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Observation of phase boundaries in spontaneous optical pattern formation
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With measured optical images in spontaneous pattern formations, we observe the phase boundaries in the
phase diagram, defining by the degree of coherence and biased voltage. Pattern transitions in the form of stripes,
reoriented stripes, hexagons, and spots are revealed experimentally and theoretically for incoherent beams in
noninstantaneous anisotropic photorefractive crystals, with demonstrations in the boundary of mixed-phase states.
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I. INTRODUCTION

In optics, a small perturbation on top of plane waves grow-
ing exponentially during unidirectional propagation in nonlin-
ear systems is known as modulation instability (MI) [1,2]. It
is the MI that a broad optical beam or a quasi-cw (continuous
wave) pulse breaks up into filaments or pulse trains, as a
precursor to soliton formations [3,4]. Extending the uniformity
into a quasi two-dimensional (2D) structure, another similar
symmetry-breaking spontaneous pattern formation is associ-
ated with the transverse instability (TI) [5], which turns a
bright soliton stripe into an array of 2D filaments [6-9], and
bends a dark stripe into pairs of optical vortices [10]. Such
a sequence of optical pattern transitions from MI to TI was
recently demonstrated with a coherent beam propagating in
the photorefractive crystals [11].

In addition to nonlinear optical systems, the appearance of
these ordered patterns from an initially noisy and featureless
background has been observed from spin class, catalysis, biol-
ogy, geophysics, to cosmology, and been taken as a universal
character in all scales [12]. Even though the accompanied
growth of entropy with fluctuations should drive the physical
system into disorder, it is believed that spontaneous pattern
formations may happen associated with phase transitions. Re-
cently, as Bose-Einstein condensate happens for atoms below a
critical temperature, kinetic condensation in classical waves is
observed in such a photorefractive crystal with the help of in-
coherent light [13]. In this work, with incoherent beams in non-
instantaneous anisotropic photorefractive crystals [14—17], we
report a series of pattern transitions in the form of stripes, reori-
ented stripes, hexagons, and spots experimentally and theoret-
ically. By defining the phase diagram, in terms of coherence
length and biased voltage, we demonstrate the observations
of spontaneous optical patterns in the transition boundary of
mixed-phase states. Through the detailed series of spontaneous
pattern formations, the results in this work not only provide an
important ingredient concerning the link with previous results
on optical pattern formations, but also serve for the discussions
on the underlying mechanisms for complex systems.

II. EXPERIMENTAL MEASUREMENT

Experimental setup for the measurement of our opti-
cal pattern transitions can be found in our previous work
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[11,16-18]. A 515 nm cw Yb:YAG laser output is split into
two beams by using a polarization beam splitter, where the
extraordinarily (signal) and ordinarily (background) polarized
beams are collimated into a strontium-barium niobate (SBN)
crystal as a control for the degree of saturation. Along the
c axis, the SBN crystal is 5 mm in length and 5 mm in
thickness, which has an effective electro-optical coefficient
about 350 pm/V. The laser output passing through a diffu-
sion glass, with the coherence length /. estimated by the
interference of speckle patterns, is launched on the input
plane of the crystal. With a charge-coupled device (CCD)
camera, a series of self-organized optical patterns at the
output plane is recorded at a constant light intensity, i.e., Iy =
100 mW /cm?.

It was predicted theoretically first [19], then demonstrated
experimentally [20,21], that with a noninstantaneous response
in the nonlinear medium, such as the photorefractive crystal
used in our experiments, MI can even occur with spatiotempo-
rally incoherent white light when operating above a threshold.
The threshold depends crucially upon the coherence property
of input beam: The threshold increases when one decreases the
spatial correlation distance. Below the threshold, perturbations
on top of a uniform input beam decay and the related
instability will be suppressed; while above the threshold, the
perturbations grow rapidly and a uniform incoherent beam
will break up into periodic stripes [22]. In experiments, first
of all, we fix the biased voltage applying on the crystal
at a constant value, £, = 0.93 kV, and vary the coherence
length of input beam to form spontaneous optical patterns
with incoherent light. As the coherence length of the input
beam increases, the measured patterns shown in Fig. 1 change
from (a) uniform structure, into (b) stripes (coined as MI-1,
primary MI), (c) a mixture of two kinds of stripes, and
(d) reoriented stripes (coined as MI-2, secondary MI), (e)
and (f) coexistence of stripes and hexagons, (g) hexagons
(coined as TI), and (h) dots (coined as OT, optical turbulence),
respectively.

