concurrence of the ensemble [33],
and dynamics from Rabi to Josephson oscillations [34,35] for
the extended Dicke-LMG (DLMG) model have been studied.

In this work, we extend the DLMG model to the array of
quantized field cavity modes and study nonlinear dynamics
in such a qubit-cavity-QED array system. In the continuum
limit, we use a multiple-scale envelope function (MSEF)
method [36,37] to construct soliton solutions for considering
nonlinear interactions among qubits as well as dissipation
effects for them. In particular, we derive and examine a com-
plex Ginzburg-Landau equation (GLE) that supports “slow”
soliton propagations in the presence of polariton formation.
Being a contribution to the studies of collective properties
of light with interacting media, our results in the proposed
qubit-cavity-QED system are connected with the formation
of coupled matter-field states, upper (UB) and lower (LB)
branch polaritons, which would be natural carriers for quantum
information processing at the matter-field interface.

II. MODEL OF INTERACTING QUBIT-CAVITY-QED
ARRAYS

As illustrated in Fig. 1 we consider a one-dimensional (1D)
array of optical cavities, each containing an ensemble of N; of
interacting qubits. The interaction inside each single cavity is
described by Dicke-LMG model Hamiltonian, H°™S and is
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FIG. 1. (Color online) Schematic for our proposed 1D qubit-
cavity QED arrays, in which each cavity contains an ensemble of
qubits with the interaction Hamiltonian among them described by the
LMG model, Hyvg o J2.

represented as (cf. [27-30])
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Subscript i labels the ith cavity to be used afterward.
Detuning frequency A; has been defined as the difference
between qubit transition frequency w; and quantized field
frequency wy (i.e., A; = w; — wy); orbital angular momentum
representation, J ;i with j =x,y,z,£, has been chosen to
describe the qubit ensemble, and the ﬁeld is described by
its creation (annihilation) operators, &iT (@;); and the field
ensemble and the interqubit coupling are represented by the
constants g; and ;.

The Hamiltonian in Eq. (1) is equivalent to the LMG
model in the limit g; = 0 and hereby is called Dicke-LMG
Hamiltonian, which can be obtained from the Gross-Pitaevskii
equation describing a two-species BEC (see, e.g., Ref. [27])
interacting with a quantum field [32]. Experimental realiza-
tions providing an assorted range of tunable parameters for
the DLMG model may include a two-hyperfine-structure-
defined-mode BEC coupled with a quantum cavity field
mode through a one-microwave-photon process, for example,
trapped hyperfine ground states of a sodium BEC inside a
microwave cavity [33]. In the area of solid-state physics, super-
conducting qubit devices seem to be promising candidates for
realizing the qubit-cavity-QED array under discussion; see, for
example, Ref. [38]. In particular, arrays that have interacting
superconducting qubits coupled with the quantum field mode
of a coplanar waveguide resonator may exist, provided the
ensemble sizes are small [34].

For the configuration of an array of cavities, the qubits are
assumed to be confined inside the cavities, while photons can
travel from one cavity to another. We also assume that the
traveling process for photons is dominated by the hopping
between adjacent sites. The value of hopping matrix elements
is a function of the distance between cavities. If the distance
between each cavity is sufficiently small, a cavity field will
only hop to the nearest neighbors. Then the total Hamiltonian
of interaction for this qubit-cavity-QED array is given as
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(cf. Ref. [7])
M
A =Y [AP™MC —ha@aig +al,a0]. @)
i=1

where « is a photon-hopping strength from cavity site i to
i+ 1 and M counts the number of cavities. In the present
work, we assume that only one species of qubits is considered
and that the number of ensemble qubits is the same in each
cavity, that is, n; = n, w; = w, and N; = N. For simplicity,
the parameters are taken as real and homogeneous so that
the detuning frequency, hopping, and coupling strengths be
all identical in each cavity site, that is, A; = A, g; = g, and
o; = a, respectively. Physically, this approach is valid if the
separation of two adjoining cavities is macroscopically large
in comparison with the atomic de Broglie wavelength and
overlapping of atomic wave functions from neighbor cavities
is negligibly small.

