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For passive electromagnetic scatterers, we explore a variety of extreme limits on directional scattering patterns
in a phase diagram, regardless of the details on the geometric configurations and material properties. By
demonstrating the extinction cross sections with the power conservation intrinsically embedded in the phase
diagram, we give an alternative interpretation for Kerker’s first and second conditions, associated with zero
backward scattering (ZBS) and nearly zero forward scattering (NZFS). Physical boundaries and limitations for
these directional radiations are illustrated along with a generalized Kerker’s condition with implicit parameters.
By taking the dispersion relations of gold silicon core-shell nanoparticles into account, we reveal the realistic
parameters to experimentally implement ZBS and NZFS at optical frequencies by means of a phase diagram.
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I. INTRODUCTION

In 1983, Kerker er al. revealed that, under a proper
combination of magnetic and electric dipoles of a magne-
todielectric particle on the subwavelength scale, one can have
an asymmetric field radiation with zero backward scattering
(ZBS) or zero forward scattering (ZFS), which are known as
the first and second Kerker’s conditions, respectively [1]. For
ZBS, the permeability ¢ and permittivity € must have the same
value, i.e., © = €; whereas for ZFS, the permittivity and per-
meability need to satisfy the condition € = (4 — u)/2u + 1)
in the quasistatic limit. Such an asymmetric radiation in the
backward or forward directions also is associated with a
directional Fano resonance due to constructive or destructive
interferences between the induced resonant wave to the
scattered one [2,3].

Experimental realizations toward directional scattering
patterns have been demonstrated with a single nanoparticle
made of GaAs [4], silicon [5], or a gold nanoantenna [6].
Moreover, due to the lack of a giant magnetization in
natural materials at optical wavelengths, several ways are
proposed to realize anomalous asymmetric radiations, such as
inducing interferences among dipole and quadrupole channels
on metallic-dielectric nanoparticles [7], using gain dielectric
nanoparticles to compensate inherently scattering loss in order
to have a zero extinction cross section [8], using nanoparticles
made of a high index of refraction optical materials [9,10],
and engineering aluminum nanostructures in the shape of a
pyramid to induce a magnetic dipole [11].

However, when the optical theorem is taken into consider-
ation, an inconsistency arises because the electric scattering
amplitude in the forward direction is related to the total
extinction cross section [12]. That is, the ZFS implies a zero
extinction cross section. The consequence of zero extinction
strictly requires the zeros of absorption and scattering cross
sections. As aresult, ZFS is an impossible phenomenon for any
noninvisible passive system. Although many studies support
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the trends of such asymmetrical radiation [13—18], a study on
the limitation and physical boundary regardless of scattering
system details is still lacking.

Recently, based on the energy conservation law, i.e., the
total amount of outgoing electromagnetic power by passive
objects should be the same or smaller than that of the incoming
one, we propose a phase diagram to reveal all allowable scat-
tering solutions and energy competitions among absorption
and scattering powers [19]. In this paper, with the power
conservation intrinsically embedded in the phase diagram, we
resolved the inconsistency and related exception solution in
Kerker’s conditions. Moreover, we explore a variety of extreme
limits on directional scattering patterns in the phase diagram,
regardless of the details on the geometric configurations and
material properties. For ZFS, we find that forming a perfect
destructive interference for a pair of scattering coefficients by
electric and magnetic dipoles is forbidden for any noninvisible
system, resulting in the support of nearly zero forward
scattering (NZFS) only. Any absorption loss will destroy the
required out-of-phase conditions, leading intrinsically to a
nonvanished extinction cross section. Nevertheless, for ZBS,
there is no such constraint for the corresponding extinction
cross section. In addition, we also reveal the existence of an
additional intrinsic degree of freedom to support ZBS and
NZFS.

The global and possible solutions for general scattering
patterns also are discussed beyond any scattering events.
The robustness of NZFS on directional scattering patterns is
investigated in the phase diagram with a small variation in
strength or with a small material loss. Moreover, we provide a
set of permeability and permittivity with an additional intrinsic
degree of freedom to support NZFS by employing the inverse
design method with the phase diagram in order to design
functional devices with the required optical response [19]. In
particular, we consider core-shell nanostructures, made of gold
in the core and silicon in the shell, as a target to realize ZBS and
NZFS at optical wavelengths from 450 to 800 nm. By taking
the real material dispersion relation into account, we reveal the
working wavelengths to demonstrate ZBS and NZFS with
the same geometric configuration. With the help of the phase
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diagram, our results not only provide a deeper understanding
on light-scattering patterns, but also offer a universal way to
design functional scatterers for light harvesting, metasurfaces,
nanoantennas, and nanosensors.

