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Stabilization of counter-rotating vortex pairs in nonlocal media
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The dynamics of vector vortex pairs with explicit and hidden vorticity in nonlocal media with an arbitrary
degree of nonlocality is investigated analytically and numerically. We show that the stability dynamics of the
vortex pairs depends crucially upon their total angular momentum, the topological charge, and the degree of
nonlocality. In particular, we show that nonlocality eliminates the splitting of the vortex pairs, improves their
propagation stability, and leads to formation of stationary bound states of vortex pairs.
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I. INTRODUCTION

Propagation dynamics of nonlocal solitons has been a sub-
ject of intense research efforts [1]. Nonlocality of nonlinearity
occurs in many physical settings which include, for instance,
nematic liquid crystals [2,3], thermal media [4,5], atomic
vapors [6], or Bose-Einstein condensates with a long-range
interparticle interaction [7]. Physically, the nonlocal character
of the nonlinearity signifies the fact that nonlinearity such as
the light-induced refractive-index change of a material at a
particular location is determined by the light intensity in a
certain neighborhood of this location [1]. So far many works
have shown that nonlocal nonlinearity has profound effects on
the propagation dynamics of the beams. For instance, nonlocal-
ity can prevent the catastrophic collapse of high-dimensional
beams [8] and suppress modulation instability [9,10] and
transverse instability [11] in self-focusing media. Nonlocality
can support a range of novel soliton states including dipole
[12–14] and multipole solitons [15,16], discrete solitons
in optical lattices with nonlocal nonlinearity [17–20], and
incoherent solitons in nonlocal media with both instantaneous
and slow nonlinear response [21–25]. Nonlocal nonlinearity
also promotes the stability of vector or multicomponent
solitons, such as dipole [26] and multipole solitons [27,28],
two-color solitons [29,30], dark solitons [31], and vortex [32]
and necklace solitons [33]. Moreover, by providing attractive
forces between out-of-phase bright [34,35] and dark solitons
[36–38] the nonlocality promotes formation of their bound
states.

Vortex solitons, i.e., localized donutlike structures with
phase singularities in the center [39], were shown to be
unstable in local media [40]. The stability of scalar vortex
solitons has been established theoretically for media with
competing nonlinearity [41]. In recent years, the propagation
of vortex beams has also drawn considerable attention in
the context of nonlocal nonlinear media [5,42–52]. The
nonlocal nonlinearity can suppress the azimuthal instability
of beams with angular momentum, forming stationary vortex
solitons and azimuthons. Besides the typical vortex solitons
and azimuthons with circular symmetry, nonlocality can
also stabilize the more general elliptic vortex solitons called
ellipticons [53–55].

It has been demonstrated that the azimuthal instability of
vortex solitons in pure local media [56] can be suppressed
by using two-component (vectorial) vortex solitons. Such
vector solitons carry integer vorticities (m,±m) in their two
components. Many works have shown that the two-component
soliton with hidden vorticity, i.e., (m,−m) type, exhibits better
stability than the soliton with explicit vorticity, i.e., (m,m) type.
The instability dynamics of such vortex pairs has been studied
extensively in models with saturable nonlinearity [57–59], or
cubic-quintic [52,60–63] and quadratic-cubic [64] competing
nonlinearities. These works have shown that the vector solitons
with an explicit vorticity are always unstable against splitting
in saturable nonlinear media [59]. In a recent paper the
propagation of fundamental charged vortex pairs with hidden
and explicit vortices was demonstrated experimentally in
nematic liquid crystals [65], which shows that vortex pairs with
hidden vorticity can be stable but vortex pairs with explicit
vorticity always break up and transform into vector dipole
solitons.

In this paper, we investigate both analytically and nu-
merically the stability dynamics of vector vortex pairs with
explicit and hidden vorticities in nonlocal media with an
arbitrary degree of nonlocality. We consider solitons with
fundamental as well as higher charge. We demonstrate the
breakup dynamics of the vortex pairs with different topological
charges and show how the nonlocality improves their stability.
It appears that while nonlocality enhances the stability of all
vortex soliton pairs with either explicit or hidden vorticity, the
latter is always more stable.