If most of qubits stay in the ground state, we can apply
Holstein-Primakoff transformation [39] by mapping qubit
excitation operator J ;i on the Schwinger representation [40]
for a two-level system, that is, J, ; = v/Nb!(1 — b!b; /N)'/?
and fz,i = 13}13,» — N/2, along with the commutation relation
[13,-,13]] = §;;. Practically, the number of qubits N is large
enough and one can expand the orbital angular momentum
representation for the qubit ensemble up to the order of 1/N,
that is, [1 — (1314T5,~/N)]1/2 ~1— 5}15,~/2N. We are working
within the so-called low-excitation-density limit when the
qubits mostly populate their ground levels.

Since a photonic field is an order parameter for the system
described by Hamiltonians (1) and (2) it is nonzero for
superfluid phase of coupled matter-field state in the presence of
photon tunneling between neighbor cavities; see, for example,
Refs. [7,41]. At the same time, the low-excitation-density limit
implies that the average photon number at each cavity should
be essentially smaller than the average number of qubits at the
excited state, that is, (&j&i) < (13}5» (ctf. Ref. [41]).

Now, since number N is assumed to be large enough, we
are able to neglect higher order terms in the expansion of JAH
operator. Then, we can transform the Hamiltonian in Eq. (2)
into

M
Aup =1y { — a@] a1 +al,,a0) + g(alb; + a;b)
i=1

- % albib;b; + a;b1b] b1
+ L Blbblb — NBB) + Aaja,-}. )

Based on this Hamiltonian, Heisenberg’s equations of
motion for the involved two bosonic operators of cavity modes
a; and qubit excitation b; are

d n | VNN
i = Ay — @ +a) + g[b,- - ﬁ(bfb,»b»], (4)

. a ~ 1 TA ~ ATA ~
by = g|a; — =@/ bibs +2a:b5b1) | — by
i g|:a 2N(a’ + 24, b, )] nb; +
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Here, we have neglected quantum fluctuations due to a large
number of qubits considered.

To have mean-field solutions, we replace the pair of opera-
tors (&i,la,-) with the corresponding expectation values (V;, ;)
and approximate this array configuration to a continuous
model, that is, Yi1 + Yi—1 ~ 29(x,1) + d> 2 Y (x,1), with
the distance between two adjoint optical cavities denoted by
d. By considering the conservation of the total photon number
and qubit excitations, we can renormalize the variables with
respect to the number, Ny, defined as Nyo = |¥/[> + |B]%.
The conserved quantity Ny is also known as the number of
polaritons at each cavity [42]. By replacing the cavity field
and qubit excitation by ¥ — v¥/,/Npo and 8 — B/,/Npol,
respectively, now we have a normalization condition for the
cavity field and qubit excitation, |/|*> + |8]> = 1.

Thus, in this continuum limit, the equations of motion in
Egs. (4) and (5) become

iy = (A =20 — iy )Y — ad’d ¥ + gB — Usul BI°B,
(6)

iB=—(Ta+mP +g¥ — Uul B2¥* + 2v|81%]
+ Uit BI*B, (7)

n .
where Uiy = 20001, Usye = £22, and npo = Npot/N is a

polariton number density. In Eqgs. (6) and (7) we have a
phenomenologically introduced decay rate for photonic field
y. that characterizes the leakage of photons in the cavity and
dephasing rate I'; for the qubit system. Physically, parameter
U, characterizes a nonlinear saturation effect under the qubit-
light interaction. Parameter Ujy, is responsible for qubit-qubit
interactions within the LMG model. Let us briefly discuss
the applicability of our model [Egs. (6) and (7)] for different
physical systems representing qubits.

A. Example 1: Cavity QED with atomic qubits

Here we discuss a cavity-QED array with two-level atoms as
a qubit system. To be more specific, we consider ultracold two-
level rubidium atoms with resonance frequency w,;/2m =
382 THz that corresponds to mean weighted rubidium D
lines [42]. The atomic polarization dephasing rate and the
minimal value of each cavity field decay rate can be taken as
several tens of megahertz that corresponds to cavity quality
factor Q = wyp/2y. ~ 10°. The strength of interaction of
a single atom with a quantum optical field is taken as
go/2m = 89.5 MHz at each cavity with the effective volume
of atom-field interaction V = 5000 um?. To achieve a strong
atom-field coupling regime—see Eq. (15)—one can propose a
macroscopically large number of atoms at each cavity, say N =
5 x 10°. This number is relevant to the density p = 10'* cm™3
of ultracold atoms that implies a collective atom-field coupling
parameter as g = gov/N = 27 x 63.2 GHz at each cavity.
At the same time the parameter that describes atom-atom
interaction n = 4rwhas.p/m in the Born approximation can
be estimated as n = 2w x 0.73 kHz, where a,. is atomic
scattering length that we choose as a;. = 5 nm, cf. [43]. Thus,
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for atomic QED array Ujy/ Uyt =~ 10~% and we can neglect
atom-atom interaction processes in Eqgs. (6) and (7).