II. PHASE DIAGRAM FOR PASSIVE SCATTERERS

We start with light illuminating on an isolated spherical
object by considering a linearly x-polarized electromagnetic
plane wave propagating along the z direction with time evolu-
tion e~ By applying the spherical multipole decomposition,
the scattered field can be represented with two sets of scattering
coefficients a, and b,, which correspond to the TM and
TE modes, respectively. Here, the index n is used to denote the
nth-order spherical harmonic channel, and the corresponding
absorption, scattering, and extinction cross sections can be
derived as follows [19,20]:
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with the wavelength of incident plane-wave A. As a rule of
thumb, the main contribution to these convergent series would
be related to the size parameter, defined as koa, where a
denotes the radius of this spherical object and kg = 2w /A is
environmental wave number.

By the Kirchhoff vector integral and asymptotic analysis,
the extinction cross section can be expressed in terms of the
scattered electric field in the forward direction 6 = 0 [21,22],
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here, in the radiation regime (the observer is far from the
scatterers) the scattered electric field can be approximated as
E, — Ej f (0,¢)e’*" /r with the strength of incident electric-
field Ey. It also is known that Eq. (1) corresponds to the optical
theorem, which implies that any loss, no matter from intrinsic
material loss or scattering radiation, will lead to the extinction,
equivalently to the enhancement of a scattered field in the
forward direction.

Due to the inherently non-negative values for o®* and
o* in passive scatterers, it is obvious that a perfect zero
extinction cross section exists only when both the absorption
and the scattering cross sections vanish. A zero extinction
cross section represents a zero scattering electric field in the
forward direction, implying that the nanoparticle produces no
shadow. This simple argument suggests that for any passive
scattering system only invisible bodies have no shadow, but
one can embed active materials to compensate scattering loss
in order to achieve a zero extinction [8].

To study directional scattering patterns in terms of
spherical harmonic orders we can calculate the differen-
tial scattering cross sections in the forward (0 =0) and
backward (8 = ) directions, i.e., defined as o and &P

abs
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respectively [12,20],

2
A 22|
fw __
= 16x ;:1(2” + D(ay + by) (2)
xz > ?
bw n
= ( ' 2n + D)(by — an) 3)

Here, by following the original concept from Kerker et al.
[1] to eliminate the forward or backward scattered radiations,
we have ZFS or ZBS when o™ = 0 or o®¥ = 0 is satisfied,
respectively. Conducted from Eq. (2), clearly, one can see
that the key point for cancellation in the forward scattering
(o™ = 0) relies on the destructive interferences between a,
and b,, i.e., a, = —b,, corresponding to the same magnitude
and out-of-phase condition in the two scattering coefficients.
As for ZBS (¢°¥ =0), we need to have two equal scat-
tering coefficients in the same spherical harmonic orders,
ie.,a, =b,.

Now, we turn to the phase diagram for passive electro-
magnetic scatterers by applying the phasor representation
to the scattering coefficients, i.e., defining a, = |a,|e’ A&
and b, = |b,|e' b)) As we reported in Ref. [19], the
power conservation intrinsically holds for the absorption cross
sections () > () in each spherical harmonic order, which
corresponds to the colored region shown in Fig. 1(a). In
addition to the absorption cross section, one also can reveal
the contour plot for the supported extinction cross section in
TM or TE modes, i.e., ™) with a normalization factor of
27 /(2n + 1)A. By demonstrating the extinction cross section
with the power conservation intrinsically embedded in the
phase diagram, one can clearly see that the region to support
a zero extinction cross section just corresponds to the invis-
ible condition, i.e., |a,| = |b,| = 0, which illustrates another
manifestation of the optical theorem. This phase diagram not
only reports the detail energy assignments among scattering
and absorption powers, but also indicates the required phase
and magnitude boundaries for all the scattering coefficients.
Below, based on this phase diagram, we investigate the extreme
limits on light-scattering patterns.

