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Tunneling-assisted optical information storage with lattice polariton solitons in cavity-QED arrays
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Considering two-level media in the array of weakly coupled nanocavities, we reveal a variety of dynamical
regimes, such as diffusion, self-trapping, soliton, and breathers for the wave packets in the presence of photon
tunneling processes between the next-nearest cavities. We focus our attention on the low-branch bright polariton
soliton formation, due to the two-body polariton-polariton scattering processes. When detuning frequency is
manipulated adiabatically, the low-branch lattice polariton localized states, i.e., solitons and breathers evolving
between photonlike and matterlike states, are shown to act as carriers for spatially distributed storage and retrieval
of optical information.
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I. INTRODUCTION

Nowadays, the elaboration and investigation of hybrid
quantum devices and artificial nanostructures represent a
huge area of experimental and theoretical research [1,2]. In
particular, quantum memory devices are proposed for mapping
the quantum state of light onto the matter by using a slow light
phenomenon through the coupling between matter excitation
and quantized field [2,3]. In this sense, polaritons, linear
superpositions of quantized field and collective excitations in
matter, provide a very elegant way for optical information
storage, where the group velocity of the wave packet could be
low enough due to a large value of polariton mass [4,5].

Within the framework of modern scalable quantum tech-
nologies [6–9], the arrays of cavities containing two-level
systems (atoms, quantum dots, or Cooper-pair boxes, referred
to as qubits) strongly interacting with a cavity field at each site
are theoretically supposed to provide a promising platform
for quantum computing and quantum information processing
[10–12]. Moreover, a strong Kerr-type nonlinearity caused by
two-body polariton-polariton interaction leads to the formation
of bright polariton solitons [13–15].

In the experiments, great efforts have been aimed at the
achievement of deterministic trapping of single qubits with
a strong coupling to the quantized electromagnetic fields in
nanocavities [16–19]. Especially, we stress here the recent
challenging results established in Ref. [19] with “ultracold”
single rubidium atoms trapped in the vicinity of tapered
fiber (about 100 nm far from) and their effective coupling
with photonic crystal cavity. The obtained single-photon Rabi
frequency was in the range of a few gigahertz for the cavity
volume less than λ3 (λ is light wavelength). Such results pave
the way to the design of new scalable devices for quantum
memory purposes being compatible with photonic circuits
[20]; these devices explore two-level systems at their heart
[5,21–23].

Apart from three-level systems which are widely used for
quantum memory purposes, the protocol for photon storage
based on two-level systems explores direct control of the
transition dipole matrix element [21] or atom-light detuning

[5,22]. In particular, manipulation with the sign of detuning is
supposed to be made in controlled reversible inhomogeneous
broadening (CRIB) photonic memory protocol proposed in
[22] and then discussed and improved recently in [23]. In
practice, such control could be achieved with rare-earth-ion
doped crystal by using switching of magnetic field. Notably,
quantum memories based on such systems pose sufficiently
longer lifetime, up to tens of seconds (cf. [24]).

Here, taking into account advantages of current quantum
technological achievements obtained in the atomic optics
area provide theoretically an alternative approach to optical
information storage and retrieval by using half-matter, half-
photon property of polaritons and by investigating collective
dynamics of coupled atom-light states in a qubit-cavity
quantum electrodynamical (QED) array. Low-branch (LB)
polariton solitons, as well as different dynamical regimes for
diffusion, self-trapping, and breather states, occur through
the interaction between atoms and quantized optical cavity
field [25,26]. Considering the next-nearest tunneling effect for
photonic fields while the distance between adjacent cavities is
within the order of optical wavelength, lattice polariton soliton
solutions are revealed to exist at the border of two different
kinds of breather states. Due to the robustness in preserving the
shape of wave packets, by manipulating the detuning frequency
adiabatically, optical information storage and retrieval are
proposed to carry out through the transformation between
photonlike and matterlike lattice polariton solitons.

This paper is arranged as follows. In Sec. II, we explain in
details our model to realize atom-light interaction in a cavity
array occurring at nanoscales. The extended tight-binding
model will be established in this case, and in Sec. III, we
introduce a coupled atom-light excitation basis that is the
polariton basis for the lattice system. Apart from results
obtained by us previously [15], LB polaritons occurring at each
site of the cavity array are a subject of our study in the rest of
the paper. In Sec. IV, we use a time-dependent variational
approach to obtain polariton wave-packet behavior. Basic
equations for the wave-packet parameters and their general
properties in the QED cavity array are established. In Sec. V,
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FIG. 1. (Color online) Schematic for our proposed 1D cavity-
QED array, in which each cavity contains the ensemble of two-level
atoms as qubits. Cavities are formed by the defects in a photonic
waveguide crystal, with period d that, in fact, represents characteristic
size of cavity; ξx and σx are characteristic spatial scales of the
optical field and atomic wave-function localization, respectively. In
this work, we assume that σx < ξx � d .

we establish results relating to the investigation of a variety of
one-dimensional (1D) lattice polariton wave-packet dynamical
regimes in the presence of next-neighbor interaction in the
lattice. In Sec. VI, we propose the physical algorithm of storage
of optical information by using lattice polariton localized
states, i.e., soliton and breather states. In the conclusion, we
summarize the results obtained.

