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Stabilization of vortex solitons by combining competing cubic-quintic nonlinearities
with a finite degree of nonlocality
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In contrast to an infinite degree of nonlocality, we demonstrate that vortex solitons in nonlinear media under
competing self-focusing cubic and self-defocusing quintic nonlocal nonlinearities can be stabilized with a finite
degree of nonlocality. Stable vortex solitons in the upper branch, bifurcated from the competing cubic-quintic
nonlinearities, are found to be supported when the original double-ring refractive index change is transferred into
a single-ring configuration due to the balance between diffusive nonlocality and defocusing quintic nonlinearity.
The dynamics and stabilities of the vortex solitons are studied analytically and numerically.
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Solitons, localized waves without changing the profile
during propagation and collision, form in nonlinear media
when linear diffraction and nonlinear self-trapping balance
each other [1]. In higher dimensions, these particlelike wave
packets suffer from the instability to collapse [2]. With a long-
ranged interaction, it is proved that nonlocal nonlinearity can
arrest soliton collapse in arbitrary dimensions [3]. Suppression
of soliton instability [4,5] as well as generation of novel
soliton states [6-9] have been proposed with applications
from nematic liquid crystals [10], thermal media [11], atomic
vapors [12], to Bose-Einstein condensates [13]. In two di-
mensions, it is known that vortex solitons and azimuthons are
naturally unstable and break into multipole scalar fundamental
solitons in local media [14,15]. Even though the nonlocal
nonlinearities can suppress the azimuthal instability of vortex
beams [16—23], only highly nonlocal media with a huge degree
of nonlocality [18,20,24] support vortex solitons without any
restriction on the topological charge. This was confirmed ex-
perimentally, e.g., the observation of vortex solitons in thermal
media with infinite degrees of nonlocality [19] or in a nematic
liquid crystal with strongly nonlocal nonlinearity [25,26].

In addition to the nonlocal nonlinearity, saturable or
competing nonlinear responses can also support multistable
solitons in multidimensions [27]. By combining competing
and nonlocal nonlinearities, higher-order vortex solitons are
shown to be stable [28]. Moreover, solitons with even and odd
parities [29], gap solitons [30], accessible light bullets [31],
and dark solitons [32-34] are studied in nematic liquid
crystals [35] or Bose-Einstein condensates [36] in which
thermal and orientational effects or simultaneous contact and
long-ranged dipolar interactions act as competing nonlocal
nonlinearities.

In this Brief Report, we study, analytically and numerically,
vortex solitons under competing self-focusing cubic and self-
defocusing quintic nonlocal nonlinearities. We demonstrate
that two branches for the bifurcated vortex solitons stemmed
by the competing effect experience different dynamics and
related instability. Similar to the case with single nonlocal
nonlinearity only, the lower branch solutions are found to
always be stable when the degree of nonlocality is sufficiently
strong. Instead, the upper branch solutions are revealed to
be conditionally stable with a suitable parameter set. When
the double-ring structure in the induced nonlinear refractive

1050-2947/2014/89(2)/025804(4)

025804-1

PACS number(s): 42.65.Tg, 42.65.Jx

index change is transferred into a single ring by the balance
between the diffusive nonlocality and the defocusing quintic
nonlinearity, a stable vortex soliton is found with only a finite
degree of nonlocality.

We consider a vortex beam propagating in a nonlinear
medium with the slowly varying envelope v (x,y,z), de-
scribed by the normalized nonlocal nonlinear Schrodinger
equation [9,17],
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where the coordinates x, y, and z are measured in the unit.
The nonlinear refractive index change in the media with
competing focusing cubic and defocusing quintic nonlocal
nonlinearities is represented by dn(l) = «16n(r,I) — axdn;
r.0) = o [Ri® — DY@ P — ay [ Ry(r =)
Y (r',z)[*d?r’ [29]. Here, r is the vectorial spatial coordinate,
R »(r) correspond to the normalized nonlocal response func-
tions, and o and «; are positive, which represent the strength
of cubic and quintic nonlinearities, respectively. For the reason
that the property of competing nonlinearities relies on their
relative strengths, we fix oy = 1 and only vary o, in this Brief
Report. For the sake of analytical simplicity and without loss of
generality, we consider the case of so-called Gaussian nonlocal
response functions [37]: Ri(r) = (o) ' exp (—r?/o}) and
Ry(r) = (mo?)~' exp (—r?/o}) with the characteristic width
01,2 to represent the degree of nonlocality.