To satisfy Kerker’s first and second conditions for extremely
small magnetodielectric spheres (as the dominant terms are
the lowest orders), we need to satisfy the destructive or
constructive interferences between the TM and the TE modes,
ie., ay = —by or a; =b; for ZFS or ZBS, respectively.
Within the quasistatic regime, the corresponding scattering
coefficients for a; and b; can be expressed in terms of the
permittivity € and permeability u [12,19],
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Thus, the conditions a; = —b; or a; = b; lead to the famous
formula € = (4 — u)/Qu+1) or u =€ for ZFS or ZBS,
respectively [23]. However, we want to emphasize that, as
one can see in Fig. 1(a), there exists an additional implicit
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FIG. 1. (a) Phase diagram for the extinction cross section, defined by an amplitude square (|a,|?,|b,|*) and a phase [Arg(a,),Arg(b,)] of
scattering coefficients for passive scatterers. The colored region indicates the allowed solutions with the contour line representing a constant
normalized extinction cross-sectional 271(7:"““"’) /(2n + 1)A? in transverse magnetic (TM) or transverse electric (TE) modes. Three sets of
supported scattering states are marked as (I), (II), and (III) with the corresponding three-dimensional-two-dimensional (3D-2D) radiation
patterns depicted in (b)—(g), respectively. Here, (b) and (c) reveal the ZBS condition; (d) and (e) reveal the nearly ZFS condition as a residue
of scattering contributions can still be found in the enlarged window in the forward direction (see the inset); (f) and (g) reveal a state with the
same extinction cross section as that of (d) and (e) (note the scale) but with losses. The size of the scatterer used in all simulations is the same

by setting a = 1072A.

degree of freedom to satisfy the destructive or constructive
interferences between the TM and the TE modes. Now, to
go one step further, we demonstrate how to utilize the phase
diagram with this additional degree of freedom.

For the implicit parameters in the phase diagram, we
introduce two real numbers «'“? and B®) for the nth-order
spherical harmonic wave in TM and TE modes by rewriting
the scattering coefficients as

1
T i) “
S — )

1 +i(a+iph)

In particular, the parameter B\*?) accounts for the material
lossy effects. Only when B = 0 is the scattering system
made of lossless materials. For the allowed solutions in the
phase diagram, the intrinsic power conservation automatically
sets the range for these parameters, i.e., a,(l“'b) = [—00,00]
and B“? =[-00,0], no matter what kind of geometric
configuration or material composition for scattering systems
are chosen. Also, it should be noted that the border depicted by
the blue-dashed curve in Fig. 1(a) reflects a lossless boundary,
ie., @b =0.

To achieve ZFS, we need to have a; = —b;. It means that
a phase difference 7 and the same magnitude of scattering
coefficients are needed. Nevertheless, as one can see from
the phase diagram in Fig. 1(a), the only supported solutions
are localized at [Arg(a,) = £7/2, |a,| = 0] and [Arg(b,) =
Fr/2, |by| =0]. In terms of the implicit parameters, to
approach ZFS, we need to have « going to o0 and 8 = 0.
Only in these asymptotic cases will the corresponding phase
differences between a; and b; be £x while they have the
same magnitudes. The marked pair (II) corresponds to such

a zero absorption and a zero scattering cross section with the
extinction cross-sectional a,f’“ = 0. In general, the scatterer
can have the same magnitude in the two lowest-order scattering
coefficients |a;| = |b;|, but the required phase difference +m
is impossible for any noninvisible scattering system. In other
words, the ideal ZFS is impossible to be realized from a
passive scatterer. Only nearly zero forward scattering can
be approached. Instead, to achieve ZBS, one easily can find
supported solutions in the phase diagram by looking for the
pair of a; = b;. Moreover, a variety of solution pairs in the
allowable region of the phase diagram can be supported.

With the help of these implicit parameters, one can
generalize the Kerker’s second equation as

_ 3+ (X(koa)3
6((1) - a(koa)3 _ %7 (8)
_ 3
@) = 3 4+ a(koa) ©)

 atka) +3

Here, for the simplicity, we have assumed that the scattering

system is made of lossless materials, i.e., B = {’ =0 and
define of = —ocf = o for the required condition a; = —b;.