II. MODEL OF ATOM-LIGHT INTERACTION BEYOND
THE TIGHT-BINDING APPROXIMATION

We consider a one-dimensional (1D) array of small
(nanoscale) cavities, each containing the ensemble of a small
but macroscopic number Nn of noninteracting two-level atoms
(see Fig. 1). The proposed structure in Fig. 1 can be realized
by loading a small number of ultracold atoms via a dipole trap,
slightly above the so-called collisional blockade regime which
is practically valid for the beam waist w0 � 1 μm [19,27].
The total Hamiltonian Ĥ for our atom-light coupled system in
Fig. 1 can be represented as [9,15,28]

Ĥ = ĤAT + ĤPH + ĤI, (1)

where ĤAT is a quantum field theory Hamiltonian for non-
interacting atoms, ĤPH is responsible for the photonic field
distribution, and the term ĤI characterizes the atom-light
interaction in each cavity, respectively. In the second quantized
form, the Hamiltonian in Eq. (1) can be written as

ĤAT =
∑
i,j=1,2
i �=j

∫
�̂

†
j

(
− �

2�

2Mat
+ V

(j )
ext

)
�̂jd�r, (2a)

ĤPH =
∫

�̂
†
ph

(
− �

2�

2Mph
+ Vph

)
�̂phd�r, (2b)

ĤI = �κ

∫
(�̂†

ph�̂
†
1�̂2 + �̂

†
2�̂1�̂ph)d�r, (2c)

with the mass of free atoms Mat, and the effective mass of
trapped photons Mph. In Eq. (2), quantum field operators
�̂1,2(�r) (�̂ph) and �̂

†
1,2(�r)(�̂†

ph) annihilate and create atoms

(photons) at position �r; V
(j )

ext (j = 1,2) and Vph are trapping
potentials for atoms and photons, respectively. Since each
cavity contains a small number of atoms, one can safely neglect
the terms responsible for atom-atom scattering processes in
Eq. (2a) [29].

In general, one can expand atomic (�̂j ) and photonic (�̂ph)
field operators as follows:

�̂j (�r) =
∑

n

âj,nϕj,n(�r), j = 1,2 (3a)

�̂ph(�r) =
∑

n

ψ̂nξn(�r) (3b)

with the real (Wannier) functions: ϕj,n(�r), ξn(�r ), responsible
for the spatial distribution of atoms and photons at the n site.
They fulfill the normalization condition

∫ +∞
−∞ [ϕj,n(�r)]2d�r =∫ +∞

−∞ [ξn(�r)]2d�r = 1. Annihilation operators â1,n and â2,n in
Eq. (3a) characterize the dynamical properties of atoms
at internal lower (|1〉) and upper (|2〉) levels, respectively;
meanwhile, the annihilation operator ψ̂n in Eq. (3b) describing
the temporal behavior of the photonic mode located at the nth
lattice cavity.

Substituting Eq. (3) for (2), one can obtain

ĤAT = Ĥ1 + Ĥ2, (4a)

Ĥj = �

M∑
n

[
ω(j )

n â
†
j,nâj,n − βj,n(â†

j,nâj,n+1 + â
†
j,nâj,n−1)

]
,

j = 1,2 (4b)

ĤPH = �

M∑
n

[
ωn, phψ̂

†
nψ̂n − α(1)

n (ψ̂†
nψ̂n+1 + ψ̂†

nψ̂n−1)

−α(2)
n (ψ̂†

nψ̂n+2 + ψ̂†
nψ̂n−2)

]
, (4c)

ĤI = �

M∑
n

g√
Nn

[ψ̂†
nâ

†
1,nâ2,n + â

†
2,nâ1,nψ̂n], (4d)

where Nn = â
†
1,nâ1,n + â

†
2,nâ2,n corresponds to the total num-

ber of atoms at the nth lattice cell. The frequencies ω
(j )
n , ωn, ph,

hopping constants βj,n, α(1)
n , α(2)

n , and nonlinearity strength g

are in the form

ω(j )
n = 1

�

∫ (
�

2

2Mat
( �∇ϕj,n)2 + ϕj,nV

(j )
ext ϕj,n

)
d�r, (5a)

ωn,ph = 1

�

∫ (
�

2

2Mat
( �∇ξn)2 + ξnVphξn

)
d�r, (5b)

βj,n = −1

�

∫ (
�

2

2Mat

�∇ϕj,n · �∇ϕj,n+1 + ϕj,nV
(j )

ext ϕj,n+1

)
d�r,

(5c)

α(1)
n = −1

�

∫ [
�

2

2Mph

�∇ξn · �∇ξn+1 + ξnVphξn+1

]
d�r, (5d)

α(2)
n = −1

�

∫ [
�

2

2Mph

�∇ξn · �∇ξn+2 + ξnVphξn+2

]
d�r, (5e)

g = κ

∫
ξnφ1,nφ2,nd�r. (5f)
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Thereafter, for simplicity we assume that all cavities are
identical to each other and contain the same average number
N = 〈Nn〉 of atoms. In this case, it is convenient to suppose
that functions ϕj,n(�r) are identical for all n, that is, ϕj,n(�r) 	
ϕj,n±1(�r). We are also working under the strong atom-field
coupling condition, that is,

g 
 �at,�ph, (6)

where �at and �ph are spontaneous emission and cavity decay
rates, respectively. The parameter α(1)

n ≡ α(1) in Eq. (5d)
describes overlapping of optical fields for the nearest-neighbor
cavities; α(2)

n ≡ α(2) is responsible for the overlapping of pho-
tonic wave functions beyond the tight-binding approximation.

It is important that nearest-neighbor and next-neighbor
areas of photonic wave-packet overlapping are shifted in the
x direction by about d/2 (see Fig. 1). Physically, it means that
in some cases the next-neighbor tunneling may be much more
efficient. However, in the paper we do not consider the case of
very small cavities, such as d � λ. Experimentally accessible
parameters that we take for our structure in Fig. 1 enable us
to restrict ourselves by consideration of the nearest-neighbor
and next-neighbor tunneling processes only.

Since the characteristic spatial scale of atomic localization
σx is essentially smaller than cavity size d, it seems reasonable
to use the tight-binding approximation especially for an atomic
system in the cavity array. Coupling coefficients βj,n ≡ βj in
Eq. (5) are the nearest-neighbor hopping constants for atoms
in a 1D lattice structure.