Such a series of pattern transitions can be understood as
follows. Beginning from a short coherence length, such as
I, =50 pmin Fig. 1(a), no spontaneous pattern appears due to
the fact that the nonlinearity to support MI does not exceed the
threshold value determined by the degree of coherence. Later
on, as the degree of coherence is larger than the first threshold
value to establish the primary MI (MI-1), as shown in Fig. 1(b)
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FIG. 1. (Color online) Parameter space in terms of coherence length /. and biased voltage E, for the spontaneous optical pattern formations,
with primary MI (MI-1, yellow region), secondary MI (MI-2, green region), TI, and OT states. The insets show optical patterns captured by
the CCD camera for (a)—(h) at a fixed biased voltage (E, = 0.93 kV), but different coherence lengths, and (i)—(m) at a fixed coherence length
(I, = 67 pum), but different biased voltages. Each frame is 300 xm both in width and in height with the corresponding markers shown in capital
letters. Theoretical curves in solid-, dashed-, and dotted lines depict the boundaries for MI-1, MI-2, and TI phases, respectively.

for . = 57 um, stripe filaments in the periodic structure are
developed with a random orientation. Increasing the coherence
length above the second threshold value, one has the secondary
MI pattern (MI-2) due to the anisotropy of crystals. By the
comparison between optical patterns in Figs. 1(b) and 1(d),
it can be clearly seen the difference between MI-1 and MI-2
states, i.e., the latter one has a reorientation of direction for
the stripes (about 30°) along with a shrinking pitch between
adjacent stripes. More interesting, we observe a mixed-phase
state at /. = 67 um as shown in Fig. 1(c), just at the boundary
of the MI-1 and MI-2 phase states, which demonstrates the
coexistence of two phases. Consequently, these periodic stripes
split and break up into 2D filaments as a result of incoherent
TI at the third threshold of coherence length, /. = 85 um,
at which another mixed-phase state of MI-2 and TI appears at
random as shown in Figs. 1(e) and 1(f), respectively. When the
input beam is more coherent, i.e., [, = 132 um, self-organized
hexagon patterns as a manifestation of TI is demonstrated in
Fig. 1(g). With a longer coherence length, the filament pattern
forms in irregular spots representing a signature of OT, as
shown in Fig. 1(h).

Instead of a fixed biased voltage, one can also operate the
input light with a constant degree of coherence, for example,
l. = 67 um in Fig. 1. Now, by increasing the biased voltage,
again, we have a similar and detailed series of spontaneous
pattern formations for incoherent light, as shown in Figs. 1(i)—
1(m) with images from uniform background, stripes (MI-1),
reoriented stripes (MI-2), hexagons (TI), to dots. Moreover,
before the system involves into the optical turbulence state the
region to observe MI or TI in an incoherent system becomes
larger. In general, our experimental demonstrations verify
such a universal behavior of spontaneous patten formations
for incoherent MI and TI [23-25], but in a more subtle and
complicated scenario.

III. THEORETICAL ANALYSIS FOR THE
PHASE BOUNDARIES

To find out the threshold value as a function of coherence
length and biased voltage for MI-1, MI-2, and TI states, we
consider a 2D crystal with an anisotropy in nonlinearities. By
adopting the incoherent matrix, one can find the most unstable
spatial frequency, k;.“a" (j = x,y), for the perturbed field,

max 1/2771/2
i = M - % — M@Z 4 % (1)
ko no 2 no 0 4 ’

with the corresponding growth rate, g;,

2
nilo _ <k_f> ., Q)
no 2k0
where ky denotes the carrier wave number of incident beam,
k; (j = x,y) denotes the perturbed wave number, no = 2.3 is
the refractive index, Iy is the input intensity, n; (j = x,y) de-
notes the nonlinear index, and 6y = V27 /kono . [19,23,26].
Here we also assume a Lorentzian power spectrum for the
distribution of coherence, even though a Gaussian-type power
spectrum determines the instability threshold physically in the
experiment, but fails to give us an exact solution of the wave
number and related growth rate. With the formulas in Egs. (1)
and (2), one can find two wave numbers with a maximum
growth rate induced by the anisotropic nonlinearity for a
given degree of incoherence, as shown in Figs. 2(a) and 2(b),
respectively.