By eliminating the implicit parameter o, one can come back
to the original second Kerker’s condition, i.e., € = (4 — u)/
(2 + 1). Based on Egs. (8) and (9), one can expect that
there exist a family of solutions to satisfy the Kerker’s second
condition as the implicit parameter « varies accordingly. In
particular, a perfect ZFS only happens when o« = %00, which
is also the condition for invisible scatterers. On the other hand,
the inconsistency from the Kerker’s second condition to the
optical theorem can easily be interpreted in the phase diagram.
As for the exception solution in the Kerker’s second condition
€ = u = —2 [14], the corresponding implicit parameter is
o = 0. From the phase diagram, we can see that this exception
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solution gives ZBS instead of ZFS. In short, the improper
results conducted from the original Kerker’s second condition
can be resolved from this set of generalized formulas given in
Eqgs. (8) and (9).

Even though a perfect ZFS condition is not allowed, we can
explore the possibility to minimize the forward scattering by
defining the forward scattering efficiency,

O_fw

"= (10)

oseat’

as the ratio between the forward scattering cross section and the
total scattering cross section. For the perfect ZFS, this forward
scattering efficiency goes to zero; whereas a nonzero value
gives a metric to quantify the forward scattering. Then, for the
lossless system B*? = 0, the forward scattering efficiency
has the following form:

3
41 4a?)’

fw

n (1)
Again, only when @ — 200 we have the ZFS as n™ — 0.

To demonstrate the supported directional radiation patterns
in the phase diagram, in Figs. 1(b)-1(g), we illustrate three ex-
treme limits on light scattering: ZBS, NZFS (with a negligible
extinction cross section), and the state with the same extinction
cross section as NZFS but including the material lossy effect.
First, we consider the state with a maximum value in the
extinction cross section, i.e., @; = b; = 1, which is marked as
(D in the red colors in the phase diagram of Fig. 1(a). Both
the electric dipole and the magnetic dipole are at resonance,
resulting in a giant scattering pattern shown in Figs. 1(b) and
I(c) for the 3D and 2D contour plots, respectively. As the
a; = b; condition is satisfied, a clear ZBS pattern can be seen.
By referring to the material properties through Egs. (4) and
(5), we have € = —2.005 and u© = —2.005.

Next, we choose the supported solutions close to the ZFS
condition, i.e., the pair marked as (II) by the black colors
shown in Fig. 1(a). Clearly, from the corresponding radiation
patterns shown in Figs. 1(d) and 1(e), one can see a nearly
ZFS pattern but with an extremely low residue of scattering in
the forward direction with the corresponding extinction cross
section on the order of 107%, see the inset. By Eqs. (4) and (5),
the corresponding materials can be found as € = —2.025 and
u = —1.985. As one can see from Fig. 1(a), there exist a family
of supported solutions with the same value of extinction cross
sections. For example, the solution pair marked as (IIT) by the
purple colors in Fig. 1(a) reveals the scenario with the same
amount of extinction cross section as that from the solution
pair (II), i.e., located on the same contour line but with the
intrinsic material loss. Clearly, the out-of-phase requirement is
not satisfied for the ZFS. As shown in Figs. 1(f) and 1(g), even
though the strengths of the scattered electric field in the forward
direction are the same as that in the solution pair (II), i.e.,
note the scale now is on the order of 107°, the corresponding
radiation patterns in these two states are totally different. The
corresponding material parameters are € = —2.33 + 0.63i and
w = —1.61 4 0.38i for the state marked as pair (III). In terms
of the forward scattering efficiency, for these three parameter
pairs: (I), (I), and (IIT) chosen in Fig. 1(a), the corresponding
values are nf‘” = 3/4, 0.0005, and 0.47, respectively. Again,
even though the last two pairs have the same extinction cross
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sections, there is a big difference in their forward scattering
efficiencies.