In particular, we examine the properties of parameters for
the cavity-QED array containing two-level rubidium atoms.
We take the D-line of rubidium atoms as an example,
which gives the resonance frequency ω12/2π = 382 THz. The
strength of the interaction of a single atom with a quantum

optical field is taken as g0 =
√

|d12|2ω12

2�ε0V
≈ 2π × 2.2 4 GHz at

each cavity with the effective volume of atom-field interaction
V ∝ d3. We assume d = 2 μm, that is, compatible with
current experimental results [19]; d12 is the atomic dipole
matrix element. To achieve a strong atom-field coupling
regime [see Eq. (6)], one can propose a macroscopically
large number of atoms at each cavity, say N = 100. This
number implies a collective atom-field coupling parameter g =
g0

√
N ≈ 2π × 22.4 GHz. The lifetime for rubidium atoms is

27 ns, which corresponds to the spontaneous emission rate �at

of about 2π × 6 MHz. The minimal value of each cavity-field
decay rate �ph can be taken up to several hundred of megahertz
that corresponds to cavity quality factor Q 	 105–106.

To get a variational estimate for the tunneling coefficients
mentioned above, we assume that Wannier wave functions for
the atomic and photonic parts localized at the j th cavity may
be approached by

ϕj,n(�r) = Cje
−(x−xn)2/2σ 2

x,j e−(y2+z2)/2σ 2
j , (7a)

ξn(�r) = Cξe
−(x−xn)2/2ξ 2

x e−(y2+z2)/2ξ 2
, (7b)

where Cj = (π3/2σx,j σ
2
j )−1/2 (j = 1,2) and Cξ =

(π3/2ξxξ
2)−1/2 are relevant normalization constants,

respectively. Taking into account the realistic values of

atomic and photonic wave functions, we assume

σx,j � σj , ξx � ξ. (8)

If the atoms are trapped in the vicinity of thin (tapered)
optical fiber (that is not shown in Fig. 1), the trapping potential
Vext = Vw + Vopt can be represented as a sum of Vw that is
van der Waals potential occurring due to the closeness of
atoms to the fiber surface, and Vopt that is a potential created
by the optical field (cf. [18,30]). For current experiments,
the depth of total potential Vext is of order of millikelvins
[19,31]. Although the general (radial) dependence of Vext on
the distance from the surface is not so simple, however, it
is possible to consider a harmonic trapping potential at the
bottom of Vext by choosing the appropriate external laser field
parameters. Roughly speaking, we consider atomic trapping
potential Vext represented as [32]

Vext 	 Mat

2

[
ω2

x (x − xn)2 + ω2
⊥

(
y2 + z2

)]
, (9)

where ωx and ω⊥ are relevant trapping axial and radial
frequencies, respectively. We suppose that the minimum of a
two-dimensional (2D) periodic potential is located at a center
xn = nd of the nth cavity. By substituting Eqs. (7) and (9) into
(5), we obtain

β = − �

4Matσ 2
x

e
−d2

4σ2
x

(
1 − d2

2σ 2
x

)
(10)

for the atomic tunneling rate β. The atomic tunneling rate β ≡
β2 is positive if a cavity effective size is d >

√
2σx ≈ 1.414σx .

The latest one (σx) is typically a few hundred nanometers in
real experiments with ultracold atoms [32].

The calculation of photon tunneling rates α(ζ ) (ζ = 1,2)
between the cavities can be performed in the same way. Thus,
we have

α(ζ ) = − �

4Mphξ 2
x

e
−ζ2d2

4ξ2
x

(
1 − ζ 2d2

2ξ 2
x

)
, (11)

where ζ = 1,2 enumerates the number of cavities. Taking into
account a typical effective photon mass Mph 	 2.8 × 10−36 kg
for rubidium D-lines average wavelength λ ≈ 785 μm, and
assuming the width of photonic wave packet to be ξ = 1 μm
for d = 2 μm, it is possible to estimate photonic tun-
neling parameters as α(1) 	 2π × 549 GHz (ζ = 1) and
α(2) 	 2π × 191 GHz (ζ = 2), respectively.

III. POLARITONS IN THE NANOSIZE CAVITY ARRAY

One of the main features of our approach is a strong non-
linearity due to small cavity volumes occupied by the optical
field, that is, V 	 (λ/2n)3, where λ is a light wavelength and
n is a refractive index [19,31]. In Schwinger representation,
atom-field interaction in the lattice can be described by atomic
excitation operators Ŝ−, n, Ŝ+, n = Ŝ

†
−,n and by operator Ŝz, n of

the population imbalance which are defined as

Ŝ+, n = â
†
2,nâ1,n,

Ŝ−, n = â
†
1,nâ2,n,

Ŝz, n = 1
2 (â†

2,nâ2,n − â
†
1,nâ1,n). (12)
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The operators determined in Eq. (12) obey SU(2) algebra
commutation relations

[Ŝ+, n,Ŝ−, n] = 2Ŝz, n, [Ŝz, n,Ŝ±, n] = ±Ŝ±, n. (13)

Alternatively, it is possible to map operators in Eq. (12) onto
the atomic excitation operators φ̂n, φ̂

†
n applying the so-called

Holstein-Primakoff transformation, i.e.,

Ŝ+, n = φ̂†
n

√
N − φ̂

†
nφ̂n, (14a)

Ŝ−, n =
√

N − φ̂
†
nφ̂nφ̂n, (14b)

Ŝz, n = φ̂†
nφ̂n − N

/
2. (14c)

It is worth noticing that the atomic excitation operators φ̂n,
φ̂
†
n obey the usual bosonic commutation relations [φ̂ n,φ̂

†
m] =

δmn. Strictly speaking, it is possible to treat the operators
â1,n and â2,n describing particles at lower and upper levels,

respectively, as â1,n ≈ √
N − φ̂

†
nφ̂n

2N1/2 , â2,n 	 φ̂n [15].
When number N at each cavity is macroscopical but not

so large, one can keep all the terms in the expansion of â1,n.
In this limit, we get for an effective Hamiltonian Ĥ = ĤL +
ĤTUN + ĤNL:

ĤL = �

∑
n

[ω̃12φ̂
†
nφ̂n + ωn, phψ̂

†
nψ̂n + g(ψ̂†

nφ̂n + H.c.)],

(15a)

ĤTUN = −�

∑
n

[β(φ̂†
nφ̂n+1 + H.c.)