B. Example 2: Cavity QED with excitonic qubits in QWs

A 2D version of Egs. (6) and (7) describes properties
of exciton-polaritons that can be created in a microcavity
with Bragg mirrors under strong coupling between excitons
confined in QWs and a cavity photonic mode; see, for example,
Refs. [23,44]. It has been shown recently that the strong
coupling condition can be achieved in the system of photonic
crystal polaritons [45], which can be a possible platform to
implement qubits being proposed in a cavity-QED array. The
typical values of Rabi splitting frequency for QWs based on
GaAs or CdTe is a few milli-electron volts. The saturation term
Uy in Egs. (6) and (7) for QW structure can be represented
as Ugy =~ g/ngS, where ng, is exciton saturation density
and S is a quantization area. The typical values for ng, and
Ug are 1.4 x 101 cm=2 and 27 x 0.65 MHz, respectively,
taken for exciton Bohr radius 10 nm and excitation laser spot
S ~ 400 pm?. The exciton-exciton interaction term in Eq. (7)
is evoked by Coulomb interaction and is about two order times
larger than Ug,; cf. [44]. Thus, we can neglect exciton-photon
saturation effects for excitonic qubits. Typical experimentally
accessible values for relaxation processes in semiconductor
structures can be approached as I'y >~ 2w x 12.1 GHz, y, =~
27w x 50 GHz, which implies a exciton-polariton lifetime
within tens of picoseconds.

The set of coupled nonlinear equations (6) and (7) is the
starting point of our work, and soliton solutions both for the
wave-packet envelope of cavity field ¥ (order parameter) and
for qubit excitations 8 are considered analytically below.

III. DISPERSION RELATIONS AND GROUP VELOCITIES

To construct solitons in this cavity-QED arrays with
interacting qubits, we seek wave-packet solutions using
the multiple-scale envelope function method [36,37]. With
the introduction of different length and time scales [i.e.,
Xp =A"x(AK1,m=0,1,2,..)andt, = A"t (A KL I,m =
0,1,2,...)], we can expand photon field, ¥, and qubit
excitation, 8, as

v =D+ 22y 4 A3y
B = )»,3(1) +)\213(2) -|—)»3,3(3) + ...

By substituting these expansions in Eqs. (6) and (7), we can
gather all terms that are proportional to the first order of A and
find

i0, " = (A =2a — iy )YV —ad?d; yV + g8V, (8)

i, 8" = —(Ta + B + gy ©)

This first-order expansion for the qubit excitation BV
in Eq. (9) supports a plane-wave solution, from which
we can find a corresponding dispersion relation by
using the solution in the form of (1) = EMeikxo=who) apd

BV = i EVel o=@ The corresponding carrier fre-
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quencies are

w = W4
1 d*k?
= §|:A -7 —2a<1 — T) —i(ye +Ta)
d2k2 2
i{[n+A—2a(l——2 )—i(yc—rd)}
172
+4g2} ] (10)

where k is a wave number. Physically, Eq. (10) reproduces a
familiar result for frequencies of two branches of polaritons
[46], which are denoted as UB (@) and LB (w_), respectively.
It is important to note that field (v(1) and qubit excitation
(BMV) variables become exact solutions of Egs. (6) and (7) when
neglecting nonlinear effects, that is, setting Ugy = Ujy = 0.
Hence, it is easy to understand that MSEF method developed
here is valid if dispersion characteristics of polaritons—see
Eq. (10)—cannot be essentially modified by taking into
account nonlinear effects. Strictly speaking, the condition

Usat, Uit < 2g¢ an

should be fulfilled for coupled qubit-light systems described
by Egs. (6) and (7). In practice this condition implies achieving
the low-excitation density limit 72,4 < 1 discussed above.
Next, for the second order of multiple scales (i.e., A2), we
can have a linear wave equation for a wave-packet envelope