II. MODEL AND BASIC EQUATIONS

We start with a vector model consisting of two mutually
incoherently coupled optical beams propagating in a medium
with a spatially nonlocal nonlinear response. Here, the two
components refer to the case that the vortices of our vector
model have different polarizations [66]. In order to have
incoherently coupled vector optical beams, their relative phase
must vary more quickly than the characteristic response time
of the material. This can be easily realized in some slow
(inertial) nonlinear media such as photorefractive crystals or
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liquid crystals. By requiring the frequency difference between
constituent components (typically ≈1 kHz) to be larger than
the inverse of the material response time, the medium responds
only to the sum of intensities [67]. Moreover, without loss of
generality, we consider that the components of vector vortex
pairs have the same parameters of the amplitude distribution
and they are mutually incoherent.

The propagation of the slowly varying beam envelopes
En(x,y,z) can be described by the normalized coupled
nonlocal nonlinear Schrödinger equations (n = 1,2) [26,33]

i
∂ψn

∂z
+ ∂2ψn

∂x2
+ ∂2ψn

∂y2
+ ψn

∫
R(r − r′)I (r′,z)d2r′ = 0,

(1)

where the propagation coordinate z is measured in units of the
diffraction length LD and the transverse coordinates (x,y) are
measured in units of (LD/k)1/2. I = |ψ1|2 + |ψ2|2 is the total
beam intensity and R(r) is the normalized nonlocal response
function with

∫ ∞
−∞ R(r)dr = 1.

In this paper, we focus on the vectorial vortex solitons
with explicit (m,m) and hidden (m,−m) vorticity, respectively.
Thus, we look for solutions of the vector cortex pairs in the
form of ψn = Un exp (ikz ± imϕ), where Un is the amplitude
envelope, k is the propagation constant, and ϕ = tan−1(y/x).
In previous works, the amplitude envelope Un can be obtained
numerically, for instance, by the shooting method with two-
point boundary conditions [57,59]. However, here we will
employ the Lagrangian (or variational) approach to study the
dynamics of the vector vortex pairs. It is easy to show that
Eq. (1) can be derived from the following Lagrangian density:

L =
∑
n=1,2

i

2
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2
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∣∣∣∣∂ψn
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2 )

+ 1

2
|ψn|2

∫
R(r − r′)I (r′,z)d2r′. (2)

R(r) is the normalized nonlocal response function with
a characteristic width σ which represents the degree of
nonlocality. In our variational approach, we consider here the
case of a Gaussian nonlocal response [13,21]

R(r) = (πσ 2)−1 exp (−r2/σ 2). (3)

The most important point of the variational method is the
choice of an appropriate and physical ansatz representing the
optical beam. For convenience, we choose a typical single-ring
vortex form for the amplitude of a scalar vortex,

U = Arm exp (−r2/2w2) exp (ikz + imϕ), (4)

with the amplitude A and the beamwidth w [42]. The power of
the scalar vortex beam can be obtained by P = ∫∫ |U |2dxdy;
for instance, the total power is P = πA2w4 for a singly
charged (m = 1) vortex beam and P = 720πA2w14 for a
higher-order vortex beam with m = 6. When considering the
vector vortex pairs, we assume that they share the same
envelope of the scalar vortex and carry the equal powers
P1 = P2 = P/2 [56,57],

ψ1 =
√

2

2
Arm exp (−r2/2w2) exp (ikz + imϕ), (5)
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FIG. 1. (Color online) Total power of the vector dipole solitons
versus degree of nonlocality for different beamwidths.

and

ψ2 =
√

2

2
Arm exp (−r2/2w2) exp (ikz ± imϕ). (6)

The sign ± in Eq. (6) corresponds to explicit and hidden
vorticity vortex pairs, respectively.

Using the ansatz Eqs. (5) and (6) in the Lagrangian density
L one can evaluate the reduced (or effective) Lagrangian
L = ∫ ∞

−∞ Ldxdy which depends only on the parameters A

and w. From the corresponding Euler-Lagrange equations
we then obtain the approximately analytical solution for the
amplitude A of the vortex pairs. In Fig. 1, we show the total
power of singly charged (m = 1) and higher-order charged
(m = 6) vector vortex beams as a function of the degree of
nonlocality with different beamwidths. We also emphasize
that all quantities plotted in the figures are dimensionless in
this paper. It is obvious that, for both singly and higher-order
charged vector vortex solitons, the total power of the vector
vortex solitons will decrease when the beamwidth increases,
whereas the total power will increase when the degree of the
nonlocality increases. It is also obvious that the power of
higher-order vortex solitons is always larger than the power
of singly charged vortex solitons.