+ α(1)(ψ̂†
nψ̂n+1 + H.c.) + α(2)(ψ̂†

nψ̂n+2 + H.c.)],

(15b)

ĤNL = −�

∑
n

[
g

2N

(
ψ̂†

nφ̂
†
nφ̂

2
n + H.c.

)]
, (15c)

where we have introduced new parameters ω̃12 = ω(2)
n −

ω(1)
n + 2β1,n. Now, let us introduce the lattice polariton

operators as follows:

�̂1,n = Xnψ̂n + Cnφ̂n, �̂2,n = Xnφ̂n − Cnψ̂n, (16)

where Xn and Cn are Hopfield coefficients defined as

Xn = 1√
2

(
1 + 2πδn√

4g2 + (2πδn)2

)1/2

, (17a)

Cn = 1√
2

(
1 − 2πδn√

4g2 + (2πδn)2

)1/2

. (17b)

In Eq. (17), δn = (ωn, ph − ω̃12)/2π is atom-light field
detuning frequency at each cavity. Note that we consider
parameters Xn and Cn to be the same for all cavities (sites n),
assuming that X ≡ Xn and C ≡ Cn. This approach implies an
equal atom-light detuning δ = δn for all cavities too.

The operators �̂1,n and �̂2,n in Eq. (16) characterize two
types of bosonic quasiparticles, i.e., upper and lower branch
polaritons occurring at each site of the lattice. At the low-
density limit, Eqs. (16) and (17) represent the exact solution
that diagonalizes a linear part ĤL of the total Hamiltonian Ĥ .

At equilibrium, the lowest polariton branch is much more
populated. Here, we use the mean-field approach to replace
the corresponding polariton field operator �̂n by its average
value 〈�̂n〉, which simply characterizes the LB polariton wave
function at the nth cavity. In particular, for further processing
we introduce the nth normalized polariton amplitude �n =
〈�̂n〉/

√
Npol, where Npol = ∑

n〈�̂†
n�̂n〉 is the total number of

LB polaritons at the array. For this approach, by substituting
Eq. (16) into (15) and keeping LB polariton terms only, we
arrive at

H = �

M∑
n

[
�LB |�n|2 − �1(�∗

n�n+1 + c.c.)

−�2(�∗
n�n+2 + c.c.) + 1

2
�3|�n|4

]
, (18)

where we have introduced characteristic frequencies

�LB = 1
2 (ω̃12 + ωn, ph −

√
(2πδ)2 + 4g2), (19a)

�1 = βX2 + α(1)C2, (19b)

�2 = α(2)C2, (19c)

�3 = 2gCX3 Npol

N
. (19d)

The nearest and next-nearest tunneling energies �1 and �2

are shown in Fig. 2, as a function of the characteristic cavity
size d for different detuning frequencies δ. For a large enough
(d 
 ξx) cavity size, both tunneling rates �1,2 are positive, and
condition �2

�1
	 α(2)

α(1) ≈ 4e−3d2/4ξ 2
x � 1 is fulfilled (see Fig. 2).

The overlapping of neighbor polariton wave functions is a
dominant term, and our lattice system is reduced to the typical
tight-binding approach. On the other hand, the properties of
polariton tunneling energies change dramatically for small-
sized cavities d ≈ ξx , where coefficient �2 becomes much
more important. Notably, maximal (extreme) values �(1)

max and
�(2)

max of polariton tunneling rates �(1,2) are obtained at d (1) =√
6ξx and d (2) = √

1.5ξx , respectively, and are shifted in d

dimension (cf. Fig. 1). The values �(1,2)
max are equal to each other

( )μmd

 
(

)
2

G
H

z
π

Ω
1,
2

-400
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0

400
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200

2 4 61 3 5

1 2 3 4 5 60

0.5

1.0

C
2

 30GHzδ =
0δ =

 30GHzδ = −

( )μmd

FIG. 2. (Color online) Tunneling energies between the nearest
�1 (solid curves) and the next-nearest neighbors �2 (dashed curves)
are shown as a function of the size of cavity d . The widths of wave
functions for cavity field and atoms are estimated as ξx = 1 μm and
σx = 0.4 μm, respectively. The dependence of C2 on d for the same
values of detuning δ is plotted in the inset.
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for δ = 0 and C2 = 0.5 (see black curves in Fig. 2). However,
since the atom-field coupling parameter g is a function of
effective volume V ∝ d3, the Hopfield coefficients C and X

do not obviously depend on the cavity size d at δ �= 0 [cf. (17)].
In this case, for positive detuning δ and fixed number of atoms
N at each cavity, coefficient C vanishes with the increase of
d (see inset to Fig. 2). In this case, the relation �(1)

max < �(2)
max

is fulfilled [cf. blue (lower) curves in Fig. 2]. On the contrary,
from Fig. 2 one can see that �(1)

max > �(2)
max for negative detuning

δ [cf. bold (red) curves in Fig. 2]. Finally, it is worth noticing
that our approach is obviously valid for characteristic cavity
size that is d � λ and is about one micrometer.

The main features of the polaritonic lattice are connected
with the properties of atom-light detuning δ. In the limit
of a negative and large atom-light field detuning chosen
as |2πδ| 
 g, δ < 0 (X 	 g/|2πδ|,C 	 1), LB polaritons
behave as photons, i.e., �2,n 	 ψn. Thus, we can represent
the parameters (19) as �LB 	 ωph, �1 = α(1), �2 ≈ α(2),
�3 = 2Npolg

4/N |2πδ|3. However, in another limit, we can
take |2πδ| 
 g, δ > 0 (X 	 1, C 	 g/ 2πδ) and LB polari-
tons behave as excited atoms, i.e., �2,n 	 φn. We readily find
the coefficients (19) as �LB 	 ω̃12, �1 = β + α(1)g2/(2πδ)2,
�2 = α(2)g2/(2πδ)2, �3 = 2Npolg

2/2πNδ.
In practice, instead of using Eq. (18), it is useful to work

with the dimensionless Hamiltonian H → H�|�1| in the form

H = �

M∑
n

[ωLB |�n|2 − ω1(�∗
n�n+1 + c.c.)