III. ROBUSTNESS OF NZFS

With the help of the phase diagram, we also can investigate
the robustness of supported NZFS states by taking the strength
mismatch or material lossy effects into consideration. In
terms of the explicit parameters, we introduce two small
perturbation terms da and 88 into the scattering coeffi-
cient a, i.e., a; =[1 +i(x +8a+i88)]"". In Fig. 2(a),
we illustrate the perturbed solutions in the phase diagram
with the unperturbed one, marked as (I). Specifically, a
perturbation with §oo = 0, §8 = —1, marked as (II), moves
the unperturbed state (« = 20) away from the lossless boarder,
i.e., to the right-hand side; whereas a perturbation with da =
+1, 8 = 0 moves the original state downward or upward
along the lossless trajectory, i.e., to the markers (IIT) or (IV),
respectively.

To illustrate the scattering patterns with small perturbations,
we can expand the required ZFS condition a;+b,=2/ (14a?)
to the first-order terms of S« and §8. That is

2— 88 —ida

a+b = 1+ a2

, (12)
here 88 is a negative value to account for the material losses.
Then, in the auxiliary complex space for a; + b; as shown in
Fig. 2(b), one can see clearly that the amplitude of a; + b,
should be kept as small as possible in order to have an
optimized NZFS. When o = 0 but §8 # 0, Eq. (12) can be
reduced to a; +b; =~ (2 — 88)(1 + «?)~!, which represents
the induced forward scattering due to material loss with an
additional incremental amplitude (—88)(1 + a2)~!. On the
other hand, when 68 =0 but da # 0, Eq. (12) becomes
a+ b ~ Q2 —isa)(1 + a?)~", which gives an extra contri-
bution in the forward scattering by (£8a)(1 4+ o>)~'. With the
increments in amplitude or phase from the perturbed solutions,
we plot the resulting scattering patterns in Fig. 2(c) and its
enlarged ones in Fig. 2(d). As one can see, the material lossy
effect from a nonzero 48 significantly deteriorates the NZFS.
Nevertheless, with §a 7%= 0 but §8 = 0, the NZFS states is more
insensitive to a mismatch in magnitudes only [24]. Again, these
examples indicate that the NZFS state relies not only on the
perfect match in strengths between a; and by, but also much
crucially on the phase difference.

IV. CORE-SHELL PARTICLES

In addition to the isotropic and homogeneous single-layered
spherical scatterers, to realize directional scattering patterns,
such as NZFS or ZBS, we apply our phase diagram for
core-shell particles, which recently are readily accessible
with the experimental advance [25]. To realize such kinds
of a core-shell configuration, one may use the self-sacrificing
template method to synthesize highly uniform nanoparticles
with a tunable thickness [26,27]. In particular, we consider a
core-shell nanoparticle with gold in the core and silicon in the
shell as shown in the inset of Fig. 3. When realistic geometric
size is taken for implementation, we set the outer radius r to
be 64 nm for the whole scatterer and the core radius r, to be
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FIG. 2. (a) An unperturbed NZFS state marked as (I) in the phase diagram is studied with the introduction of a small perturbation of §8 as
marker (II), §o as marker (III), and —8« as marker (IV), respectively. (b) The corresponding auxiliary complex space, defined by the real and
imaginary parts of the scattering coefficient a; + b; for the unperturbed and perturbed states. (c) The resulting 2D scattering patterns for the
unperturbed and perturbed states given in (a) with the enlarged window in the forward direction shown in (d).

12 nm for the inner gold particle [25]. Moreover, for the optical
wavelength region, i.e., A = 450-800 nm, the corresponding
material dispersion data also are taken into consideration from
the experimental data [28].

b

lay| —

o

0.7 =

Scattering coefficients

0
800

A(nm)

FIG. 3. The corresponding spectra for the scattering cross section
(the dashed-blue curve), the forward scattering cross section (the
solid-red curve), the backward scattering cross section (the dashed-
dotted-orange curve), and the absolute values of the two lowest-
order scattering coefficients (|a,| and |b,| in the green and purple
colors, respectively) for a core-shell nanoparticle shown in the inset.
This core-shell particle consists of gold in the core and silicon in
the shell with the corresponding dispersion relation taken from the
experimental data [28].