III. VORTEX PAIRS WITH FUNDAMENTAL
TOPOLOGICAL CHARGE

In the following, we will study the dynamics of the vortex
pairs by direct numerical simulations by using the split-step
Fourier-transform method. It should be noted that the dynamics
of the vortex pairs can also be investigated by a linear stability
analysis with a perturbed solution [58,59]. The variational
results shown in Fig. 1 will be used as initial conditions in our
two-dimensional numerical codes.

In this section, we consider the dynamics of the vortex
pairs with fundamental topological charge m = 1. In Figs. 2–
4 we show the stability dynamics and interactions of the
vortex pairs with explicit (1,1) and hidden (1,−1) vorticity in
nonlocal media with weak, intermediate, and strong degrees of
nonlocality. In the simulations throughout the paper we will use
solutions with the initial beamwidth w = 1. For comparison
we also present the evolution of a scalar vortex [Eq. (4)] in
nonlocal nonlinear media.
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FIG. 2. (Color online) Azimuthal instability of singly charged
(m = 1) vortex solitons in nonlinear media with weak nonlocality
σ = 0.2. Symmetric breaking of (a) scalar vortex solitons, (b) vector
vortex solitons with explicit vorticity (1,1), and (c) vector vortex
solitons with hidden vorticity (1,−1). |E1|2 and |E2|2 represent the
intensity of constituent components of the vector vortex solitons.

From Figs. 2–4, we find that the dynamics of vortex pairs
with explicit vorticity (1,1) [graphs (b) in Figs. 2–4] are
essentially equivalent to the dynamics of the scalar vortex
[graphs (a) in Figs. 2–4]. This result was also previously
obtained in local media. Because the nonlocality cannot
prevent the azimuthal instability of the vortex beams, the vortex
pairs will break up and split into several fundamental filaments
in local (not shown) and weakly nonlocal media. However,
the breakup dynamics of the vortex pairs with explicit and
hidden vorticity are very different. The scalar vortex beam
[Fig. 2(a)] and the vortex pair with explicit vorticity [Fig. 2(b)],
decay into a pair of scalar solitons with equal power in the
case of weak nonlocality with σ = 0.2. However, the vortex
pair with hidden vorticity will split into three fundamental
scalar filaments in the case of weak nonlocality with σ = 0.2

FIG. 3. (Color online) Azimuthal instability of singly charged
(m = 1) vortex solitons in nonlinear media with moderate degree of
nonlocality σ = 1.2. Symmetric breaking of (a) scalar vortex solitons,
(b) vector vortex solitons with explicit vorticity (1,1), and (c) vector
vortex solitons with hidden vorticity (1,−1).

[Fig. 2(c)]. We also plot in Fig. 1 the dynamics of the
components of the vector pairs. In this case of weak nonlocality
the soliton dynamics (splitting into two or three fundamental
solitons) of the vortex pairs with explicit (1,1) and hidden
vorticity (1,−1) is basically the same as in local media.

As shown in Fig. 3, increase of the degree of nonlocality
from weak to moderate with σ = 1.2 can effectively improve
the stability of the vortex pairs with both explicit and hidden
vorticity. For example, the vortex pair with explicit vorticity
can be stable at the propagation distance z = 26 in the case
of moderate nonlocality [Fig. 3(b)], whereas it can be stable

FIG. 4. (Color online) Stationary self-trapping of singly charged
(m = 1) vortex solitons in nonlinear media with strong degree of
nonlocality σ = 10: (a) scalar vortex solitons, (b) vector vortex
solitons with explicit vorticity (1,1), and (c) vector vortex solitons
with hidden vorticity (1,−1).
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FIG. 5. (Color online) Stationary propagation distance of singly
charged vortex solitons (1,±1) and higher-order charged vortex
solitons (6,±6) versus degree of nonlocality. The increasing of the
stationary propagation distance indicates a better stability.

only at the propagation distance z = 4 in weakly nonlocal
media [Fig. 3(b)]. This is also the case for the vortex pair with
hidden vorticity, i.e., it broke into three fundamental solitons
at propagation distance z = 12 in the case of weak nonlocality
[Fig. 2(c)], but it can be still stable at the propagation distance
z = 40 with a moderate degree of nonlocality [Fig. 3(c)].
Because the dynamics of the components are similar to those
of the vector vortex pairs, we do not show their dynamics in
Figs. 3 and 4.