−ω2(�∗
n�n+2 + c.c.) + 2

√
πω3|�n|4], (20)

where ωLB = �LB/|�1|, ω1 = �1/|�1| ≡ sgn(�1), ω2 =
�2/|�1|, ω3 = �3/4

√
π |�1| are normalized parameters char-

acterizing polariton properties in the cavity-QED chain.
Equation (20) is the starting model equation for this work
and is used to study the nonlinear phase diagrams, as well as
the related optical information storage with lattice polariton
solitons in the following sections.

IV. TIME-DEPENDENT VARIATIONAL APPROACH

To analyze different regimes of polaritons in the cavity-
QED arrays, we study the dynamical evolution of in-site
Gaussian shape wave packet

�n = N exp

[
− [n − ξ (t)]2

γ (t)2
+ ip(t)[n − ξ (t)]

+ i
η(t)

2
[n − ξ (t)]2

]
, (21)

where ξ (t) and γ (t) are the time-dependent dimensionless
center and width of the wave packet, respectively; p(t) is
momentum and η(t) is curvature, N = [

√
2/

√
πγ (t)]1/2 is

a normalization constant (a wave-packet amplitude). Lattice
coordinate x relates to the number of sites (cavities) n as
x = nd. The wave-packet dynamical evolution can be obtained

from the corresponding Lagrangian density

L =
M∑
n

[
i

2

(
�∗

n

∂�n

∂t
− �n

∂�∗
n

∂t

)
− ωLB |�n|2

+ω1(�∗
n�n+1 + c.c.) + ω2(�∗

n�n+2 + c.c.)

− 2
√

πω3|�n|4
]
. (22)

By plugging Eq. (21) into (22), one can have an effective
Lagrangian L̄ by averaging the Lagrangian density (22) as

L̄=
[
pξ̇− η̇γ 2

8
−ω3

γ
+ ω1 cos (p) e−σ + ω2 cos (2p) e−4σ

]
,

(23)

where we made the following denotation: σ = γ 2η2

8 + 1
2γ 2 .

Dots denote derivatives with respect to dimensionless time
t → t/2|�1|. It is remarked that Eq. (23) is valid when
parameter γ is not too small, that is, γ > 1 [25,26]. With
the Lagrangian in Eq. (23), one can obtain the following
variational equations for the canonically conjugate polariton
wave-packet parameters:

ṗ = 0, (24a)

ξ̇ = ω1 sin (p) e−σ + 2ω2 sin (2p) e−4σ , (24b)

γ̇ = γ η

m∗ , (24c)

η̇ = 1

m∗

(
4

γ 4
− η2

)
+ 4ω3

γ 3
, (24d)

where m∗ is a dimensionless polariton mass.
Phase diagrams for various dynamical regimes are deter-

mined by the property of polariton mass m∗ and by the sign
of Hamiltonian H that is a conserved quantity. At m∗ > 0,

a polariton wave packet exhibits diffusive and self-trapping
regimes for which γ → ∞, η → 0, and γ → constant in the
limit of infinite time scales (t → ∞), respectively.

For an untitled trap of polaritons in the lattice, the momen-
tum p(t) = p0 is conserved. By introducing the dimensionless
polariton mass m∗ = ( ∂2H

∂p2 )−1, one can have the effective
Hamiltonian function H in the dimensionless coordinates:

H = −ω1 cos (p) e−σ − ω2 cos (2p) e−4σ + ω3

γ
. (25)

The transition between different regimes is governed by an
equation H ≡ H0 = 0 that implies

cos
(
p

H0
1,2

) 	 −2ε10 ±
√

4ε2
10 + 0.5, (26)

where ε10 = e3σ0�12/8; σ0 ≡ σ (t = 0) = 1/2γ 2
0 (we suppose

that initially at t = 0, γ = γ0, and η = 0), �12 ≡ ω1/ω2, and
we denote H0 as initial value of the Hamiltonian H , that is,
obviously, conserved quantity in the absence of dissipation.

Both of the roots (26) are located within the domain
−1 � cos(p0) � 1 if conditions γ0 � ( 2

3 ln[|�12|−1])−1/2 and
|�12| � 1 are fulfilled simultaneously. Otherwise, Eq. (26)
impose only one root. It occurs for the tunneling rates
|�12| > 1. Practically, this situation corresponds to large
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FIG. 3. (Color online) (a) Dynamical phase diagram, (b) effec-
tive polariton mass, shown in the inverse form 1/m∗

0, and (c) the
corresponding Hamiltonian energy contour are shown in terms of
the momentum cos(p0) and detuning frequency δ, respectively, for
the parameters d = 2 μm, γ0 = 5, and η0 = 0. The markers A and
B (C) shown in (a) correspond to the polariton soliton (breather)
states, which are used below for the storage and retrieval of optical
information shown in Fig. 6.

enough cavity sizes for which both of the tunneling rates are
positive and ω2 vanishes rapidly.