(@, + v+, )EV =0, (12)
from which one can find the corresponding group velocities,

2akd> Q%

— 13
Qi +g2 ()

V4 = 8ka)i =
that are defined for UB (v4) and LB (v_) polariton wave
packets. Below we consider variable EV in connection with
Eq. (12) in the moving frames &+ = x; — v+#;. In Eq. (13) we
have also introduced characteristic frequencies

Qe = 3{8 —iy £ (S —iy)” +4g1'%), (14)

where y =y, — I’y is an effective qubit-field decay rate
for the system and § = A +n — 2a(1 — d*k*/2) is a total
momentum-dependent qubit-light detuning. Now, the qubit
interaction parameter n introduces an additional phase shift
that can be used to tune the relative dispersion relations of
polaritons.

It is noted that the group velocities vy defined in Eq. (13)
are complex numbers in general. It is known that this leads
to the additional deformation of a pulse envelope propagated
in the medium [47]. The above MSEF method works only for
small decay rates if a strong coupling qubit-light condition is
valid, that is,

Ve Tu < 2g. (15)

In particular, in this limiting case the imaginary part
of frequencies Im(wy), which characterizes the decay of
polaritonic systems, is smaller than the real one Re(w..), that
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is, Im(w+) < Re(wz). If the condition in Eq. (15) is not met,
the group velocity can be correctly determined in terms of the
energy flow in the medium only [48]. However, this is not the
case of our present consideration.

With the introduction of the qubit interaction, in Fig. 2(a),
we show the dependence of these two branches wy on the
wave number k under the resonance condition A = 0, but
for different qubit interaction strengths, n = —1, 0, and 1.
Equation (10) is valid for a small quasimomentum k, such
as kd <« 1. In particular, if we approximate 1 — d?k?/2 ~
cos(kd) in Eq. (10), then, by setting n =0 and y. =Ty =
0, we can recognize true dispersion relation taken at the
first Brillouin zone for periodic structure; see Fig. 2 and
cf. Ref. [21]. For a small quasimomentum k we can have
parabolic dispersion relation that is inherent in LB polari-
tons occurring in semiconductor microcavities [18,20]. From
Fig. 2(a), one can see that a negative value of n, accounting
for a repulsive interaction among the qubits, moves the two
branches wy upward to a higher value, while a positive one
moves the dispersion relation downward.

By collecting terms of  — A in Eq. (10) under the condition
(15), we can make the linearization approximation for the
dispersion relation, that is,

- A
wy ~ —ot(cos(kd)+ nz—)i lgl, (16)
o

where one can view this qubit interaction as a linear frequency
detunging under the conditions of 2A« cos(kd) < o?[cos(kd)
+ %]2 «| g . Inthis case, we obtain the dispersion relation
as a function of n — A only, that is, the nonlinear interaction
strength (1) is such a linear term as photon-atoms detuning
factor (A). Figure 2(a) shows such a shifting of dependencies.

By fixing a wave number k = 0.1, in Fig. 2(b), the
dependences of these two frequency branches are modified
strongly with respect to the change of interaction strength
n. As the interaction energy among the qubits changes from
a repulsive to an attractive one, both frequencies w, and w_
decrease as the value of the qubit interaction strength increases.
When the above linear condition of n — A is not valid, these
modified frequency curves for two branches demonstrate a
totally different tendency to the frequency detuning, A. For
a sufficiently large negative (positive) value of the interaction
strength, n << —10 (n > 10), the upper (lower) branches for
different detunings merge into a single curve. That is, in this
condition we have a frequency curve which is independent of
the detunings. Now a nonlinear interaction term 7 is dominant.