Figures 2 and 3 also show that the vortex pair with hidden
vorticity is more stable than the vortex pair with explicit
vorticity in weakly and moderately nonlocal media. It is
obvious that the stable propagation distances for the vortex
pair with explicit vorticity are z = 4 and z = 26 when the
degrees of nonlocality are weak and moderate, respectively.
The vortex pair with hidden vorticity exhibits a larger stable
propagation distance than the vortex pair with explicit vorticity,
i.e., z = 8 and more than z = 40 in weakly and moderately
nonlocal media. This result of increased stability of vortex
pairs with hidden vorticity compared to that of explicit vorticity
was also found earlier in local media using a linear stability
analysis [58].

In Fig. 4, we display completely stable vortex pairs with
both explicit and hidden vorticity in strongly nonlocal media
with the degree of nonlocality σ = 10. In contrast to the result
that the vortex pair with explicit vorticity is always unstable
in local media and the vortex pair with hidden vorticity can
only be stable within a small propagation constant interval,
the strong nonlocality induces a broad trapping potential
well, which can completely suppress the azimuthal instability,
leading to the formation of stable scalar vortex solitons
[Fig. 4(a)], and vortex pairs with explicit [Fig. 4(b)] and hidden
[Fig. 4(c)] vorticity.

To illustrate the stabilizing effect of nonlocality on solitons
in Fig. 5 we plot the stationary propagation distance for both
the singly charged vortex soliton (1,±1) and the higher-order
charged vortex soliton (6,±6) as a function of the degree
of nonlocality. It is evident that the stationary propagation
distance of solitons with hidden vorticity is always larger than
for solitons with explicit vorticity for a singly charged vortex
pair.

FIG. 6. (Color online) Azimuthal instability of higher-order
charged (m = 6) vortex solitons in local nonlinear media (σ = 0).
Symmetric breaking of (a) scalar vortex solitons, (b) vector vortex
solitons with explicit vorticity (6,6), and (c) vector vortex solitons
with hidden vorticity (6,−6). |E1|2 and |E2|2 represent the two-
component intensity of the vector vortex solitons.

IV. VORTEX PAIRS WITH HIGHER-ORDER
TOPOLOGICAL CHARGE

In this section we investigate the dynamics of explicit and
hidden vorticity vortex pairs with higher-order topological
charge m in nonlocal media. As an example, we demonstrate
the dynamics of explicit and hidden vorticity vortex pairs with
topological charge m = 6. In Figs. 6–9, the stability of the
vortex pairs is displayed for zero, weak, intermediate, and
strong degrees of nonlocality. It should be stressed that even
though we consider here only vortex pairs with a particular
value of topological charge m = 6, our results are applicable
to arbitrary values of m.

It is seen that the vortex pairs with explicit and hidden
vorticity will always split into two and three fundamental
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FIG. 7. (Color online) Azimuthal instability of higher-order
charged (m = 6) vortex solitons in nonlinear media with weak degree
of nonlocality σ = 0.2. Symmetric breaking of (a) scalar vortex
solitons, (b) vector vortex solitons with explicit vorticity (6,6), and
(c) vector vortex solitons with hidden vorticity (6,−6). |E1|2 and
|E2|2 represent the intensities of the two constituent components of
the vector vortex solitons.

filaments when the vector vortex pairs suffer from azimuthal
instability; the breaking dynamics of such vortex pairs with
higher-order topological charge exhibit more complexity. As
for the vortex pairs with topological charge m = 1, the
propagation of explicit vorticity vortex pairs is also the same
as that for the scalar vortex beam when the charge is m = 6, as
shown in Figs. 6–9. We show in Fig. 6 the breaking dynamics
of the vortex pairs in local media with σ = 0. For the scalar
vortex and the explicit vorticity vortex pairs with topological
charge m, the beam will split into 2m fundamental filaments
in local media. It is clear that both the scalar vortex beam
[Fig. 6(a)] and the explicit vorticity vortex pair [Fig. 6(b)]
break up into 12 filament beams when the charge is m = 6.
However, the hidden vorticity vortex pair will split into 16
fundamental beams in local media [Fig. 6(c)].