A physically important bound state for our problem
occurs in the domain of negative polariton mass and can
be associated with soliton formation for the polariton wave
packet. The polariton (bright) soliton wave packet propa-
gates with initial width γ0, mass m∗ = m∗

0 < 0, and velocity

vg = − tan(p0)
|m∗

0| + 4ω2
sin3(p0)
cos(p0) e

−4σ0 unchanged in time. The mass
of the soliton wave packet can be found from

1

m∗
0

= ω1 cos (p0) e−σ0 + 4ω2 cos (2p0) e−4σ0 . (27)

Strictly speaking, Eq. (27) defines the characteristic domain

cos(p1,2) = 0.5
[ − ε10 ±

√
2 + ε2

10

]
(28)

of allowed wave-packet momentum where solitonic regime
can be achieved. It can be obtained under the conditions γ0 �
( 2

3 ln[4|�12|−1])−1/2 and |�12| � 4.
Solitons exist within the region for which inequalities

cos(p2) < cos(p0) < cos(p1) hold for the positive tunneling

gv

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
( )nst

5 76

0γ

   
   

 (T
H

z)
δ 0.2

0.4

0.8

0.6

0
diffusion

self-trapping
breather I

breather II

C

S

BRδ
δ
δ

2 3 4 5

FIG. 4. (Color online) The group velocity vg versus time t for
γ0 = 5, p0 = π/2. Beginning from the top of the figure, δ ≡ δC ≈
137.86 GHz and v0 ≡ vg(t = 0) = 330 214 m/s (dashed curve);
210 GHz and v0 = 148 415 m/s (green curve); δ = δS ≈ 265 GHz
and v0 = 94 379 m/s (dotted line); 380 GHz and v0 = 46 382 m/s
(brown curve); δ = δBR ≈ 393.66 GHz and v0 = 43 250 m/s
(dashed-dotted red curve); 500 GHz and v0 = 26 907 m/s (solid red
curve). In the inset, dependence of δ versus γ0 for p0 = π/2 is plotted.

rates ω1,2 (ω1,2 > 0) and for ω1 < 0 (ε10 < 0), ω2 > 0. On the
contrary, at ω1,2 < 0 solitons can be obtained at the outside of
the named region.

In the limit of tight-binding approximation (ω2 = 0),
Eq. (26) implies only one solution cos(p1) = 0 that
corresponds to the physical situation described in [25,26]
for atomic BEC lattice solitons. In this case, polariton
solitons exist only for wave-packet momentum that obeys the
inequality cos(p0) < 0.

V. POLARITON WAVE-PACKET DYNAMICS

It is much better to provide the analysis of polariton wave-
packet dynamics in the dynamical phase diagram picture, that
reflects particular features of polaritons in the lattice. In Fig. 3,
we represented the corresponding dynamical phase diagram,
the related polariton effective mass, and the Hamiltonian
energy contours, as functions of the momentum parameter
cos(p0). For cos(p0) > cos(p1), the initial polariton mass is
positive and one can expect self-trapping and diffusive regimes
only. The most important results can be obtained for LB
polariton dynamics in other domains of momentum p0.

In the region cos(p2) < cos(p0) < cos(pH0
1 ), we have m∗

0 <

0, H0 > 0 for all values of detuning δ (see Fig. 3). Figure 4
demonstrates typical temporal dynamics of the wave-packet
group velocity vg in this case. In the inset, the dependence
of detuning δ as a function of initial width γ0 of the wave
packet is presented. For δ < δC, we deal with the diffusive
regime for which the group velocity tends to the constant
value vg ≈ sin(p0) + 2ω2 sin(2p0) asymptotically. On the
other hand, the group velocity oscillates in time within the
window δC < δ < δBR. For δ > δBR, i.e., for the self-trapping
regime vg rapidly vanishes and goes to zero. The soliton
regime occurs for atom-field detuning δ = δS and obviously is
characterized by a constant value of the group velocity (dotted
line in Fig. 4).

Essentially new results can be obtained when momen-
tum obeys the condition cos(pH0

1 ) < cos(p0) < cos(p1) and
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FIG. 5. (Color online) Trajectories in the η-γ plane for various
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(a) are 80 GHz (for an unlabeled green curve), 115 and 120 GHz
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corresponds to solitonic regime of the wave-packet parameters for
δ = δS ≈ 99.24 GHz.

represents a narrow area in Fig. 3. Analysis of the po-
lariton wave-packet dynamics in the discussed domain is
straightforward. Due to the energy conservation law it is
possible to establish a simple inequality ω3

γ
− Heff > 0, where

Heff ≡ H0 − ω2| cos(2p0)|e−4σ can be recognized as a shifted
Hamiltonian in this case. The self-trapping regime for the wave
packet can be found out for Heff > 0 [upper (red) curves in
Fig. 5(a)]. However, since σ 
 1, we can suppose that Heff ≈
H0 in this limit. The maximal value γmax 	 ω3/H0 of the width
of the polariton wave packet for the self-trapping regime can
be obtained as a result. The set of other regimes is achieved
at Heff < 0 or, simply, at H0 < 0. By using the Hamiltonian
H0 we can arrive at an equation η2 = 8

γ 2 ln[ cos(p0)
ω3/γ−|H0| ] for the

curvature parameter η that describes wave-packet behavior at
its large width for γ 
 1. Since m∗

0 < 0, the system supports
bright polariton soliton solutions and breather regimes as
well. In particular, from the energy conservation law we
can establish a relation ω3

γ
= Heff + cos(p0)e−σ > 0. Hence,

the lower diffusive regime with γ → ∞ and an equation
η = 2

γ

√
2 ln[cos(p0)/|Heff|] → 0 occurs for |Heff| < cos(p0).

On the other hand, if |Heff| > cos(p0), the width γ has to
remain finite that corresponds to breather regimes. Transition
between two regimes can be found out from an equation ω3,C =

γ0[ω2| cos(2p0)|(1 − e−4σ0 ) − cos(p0)(1 − e−σ0 )]. It implies
the critical number of polaritons that is characterized by the
critical two-body polariton-polariton scattering parameter ω3,C

or relevant atom-field detuning δC.
Another physically interesting region of the wave-

packet dynamics is characterized by the momentum domain
cos(p0) < cos(p2) that corresponds to a picture in the inset of
Fig. 3. Figure 5(b) demonstrates trajectories in the η-γ space
for the wave-packet parameters.