An example of the group velocity vy for two branches is
shown in Fig. 2(c) as a function of qubit interaction strength
n, for k = 0.1 under the condition (15) but with three different
frequency detunings, thatis, A = —2,0, and +2. Itis noted that
the group velocity in this work is normalized to ad, instead of
the speed of light. Behaviors of the group velocity of light in the
cavity array under discussion can be easily understood by using
a physical picture of polariton propagation—see Sec. [V. Here
we note that the difference between these group velocities in
the two branches becomes larger while the absolute value of the
qubit interaction strength 7 increases. A “slow” propagation
of the wave packets can be achieved just by changing the qubit
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FIG. 2. (Color online) (a) Two branches in the dispersion relation,
labeled as upper w, and lower w_ branches, are shown as a function
of the wave number k at the resonance condition A =0, but for
different qubit interaction strengths, n = —1, 0, and 1, respectively.
(b) The carrier frequencies w. and (c) the group velocity vy for the
wave packet are shown as a function of interaction strength 1 under the
conditionk = 0.1, y = 0, but with different frequency detunings, i.e.,
A = -2, 0, and +2. Other parameters used are « =d = 1, g = 10,
and np, = 0.01.
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interaction parameter n for a negative (positive) value for the
UB (LB) solution.

IV. POLARITON SOLITON SOLUTIONS

Now, we do a multiple-scale expansion up to the third order
by collecting terms with A% and reach a complex GLE [49],
that is,

ow R

j— + Dy—— + CL|V|>¥ =0, 17
lat+ iaxi+i|| 17

where variables W = AE(, X, = £, /A, and £, = A*t have
been introduced. The coefficients Dy and C., appearing in
the second and third terms of Eq. (17) respectively, have the
forms
203 2,2
D, = w, (18)
Q24(Q1 +¢%)
. np01g4[(39j: + Qj:) - 477]
2Q. (% +¢5)
Coefficients defined in Eqs. (18) and (19) are complex and
can be evaluated as Dy = Dg) + in), Cy = C(il) + in).
The real part Dg) of the D coefficient describes diffraction
effects occurring with the wave packet, while the imaginary
part D(iz) characterizes diffusion processes. Parameter CSII ) is
responsible for a Kerr-like nonlinearity that occurs due to
polariton-polariton scattering. At the same time an imaginary
part, that is, Cg ), is relevant to nonlinear absorption effects.
By taking into account Eq. (10), it is helpful to introduce
convenient UB (m ) and LB (m_) polariton masses

mpn($23 + 8°)
QL

19)

my = h[dfwsli=ol ' = : (20)

where m ,, =nh/ 2ad? is an effective photon mass in the cavity
[41]. Neglecting the kinetic energy of polaritons and supposing
that the solutions are taken at the bottom of dispersion curve,
one can approximate

3
n anolg Yq:

Dy ~—— CiZﬂZ

= ) , 21
2mi Yi ( )

where we have introduced Hopfield coefficients such as
Y, = \/Li[l + 1'/2 and for the sake of simplicity we

s
82+4g2
suppose that g > 0. The latter parameters determine the
contributions from photons and qubit excitations to polaritons.
In particular, we can express a field variable W that is a flight
qubit through polariton qubit states as follows:

W =Y, Eyg — Y_Ers, (22)

where Eyp and E;p are new variables characterizing UB and
LB polaritons respectively. They are defined in a convenient
way using Bogoliubov transformation [21].

In particular, for a positive and large frequency detuning
8, thatis, |§] > gand § > 0, we have Y, ~ 1 and Y_ ~ ‘f’;—‘,
respectively, which correspond to photonlike UB polaritons
(Eyp =~ V) with mass my ~ mp, and group velocity v, =
hk/m; see Egs. (20)—(22) and Fig. 2(c). Remarkably, at the
same time the group velocity of LB polaritons with mass
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m_ ~ mphg—i approaches v_ = hk/m_ < c, where c is speed
of light in vacuum. Now, we have a “slow” (matterlike) soliton
formation in the cavity array. For |§] > g but § < 0, the
physical picture becomes the opposite and the propagating
optical pulse is relevant to LB polaritons (B g ~ —WV) with
mass m_ ~ mpy, and group velocity v_ =hk/m_ > v,. In
the presence of qubit-light resonance condition, § = 0, UB
and LB polaritons equally contribute to the qubit state, that
is, Y, =1/ V2. The masses of polaritons are equal to each
other, that is, mpo = m+ = 2myy. Flight qubit propagates in
the medium with the velocity v. = hik/mp,.

At thermal equilibrium (or quasiequilibrium), the lower
polariton branch is macroscopically occupied. In this case we
are interested in the properties of LB polaritons only. Taking
into account the dependence of W on LB polariton variable
Erp in Eq. (22), it is easy to rewrite the GLE in Eq. (17) for
LB polariton variable as

0ELB h 3’Ers

YR e — CplBisl*BLe =0,  (23)

where parameter C, >~ 2np01gYJ3r /Y_ establishes the two-
body polariton-polariton interaction strength. Thus, Eq. (23)
derived above by the MSEF method remains in complete
agreement with the results obtained for LB polaritons using
the Hamiltonian diagonalization approach in [21].