FIG. 8. (Color online) Azimuthal instability of higher-order
charged (m = 6) vortex solitons in nonlinear media with moderate
degree of nonlocality σ = 1.2. Symmetric breaking of (a) scalar
vortex solitons, (b) vector vortex solitons with explicit vorticity (6,6),
and (c) vector vortex solitons with hidden vorticity (6,−6). |E1|2
and |E2|2 represent the two-component intensity of the vector vortex
solitons.

Increasing the degree of nonlocality will also improve the
stability of the vortex pairs, resulting in larger stable propa-
gation distances and smaller numbers of breakup filaments.
In local media, the stable propagation distance for the scalar
vortex beam and the explicit vorticity vortex pair is z = 0.4.
When the degree of the nonlocality is weak (σ = 0.2) and
intermediate (σ = 1.2), the stable propagation distances are
z = 1 [Figs. 7(a) and 7(b)] and z = 4 [Figs. 8(a) and 8(b)],
respectively. This also happened to the hidden vorticity vortex
pair, for which the stable propagation distances are z = 1,
z = 2 [Fig. 5(c)], and z = 6 [Fig. 6(c)] when the degrees of
nonlocality are local, weak, and intermediate, respectively. The
nonlocality can also reduce the number of breaking filament
beams. In local media, the explicit and hidden vorticity vortex
pairs will split into 12 and 16 fundamental beams (Fig. 6), and
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FIG. 9. (Color online) Stationary self-trapping of higher-order
charge (m = 6) vortex solitons in nonlinear media with high degree
of nonlocality σ = 10: (a) scalar vortex solitons, (b) vector vortex
solitons with explicit vorticity (6,6), and (c) vector vortex solitons
with hidden vorticity (6,−6).

they break up into only eight (Fig. 7) and four (Fig. 8) filament
beams in weakly and moderately nonlocal media. This result
clearly indicate that nonlocality can effectively suppress the
azimuthal instability of the vortex pairs and improve their
stability.

Comparing graphs (b) and (c) in Figs. 6–8, we can see
that the stable propagation distance of the vortex pair with
hidden vorticity is always larger than that of the vortex pair
with explicit vorticity when the degree of the nonlocality is
fixed. The result is also evident in Fig. 5 where we show the
stationary propagation distance for higher-charged (m = 6)
vector vortex pair with both explicit and hidden vorticities.
As discussed above, we know that the vortex pair with hidden
vorticity is also more stable than the vortex pair with explicit
vorticity even when the vortex beams carry higher-order
topological charge. We also find that the vortex pairs with
fundamental charge m = 1 have a more stationary dynamics
than those with higher-order charge m = 6 (also check Fig. 5).

As shown in Figs. 2 and 3, the stationary propagation distances
of the explicit vorticity vortex pair with fundamental charge
(1,1) are z = 4 [Fig. 2(b)] and z = 26 [Fig. 3(b)] in weakly
and moderately nonlocal media, which are larger than those
for higher-order charge (6,6) z = 1 [Fig. 7(b)] and z = 4
[Fig. 8(b)]. This result is also applicable to the case of vortex
pairs with hidden vorticity. In local media, the conclusion has
been explained as a smaller maximum instability growth rate
of the vortex pairs with fundamental charge (1,±1) than of
those with higher-order charge (m, ± m) [58].

Although the vortex pairs with higher charge are less stable
than those with fundamental charge, strong nonlocality can
also completely stabilize scalar vortex solitons and vortex
pairs with explicit and hidden vorticity. In Fig. 9, we show
the stable propagation of vortex pairs with both explicit and
hidden vorticity in strongly nonlocal media with the degree of
nonlocality σ = 10.

V. CONCLUSION

In conclusion, we have investigated the dynamics of vector
vortex pairs with explicit and hidden vorticity in nonlocal
media with an arbitrary degree of nonlocality. We showed that
a nonlocality-induced trapping potential (or waveguide) elimi-
nates the splitting of the vortex pairs and leads to the formation
of bound states of vortex pairs which are otherwise always
unstable in local media. Our results also demonstrate that the
vortex pair with hidden vorticity is always more robust than
that with explicit vorticity although this difference in stability
disappears for high charge. Finally, we show that the solitons
with fundamental constituent charges exhibit the best stability
properties, and the stability worsens with the higher charge.
Our general results are in agreement with recent experimental
observations of the dynamics of vector solitons with hidden
and explicit vorticity in nematic liquid crystals [65].
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