In this limit, we deal with initially positive polariton mass
(m∗

0 > 0) and the Hamiltonian H0 > 0 (see Fig. 3 for any
values of detuning δ). Proceeding as for previous cases, we
can find out a critical value of the two-body polariton scat-
tering nonlinear parameter ω3,C = γ0[| cos(p0)|(1 − e−σ0 ) −
ω2 cos(2p0)(1 − e−4σ0 )] that separates polariton-diffusive and
localized regimes from each other. The polariton wave packet
being at the diffusive regime demonstrates approximately
constant group velocity vg ≈ sin(p0) + 2ω2| sin(2p0)| at large
times. It is important to note significantly nonlinear behavior
of the polariton wave-packet parameters at the breathing
region being under discussion. The polariton wave-packet
width oscillates between the values γmin and γmax which
are independent on initial value γ0. The group velocity also
undergoes large-amplitude nonlinear oscillations. However,
the amplitude of oscillations is suppressed if we move toward
the self-trapping area (cf. Fig. 4). In the limiting case for large
enough detuning δ the atomlike LB polariton packet becomes
self-trapped and “stopped” imposing vanishing group velocity
vg ≈ sin(p0)e−γ 2η2/8 + 2ω2| sin(2p0)|e−γ 2η2/2 → 0.

VI. TUNNELING-ASSISTED OPTICAL
INFORMATION STORAGE

The dynamical phase diagram for supporting different
states permits physical protocol for adiabatic optical infor-
mation storage and retrieval with the help of photonlike
and matterlike duality of lattice polariton wave packets; the
protocol is based on the so-called rapid adiabatic passage
(RAP) approach, which is slow on the time scale (2g)−1

and fast enough in comparison with any incoherent process
occurring in the atom-light system [33]. In particular, atom-
light detuning δ is a vital (governed) parameter in this case
(cf. [5,21]).

The wave packet for LB polaritons can be represented as
� ≡ 〈�2〉 = Xφ − Cψ , with the wave functions φ and ψ

of the atomic excitation and optical field, respectively [see
(16)]. In particular, for a positive and large frequency detuning
δ ≡ δat, one has a “slow” (matterlike) polariton solution
� ≈ φ in the cavity array; while for a negative frequency
detuning δ ≡ δph, one has a “fast” (photonlike) soliton � ≈ ψ .
In general, for the adiabatic storage of optical information,
we choose time-dependent detuning such as δ(t) = δph +
δat−δph

2 {tanh[χ (t − τWR]) − tanh[χ (t − τR)]}, where parameter
χ characterizes the rate of detuning δ(t) variation; τWR(τR) is
a writing (retrieving) time moment. In our problem, the RAP
approach requires the fulfillment of the condition [cf. (6)]

max{�at,�ph} < χ < 2g. (29)
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FIG. 6. (Color online) (a) Manipulation for the wave packet is
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At the same time, one can require the fulfillment of the
adiabaticity condition represented in the form [33]

4πg|δ̇|
[(2πδ)2 + 4g2]3/2

� 1 (30)

and formulated for a two-level system that interacts with
the external field. It is important to note that, for the
storage protocol with rubidium atoms in the cavity arrays,
the conditions required in Eqs. (29) and (30) are satisfied
simultaneously at the rates χ < 2π × 20 GHz.

As an example, here we establish two possibilities for
the optical information storage. First, consider the supported
soliton that is a steady-state solution indicated by the markers
A and B in Fig. 3(a), both of which are bounded by the
breather states, but with different wave-packet momenta. At
the writing stage, such a wave packet in the form of a
polariton soliton enters the configuration of the cavity array
completely [writing time τWR is about 1 ns for Fig. 6(a), which
operates with the initial width of a polariton wave packet
equal to 10 μm]; the polariton being photonlike and having
the momentum p

ph
0 = − arccos(−0.922) and the detuning

frequency δ ≡ δph ≈ −67.5 GHz [see Fig. 6(b)]. Then, by
adiabatical switching of the matter-light detuning frequency to
the magnitude δ ≡ δat ≈ 284.13 GHz, i.e., the corresponding
lattice soliton solution moves across the phase boundary
toward the marker B, resulting in possessing a low enough
group velocity. In this way, the original photonlike lattice
polariton soliton is transferred into a matterlike one, with
the momentum pat

0 = arccos(−0.2). The mapping of optical
information from an incident optical field into coherent matter
excitation is demonstrated in Fig. 6(c). By reversing the
detuning frequency adiabatically, the original wave packet can
be reconstructed back to the photonlike polariton soliton at the
output of the cavity array.

Second, the possibility to arrange optical information
storage involves the mapping of a photonlike polariton soliton
onto the dynamically localized wave-packet state that is a
breather state in our case. In Fig. 6(d), we demonstrate the
mapping of photonlike solitonic polariton wave packets into
atomic excitations representing atomlike breather polariton
wave packet and characterized by point C in Fig. 3(a). The
maximally accessible (positive) value of detuning δ in this case
is determined by the boundary value between two dynamical
regimes, that is, self-trapping and breather II states in Fig. 3(a).
The main advantage of the usage of breather polariton wave
packets for optical storage purposes is connected with the fact
that at all storage stages we consider a polariton wave packet
with the same momentum, that is, p0 = − arccos(−0.922) for
point C. At the same time, practical difficulties lie in the fact
that it is necessary to select the appropriate retrieving time
τR according to the cycle of atomic breather evolution for
mapping back to photonlike polariton soliton.

Let us discuss the criteria for the storage protocol proposed
in the paper. The efficiency E of the storage of optical
information for our problem is determined by the average
number of stored excitations |φ|2 if we consider the average
number of incoming photons to be equal to the unity during the
storage time [2,21]. Since we consider the optical pulse with
infinite duration (continuous-wave limit), we can define the
efficiency as E = ∫ L

−L
|φ|2dx for a large number of cavities,

where 2L is the total length of microstructure in Fig. 1.
In fact, parameter E can be recognized as the efficiency
of transformation of the initial photonic wave packet into
atomlike polaritons that implies φ = X(τST)�(x); X(τST)
is the Hopfield coefficient calculated at the time duration
τST = τR − τWR, i.e., storage time in Fig. 6. The wave function
�(x) is established in the x-space domain as

� (x) =
(

2

π�2

)1/4

exp

[
−

(
1

�2
− i

θ

2

)
x2

]
, (31)

where x = nd, � = dγ , and θ = η/d2. Note that in Eq. (31)
we have ignored the initial coordinate of a polariton wave
packet, which is unimportant in this case.