It is useful to examine Egs. (17)—(19) in the limiting
(dissipationless) case for the system by setting y, = I'; = 0.
In this limit, both coefficients D+ and C+ become real and
GLE in Eq. (17) is reduced to a standard nolinear Schrodinger
equation (NLSE) that possesses exact bright and dark soliton
solutions depending on the sign of the coefficients Cy = C(il )
and Dy = D(il). Here, we suppose that coefficients Dy > 0.
Then, for the case of C+ > 0, we have a bright soliton solution,
while for the case of C+ < 0, dark solitons can be found [50].

In Fig. 3, we show the dependences of this nonlinear
coefficient, CE_LI ), as a function of the qubit interaction strength
n. In Fig. 3, we see that the upper (optical) branch gives
only a non-negative value of C:(tl), while the lower branch
that characterizes matter excitations gives only a nonpositive
value. In other words, we can only have a bright soliton
solution supported in UB and a dark one in LB. However,
due to the requirement to conserve the polartion number, only
bright soliton solutions can meet this condition [51]. For a
moderate polariton density number of total excitations, that
is, npot = 0.01, as shown in the inset of Fig. 3, the value of
C(il) tends to zero for the attractive qubit interaction, n > O.
However, as compared to the positive one, a negative qubit
interaction n < 0 can induce a larger nonlinear coefficient,
Cil), which is enhanced by two orders of the magnitude. At
the same time, as shown in Fig. 2(c), this bright soliton also
moves as a “slow light.” This giant enhanced nonlinearity is
inherent in matterlike polaritons and results from the repulsive
interaction among the qubits in this case [18].

Moreover, the properties of nonlinear coefficient C$ ) being
a function of polariton number density 7y, are evident from
Eq. (19). Effectively, if one increases polariton number density
npol at each cavity, the effect of the ensemble interacting qubits
results in the enhancement value of a nonlinear coefficient.
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FIG. 3. (Color online) Nonlinear coefficient C.. of the reduced
NLSE in Eq. (17) is shown for two frequency branches wy, as a
function of the qubit interaction strength n for different frequency
detunings A. Inset shows a enlargement close to n = 0. The
parameters used are k = 0.1, « =d =1, ny,g = 0.01, and g = 10,
respectively.

Practically, this effect can be used for creating artificial
cluster materials based on physically small but macroscopical
volumes of a qubit-light interaction. Photonic crystal defect
cavities seem to be an appropriate candidate for providing
such interaction; cf. Ref. [21].

V. BRIGHT POLARITON SOLITONS UNDER
PERTURBATIONS

Now we are going to examine a coupled qubit-light
system in respect of bright soliton formation; the system is
in nonequilibrium. In this case we are interested in soliton
solutions of Eq. (17) for optical field amplitudes ¥ in the
presence of polariton formation. It is useful to bring Eq. (17)
to a dimensionless form, rewriting it as follows:

I e = e et in Y

i— 4+ -—— = —i¢g i&——,

ot 2 9x? : 2 x2
(1)

wherex = X, /dandt = 25; t are new dimensionless spatial
(2) 2)
and temporal coordinates respectively; &; = %, & = 'Dt“'
1c| 2p!!

are perturbation coefficients (¢; , > 0). In Eq. (24) we also use
the fact that the characteristic time scale of a dispersion action
and the influence of nonlinearity on wave-packet spreading
should be the same [50]. In particular, the condition

_4pP1Q 2| 3@, +f —4n ]| ’s
Mpol = Py PR (25)
d’g QL +g

should be met for polariton number density n,, in this case.
Dependences of n,, as a function of qubit interaction
strength n are presented in Fig. 4. The limiting cases for
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npol
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FIG. 4. (Color online) Polariton number density n,, vs qubit
interaction strength 7 required for soliton formation taken for y =
0.1, n = 1. Other parameters are the same as in Fig. 3.

polaritons are determined by the magnitude and sign of
detuning § that includes the dependence on 1. For large positive
values of 7, low-excitation density limit (n,, < 1) is violated
for the chosen qubit-light interaction parameters. In this case
we should take into account the next terms in expansion of
operators J, ; characterizing a two-level oscillator system,
resulting in a quintic nonlinearity [21].