For convenience, we focus on the single vortex soliton ring,
which has the form

'(ﬂ — Ap™ exp (_r2/2w2) exp (lkZ + lm‘P), (2)

where ¢ =tan~!(y/x) and A and w are the amplitude and
beam width, respectively. We also set the beam width w = 1,
and only fundamental charged vortex solitons with m = 1 are
studied in the following (high-order charged vortex solitons
can be treated in a similar way [18,20]). In this case, the power
of the vortex solitons carrying the fundamental topological
charge can be obtained by P = [/ |[¢|?dx dy = m A>w*. To
investigate the dynamics of the vortex solitons analytically,
first, we will employ the Lagrangian (or variational) approach
in this Brief Report. It can be shown that the Lagrangian density
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corresponding to Eq. (1) is of the following form:
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By the standard variational approach and the Euler-Lagrange
equations, one can obtain the corresponding amplitude of
vortex beam A,

M £ /3N[303w30 — 8ay (202 + 02) ' P]
4a2w8(2w2 + 012)4P
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with M = (729w'8 + 2430w'60} + 3240w'doy + 2160
w'208 + 720w'008 + 96wl 0)(w* + wel+ o), N =
wd(3w? + 202)%, 0 = (w* + w?o? + o{)*(Bw? +203),
and P = 9w + 2114)6(722 + 2411)4(724 + 15w2(726 + 2028. Here,
A, (A_) represents the amplitude for the vortex soliton in
the upper (lower) branch with a larger (smaller) formation
power. The bifurcation of these two solutions comes from
the competing effect between cubic and quintic nonlinearities
even in local media [38]. However, the vortex solitons in the
local cubic-quintic competing nonlinear media are always
unstable [39,40].

According to Eq. (4), the formation power of vortex solitons
versus degree of nonlocality is shown in Fig. 1 for the special
case of 07 = 0, = o. In addition to the known two bifurcated
branches of the solution, there exists a threshold value for
the degree of nonlocality, denoted as oy;, above which no
solution for any two branches is supported. When the strength
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FIG. 1. (Color online) Formation power P versus the degree of
nonlocality oy = 0, = o for vortex solitons with different strengths
of quintic nonlinearities «,. Upper (A;) and lower (A_) branches
are represented with dotted and dashed curves, respectively. These
two branches merge at the marked points A and B at the critical
values of 0;;, = 2.424 for o, = 0.01 and o, = 3.273 for o, = 0.003,
respectively. The solid line describes the required formation power
for the vortex solitons in nonlinear media only with a self-focusing
nonlocal cubic nonlinearity (a; = 0).
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of quintic nonlinearity decreases, this threshold value becomes
larger as the marked points A to B shown for o = 0.01 and
0.003 in Fig. 1. This again indicates that the upper branch
exists only with a nonzero competing quintic nonlinearity.
This is why such bifurcated solutions of the vortex solitons
in media with competing cubic-cubic nonlocal nonlinearities
do not exist [28]. For the lower branch, the supported vortex
soliton needs to increase its formation power when the degree
of nonlocality increases as the typical scenario happens for
solitons in nonlocal media without any competing nonlinearity,
i.e., the solid line shown in Fig. 1. However, the formation
power for vortex solitons in the upper branch decreases as the
degree of nonlocality increases, which is totally contrary to the
soliton formation in media with single nonlocal nonlinearity.
With these variational results as the initial conditions, we
numerically demonstrate the dynamics of vortex solitons in
the lower and upper branches. First, in Fig. 2, we concentrate
on the stability for the lower branch. As a comparison, one can
see that, when the nonlocality is weak, such as o = 0.2 shown
in Fig. 2(b), the supported vortex solitons have a smaller
stationary propagation distance than that of the case only with
local nonlinearities o = 0 in Fig. 2(a). However, by increasing
the degree of nonlocality, e.g.,0 = 0.4 and o = 0.7273 shown
in Figs. 2(c) and 2(d), these vortex solitons get benefits from
the competing nonlinearities, demonstrating a longer distance
for the stable propagation. With a sufficient strong degree of
nonlocality, all of these vortex solitons in the lower branch can
be stabilized [18,20,28]. For instance, as shown in Fig. 2(e),
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FIG. 2. (Color online) Propagation dynamics for the vortex soli-
tons in the lower branch with different degrees of nonlocalities:
(@0 =0,(b)yc =0.2,(c)o =04,(d)oc =0.7273,and (e) 0 = 2.2.
The strengths of the nonlinearities are o; = 1 and a; = 0.01. Other
parameters used are the same as those in Fig. 1.
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FIG. 3. (Color online) Propagation dynamics for the vortex soli-
tons in the upper branch with different degrees of nonlocalities:
(@)oo =0,(b)oc=0.2,()o =04, (d o=0.7273, and (e) 0 =
2.424. The strengths of the nonlinearities are &; = 1 and o, = 0.01.
Other parameters used are the same as those in Fig. 1.

vortex solitons of the lower branch can propagate with the
stationary propagation distance more than z = 1000 when
o =2.2.