Obviously, storage efficiency reaches the maximal value
E = 1 if a complete mapping onto the atomic excitations takes
place in infinite lattice, i.e., for L → ∞. However, this can be
achieved at the infinitely large value of detuning δ. For experi-
mentally accessible detuning δ the efficiency E approaches
E = [X(τST)]2. In particular, for the storage protocol with
solitons represented in Fig. 6, we have X(τST) ≈ 0.996 95 and
efficiency is E ≈ 0.993 91 calculated in the limit of L 
 �.

For the finite duration of an optical pulse special procedure
of optimizing of the shape of the initial optical wave packet that
maximizes the efficiency in time domain will be important.
Such an optimization can be performed similarly to other
quantum memory protocols operating with two-level systems
(see, e.g., [21,22]).

Second, let us discuss fidelity criteria that determine optimal
polaritonic dynamical regimes for the writing process. It
implies that we take the polariton wave packet at different
times being the closest to τWR [see Fig. 6(a)]. In our case,
i.e., a pure quantum state fidelity can be simply recognized as
the overlapping of states before (�in) and after (�out) writing
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[34,35]

F =
∣∣∣∣
∫

�∗
in�outdx

∣∣∣∣
2

, (32)

taking into account Eq. (31) and performing the integration in
Eq. (32), we can get

F =
√√√√ 16�2

0

4
(
1 + �2

0

)2 + �4
0θ

2
0

, (33)

where �0 = �out/�in and θ0 = �2
in(θout − θin).

In Fig. 7, the fidelity F for various polariton dynamical
regimes is examined. The maximal value F = 1 is achieved
for switching between two steady-state soliton regimes for the
polariton wave packet, with θ0 = 0 and �0 = 1. On the other
hand, F vanishes and goes to zero for the transitions involving
self-trapping (θ0 → ±∞) or diffusive (�0 → ∞) regimes.
Moreover, the local maxima in Fig. 7 obtained at θ0 = 0 and
�0 �= 1 correspond to breather states of the polariton wave
packet, which can be used for dynamical optical information
storage.

VII. CONCLUSIONS

In summary, we consider the formation of lattice po-
lariton solitons in the array of weakly coupled cavity-QED
arrays, with the ensembles of two-level atoms embedded
in each cavity. With the introduction of the next-nearest
photonic tunneling effects, five different dynamical regimes
are revealed; they include the diffusion, self-trapping, soliton,
and two breather states. Transformation between matterlike
and photonlike lattice polariton solitons paves the way to
the storage and retrieval of optical information through the
adiabatic manipulation of detuning frequency.

Here, we would like to focus on some important physical
features which seem to be important for implementation
of optical storage protocol proposed by us. First, the
physical process of mapping, storing, and readout of optical
information should be realized within the time, which is
much shorter than the characteristic time of the atom-light
system decoherence, that could be spontaneous emission time

or the time of photon leakage from cavities. In this sense,
our protocol can be compared with some other protocols,
for example, with CRIB protocol utilizing two-level atoms
(cf. [22–24]). For the systems based on alkali-metal atoms, the
limiting time of quantum storage process typically approaches
tens of nanoseconds (cf. [15]). However, for especially
prepared ensembles of rare-earth optical centers, the transition
lifetime can achieve the value of a few milliseconds [36]. On
the other hand, in the framework of magnetic microchip trap
technology, an enormously long coherence lifetime of a few
seconds for magnetically trapped atoms in the vicinity of the
chip surface is realized [37].

Second, we hope that predicted dynamical regimes for
LB polaritons and storage protocol could be implemented
with some other two-level systems. It is worth mentioning
that cavity QED with excitonic qubits in QWs [15] can
be used as these systems. Remarkably different approaches
have been proposed for optical computing with the help of
polaritons in semiconductor microcavity (see, e.g., [38]). The
main advantage of polariton utilization for optical information
processing and storage is connected with their extreme
short switching time (within few picoseconds) being the
result of relatively high nonlinear response [39]. Also, it is
important that quantum memory devices based on wide band-
gap semiconductor structures possess high (room) running
temperatures. Potentially the quantum storage protocol in
this case can be limited by exciton lifetime that is several
nanoseconds [15].

Potentially the quantum storage protocols with semi-
conductor microstructures limited by exciton lifetime that
is several nanoseconds [15]. However, some experimental
difficulties here are currently connected with obtaining high-
Q-factor microcavities. For experiments with semiconductor
QWs embedded in semiconductor microcavities, the lifetime
of the photons reaches few tens of picoseconds now [13,14].
Hopefully, even in this case our protocol of the optical
information storage by means of localized (soliton and/or
breather) states can be efficient.

Last but not least, solitons are much more robust in
respect of small perturbations, even in the presence of small
dissipation and decoherence effects [40]. Second, if dissipation
and decoherence effects become significant, then it will
be possible to find some specific regimes for supporting
dissipation solitons. In this limit, solitons can be supported
due to some additional pumping that enables us to compensate
losses in the system [41]. In particular, at the stages of
photonlike polaritons, the external optical pumping could be
used. On the contrary, an electronic pump can be applied within
the storage time (cf. [42]). Finally, the coherence time of
mixed exciton-photon states in semiconductor microcavities
may be dramatically enhanced due to its stimulated pumping
from a permanent thermal reservoir of polaritons (cf. [43]).
These problems should be considered separately and will be
examined by us in the forthcoming papers.
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