To model the anisotropy for the crystal, we estimate the ratio
between the long and short axes of a nonlinear index ellipse
asn,/n, = 2.61 for SBN crystals. Since n, > n, is used, one
can have the first threshold value for an incoherent beam to

% = —0o(k;j/ ko) + (k;/ ko)
0
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FIG. 2. (a) The most unstable wave number k‘j“ﬂx as a function of
the coherence length /. along the x (dashed line) and y (solid line)
directions in an anisotropic crystal. (b) The corresponding growth rate
g is shown as a function of the wave number for different coherence
lengths.

break up and form the pattern of stripes, i.e., the MI-1 phase, in
one random direction (almost along the x axis). By increasing
the coherence length, MI in another direction will reach its
threshold condition subsequently and rotate the stripe pattern
due to the superposition of wave vectors, (k™*)? = (kM3)2
(k;“a")z, resulting in shrinking the separation between adjacent
stripes, d = 1/k™*. Now, the system is in the MI-2 phase,
which accounts for the observed optical patterns in shapes of
reoriented stripes (superposition between two stripes). For the
TI phase, we follow Ref. [7] by adding a small transverse wave
number as the perturbation on top of the formed reoriented
stripes, with the period derived from the MI gain spectrum.
The resulting incoherent TI threshold condition can be found
as k,/2ny = 63, where k, denotes the wave number in the
transverse direction. Based on the formula given above, we
can theoretically define the threshold in terms of coherence
length for TIL.

In Fig. 1, we plot the corresponding threshold values of
the MI-1, MI-2, and TI phases with respect to a given biased
voltage (E,) and coherence length (I/.) in solid, dashed, and
dotted lines, respectively, by fitting the curves with the pa-
rameters mentioned above to experimental observations. The
tendency of three threshold curves depicted in the parameter
space defined by E, — [., as shown in Fig. 1, demonstrates
clearly that to have spontaneous pattern formations with an
incoherent light source, one should increase the biased voltage
to overcome the threshold condition. Moreover, as we have
phase transitions in a low temperature system, the shadowed
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regions for supporting MI-1 and MI-2 phases are significantly
narrowing as the degree of coherence increases, which explains
why it is hard to observe the MI-2 phase with coherent light
even in anisotropic crystals. In such a case, one would have
a direct optical pattern transition from MI to TI states for a
coherent light source, without revealing the phenomena of a
secondary MI [11].

Before the conclusion, we want to remark that even
though by considering the optical birefringence, it has been
floating in the community for a long time that a 2D array
of dot filaments should be viewed as the secondary MI due
to the anisotropy of nonlinear crystals [22,26]. However,
there are always some doubts that this relation truly exists.
Through the demonstrations in experiment and theory, the
above concerns are solved by our proposed phase diagram
for pattern transitions in the form of MI-1 (primary MI in the
form of stripes), MI-2 (secondary MI, reoriented stripes), TI
(hexagons), and OT (optical turbulence in the form of spots).
In particular, we introduce two different kinds of MI patterns,
i.e., MI-1 and MI-2. Moreover, with the observations in the
boundary of mixed-phase states as the critical temperature in a
kinetic system, we provide clear evidence to explain the origin
for the known 2D array of dot filament.

IV. CONCLUSION

In summary, we have demonstrated systematically the
instabilities of MI-1 (primary MI in the form of stripes),
MI-2 (secondary MI, reoriented stripes), T1 (hexagons), and
OT (optical turbulence in the form of spots) in noninstan-
taneous photorefractive crystals in detail with an incoher-
ent light source. A phase diagram is proposed for optical
phase transitions and observations of mixed-phase regimes in
MI-1/MI-2 and MI-2/TT states are demonstrated at the phase
boundaries. By adopting the incoherent matrix, theoretically
we define the boundaries in the phase diagram, which gives
good agreement with the experimentally measured optical
images. By a detailed series of spontaneous optical pattern
formations, our demonstrations open the pathway to a deeper
insight into nonlinear optics and related phase transitions.
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