Now, we move to the complicated but interesting results
for vortex solitons in the upper branch. In the local case, with
o = 0 shown in Fig. 3(a), the supported vortex solitons still
display an unstable dynamics, i.e., it maintains the vortex ring
profile at the beginning but breaks into two-particle clusters
quickly at a longer propagation distance. By increasing the
degree of nonlocality, e.g., o = 0.2, 0.4, and 0.7273 shown
in Figs. 3(b)-3(d), these originally unstable upper branch
solutions possess a very long stable propagation distance,
even longer than that of the solutions in the lower branch
shown in Fig. 2. Unexpectedly, as demonstrated in Figs. 2(c)
and 2(d), we can have a stable distance as long as z = 1600
and 2400 for the vortex solitons in the upper branch when the
degrees of nonlocality are much smaller than the threshold
value oy, = 2.424. In this case, vortex solitons are surely
stable even in the limit of weak nonlocality [e.g., o0 = 0.4
in Fig. 3(c)]. At the threshold value, the marked point A
in Fig. 1, where the vortex solitons of the lower and upper
branches have the same dynamics, it can propagate stably
more than z = 8000, although its intensity profile oscillates
slightly during the propagation.

In order to illustrate physical mechanisms for the stabi-
lization of vortex solitons in the upper and lower branches,
in Fig. 4, we show the nonlinearity-induced refractive index
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refractive index

FIG. 4. (Color online) Nonlinearity-induced
changes én(I) for the upper (a)-(d) and lower (e)—(h) branches
with different degrees of nonlocalities: (a) and (e) o = 0, (b) and
(f) 0 = 0.2, (¢c) and (g) 0 = 0.4, and (d) and (h) o = 0.7273. The
strengths of the nonlinearities are «; =1 and o, = 0.01. Other
parameters used are the same as those in Fig. 1.

changes én(/) defined in Eq. (1). The first and second rows
correspond to dn(l) for the upper (a)—(d) and lower (e)—(h)
branches. One can see that the nonlinear refractive index
change for the upper branch has a double-ring structure in
the profile when o = 0 as shown in Fig. 4(a); whereas, that
for the lower branch only has a single-ring configuration.
The difference in the profiles of the refractive index change
accounts for the stability and related dynamics for the vortex
solitons. Naively, to maintain a stable vortex soliton, a single-
ring configuration for the nonlinear refractive index change is
needed in order to sustain the soliton profile from collapse.
With a large enough nonlocal effect [18-20,24-26], this
refractive index change expands accordingly at the price of
increasing the formation power, resulting in the stabilization
of the vortex solitons in the lower branch. On the contrary,
a double-ring configuration in the induced refractive index
change provides a separated self-trapping potential, which, in
general, breaks down the vortex beam, leading to the formation
of particle clusters. But the introduction of nonlocal nonlinear-
ity brings a new balance into this double-ring configuration.
Even though the induced refractive index change expands
accordingly when the degree of nonlocality increases, the
required formation power for the vortex solitons in the upper
branch decreases. Due to the balance between nonlocal and
quintic nonlinearities as shown in Figs. 4(c)-4(d), now the
nonlinear refractive index change has the same profile as a
single-ring configuration in the lower branch. This balanced
single-ring profile in the refractive index change explains
why we have a longer stable propagation distance for the
vortex solitons in the upper branch. With a finite, instead of
infinite [19] or huge [25,26], degree of nonlocality, we can
have stable vortex solitons.

In conclusion, vortex solitons in nonlinear media under
competing self-focusing cubic and self-defocusing quintic
nonlocal nonlinearities are studied with an arbitrary degree of
nonlocality. We demonstrate that the lower branch solutions
have similar stability and dynamics as those vortex solitons
in the nonlocal nonlinear media without the introduction of
a competing quintic term. That is, vortex solitons in the
lower branch can always be stabilized with the help of
nonlocality but above a critical degree of nonlocality (o =
2.2). Instead, even though the vortex solutions in the upper
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branch are conditionally stable, the balance between diffusive
nonlocality and defocusing quintic nonlinearity can be met to
transfer a double-ring into a single-ring profile in the induced
refractive index change. With such a benefit from the bifur-
cated upper branch, stemmed by the competing cubic-quintic

PHYSICAL REVIEW A 89, 025804 (2014)

nonlinearities, a stable vortex soliton is demonstrated numeri-
cally, only with a finite degree of nonlocality.
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