We examine the GLE in Eq. (24) using perturbation theory
for solitons by consulting Ref. [52]. In particular, we are
looking for the solution of Eq. (24) in the form

W(t,x) = 2vsech{2v[x — (1)}, (26)

where v, ¢(7), and ¢(r,x) are related soliton amplitude,
position, and phase, respectively. In the absence of pertur-
bation (g, = 0), the ansatz used in Eq. (26) represents an
exact solution for Eq. (24) with the parameters evolving in
time as

T
(D) =3+, @7)
o(T.x) = g[x (0] + 5(), (28)
U2T 2
8(t) = S + 2v°t + &, 29)

where parameters ¢, and §, represent the initial soliton position
and phase respectively. Here, v = v, is soliton velocity, which
we can associate with the velocity of the UB polaritonic
wave packet by setting y = I'y = 0. In the presence of small
perturbation (g, # 0), we consider the soliton amplitude
v and velocity v to be time dependent. Applying soliton-
perturbation theory, we arrive at the set of equations for soliton
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FIG. 5. (Color online) Snapshots of bright soliton profile ||
as a function of effective coordinate x.; = x — ¢(t) at different
times of propagation 7. In the inset temporal behavior of soliton
group velocity v is plotted. The parameters are (cf. Refs. [23,
44]) g =2m x 1.7 THz, I' =27 x 12.1 GHz, y. = 27 x 50 GHz,
a =2m x0.75 THz, nnye =27 x 24.3 GHz, d =400 nm, k =
10* m™!, and § = 0, respectively.

parameters under the adiabatic approximation,

b =—3Qe + e’ — Lev’y, (30)
U = —Lenm?, (31)
. v
=, 32
£=3 (32)
. v2
§ = =+ 212, (33)

where dots denote derivative with respect to normalized time,
that is, d/dt.

In Fig. 5, we represent a typical UB polariton soliton
profile taken at different times for qubit-light interaction in
a semiconductor GaAs-based QW structure, as an example.
Based on real parameters of GaAs-based QWs, the initial shape
of this soliton is characterized by the dashed (red) curve.

From Fig. 5, it is evident that a soliton amplitude vanishes
due to effective nonlinear absorption. At the same time the
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group velocity of the solitons is slightly modified due to
diffusion processes characterized by parameter ¢, shown in
Eq. (30). The characteristic time of disturbing soliton group
velocity is tens of picoseconds, which seems to be reasonable,
taking into account polariton lifetime in semiconductor struc-
tures (the maximal magnitude of dimensionless time T = 12 in
the inset of Fig. 5 corresponds to the value of 25 picoseconds
in real time scale); cf. Refs. [18-20]. Moreover, the temporal
soliton displacement ¢(t) can be characterized by Eq. (27)
with a good approximation.

VI. CONCLUSIONS

In this work, we consider the problem of soliton formation
in the array of weakly coupled qubit ensembles interacting
with the optical field in a tunnel-coupled cavity array. The
effects of cavity field dissipation and qubit dephasing have
been taken into account. By expanding the Lipkin-Meshkov-
Glick model for the ensemble of interacting qubits with the
cavity photon fields in the array, we analytically reveal the
existence of mean-field soliton solutions. In particular, we
use the multiple-scale envelope function method to obtain
an effective complex Ginzburg-Landau equation containing
nonlinear absorption and diffusion terms. Mean-field soliton
solutions for these coupled matter-field states are revealed in
the representation of UB and LB polaritons. With a negative
value of the qubit interaction, not only a “slow” wave packet
in the form of solitons but also an enhanced nonlinearity can
be achieved in such a qubit-cavity-QED array configuration.
We have shown that in this case an optical wave packet
can be recognized as a macroscopical polariton qubit state.
In particular, we have demonstrated that bright solitons are
formed for UB polariton wave packets and characterized by
slowly varying soliton amplitude, momentum, position, and
phase. Notably, the group velocity of solitons decreases in
time due to diffusion processes within a picosecond domain
for semiconductor structures. Our analytical and numerical
results presented here and connected with a cavity-QED array
provide a platform for the studies of collective properties of
light with interacting media.
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