Based on the dispersion relations for gold and silicon
in Fig. 3 we also depict the corresponding total, forward,
and backward scattering cross sections 0%, ¢, and o®¥
(normalized to A?) in the dashed-blue, solid-red, and dashed-
dotted-orange colors, respectively. Due to the normal mode
resonance from the TM mode, there exists a resonance peak
around 550 nm. In order to give an illustration on the scattering
behavior, in the same plot, the magnitudes of two lowest-order
scattering coefficients |a;| and |b;| also are depicted in the
green and purple colors, respectively. One can see clearly
that, in the long-wavelength limit, i.e., the incident wavelength
A > 600 nm, the electric dipole is always dominant, i.e., |a;| >
|b1|. However, near the resonance region, around A = 550 nm,
the magnetic dipole can overwhelm the electric one, i.e.,
|bi| > |a;|. When we approach the resonance condition by
decreasing the wavelength, there exist two crossing points,
marked as A4 = 583 and Ap = 511 nm in Fig. 3, having the
same magnitude in the two scattering coefficients.

Even though with the help of the spectra in Fig. 3 we can
expect to have exotic light scattering at the two crossing points,
the underlying physical picture to support ZBS or ZFS is not
clear. Instead, to have a better understanding of the scattering
properties for such a core-shell configuration, in Fig. 4(a), we
plot all the trajectories at different wavelengths in the phase
diagram. As the wavelength decreases (from a long wavelength
to a short wavelength), i.e., indicated by the arrows, these two
lowest-order scattering coefficients move within the supported
region. First of all, in the long-wavelength limit, both a; and
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FIG. 4. Locations of the two lowest-order scattering coefficients a; and b, at different wavelengths in the phase diagram, generated from
the data points depicted in Fig. 3. Here, the green and purple dots represent the scattering coefficients for electric and magnetic dipoles a; and
by, respectively. The markers A4 and A highlight the two crossing points marked in Fig. 3, i.e., for the ZBS and NZFS conditions, respectively.
The corresponding 3D-2D scattering patterns are plotted in (b) and (c) for the ZBS condition (marker 1,) and in (d) and (e) for the NFZS

condition (marker A ).

b, are located at the same (left) side in the phase diagram, i.e.,
near the phase —7 /2. Then, as the wavelength decreases, they
meet together at the crossing point A4, indicating the relative
phase between them is 0. Now, we have a; = b;. The resulting
scattering patterns at this crossing point A4 is ZBS as clearly
demonstrated in Figs. 4(b) and 4(c) for the 3D and 2D plots,
respectively.

On the other hand, due to the magnetic dipole resonance, the
trajectory for the scattering coefficient b, should pass through
the center [Arg(b;) = 0] in the phase diagram. However, for
the scattering coefficient a;, it would stay on the same (left)
side as long as the electric dipole resonance is not excited.
Then, we have the possibility to generate the second crossing
point at Ap at which the scattering coefficients a; and b;
form a complex conjugated pair in the phase diagram. As
we discussed above, now we have |a;| = |b;[, but the phase
difference is not large enough to meet the out-of-phase shift.
The resulting radiation pattern can be expected to be a NZFS
only as shown in Figs. 4(d) and 4(e). In this practical example,
we have the forward scattering efficiency n™ = 0.15.

With the core-shell nanoparticle illustrated above, we
demonstrate a direct interpretation of the directional scat-
tering patterns through the supported trajectories in the
phase diagram. In particular, by varying the incident light
wavelength, we predict having a significant change in the
directional scattering patterns, i.e., from ZBS to NZFS with
a single configuration. Although our discussion is limited
only to spherical structures, the concept and approach here
can be applied easily to other nonspherical geometries. In
addition to the lowest orders, one also can take higher-order
spherical harmonic channels into consideration as a general
extension. Moreover, we should stress that the origin of our

phase diagram comes from the plane-wave illumination on
a spherical structure of the scattering obstacle. For other
wave-front illuminations or different structures, the magnetic
quantum number m should need to be considered. However,
the multipole expansion is independent of the type in incident
excitations. That is, any incident field can be decomposed into
a series of multipoles. Different excitations will be described
by different series. But, each multipole contribution will be
exactly the same, regardless of the overall series.

V. CONCLUSION

To summarize, with the supported solutions in the phase
diagram, we revisit Kerker’s first and second conditions on the
ZBS and ZFS. In addition to the explanations on the scattering
coefficients, we give a clear physical picture on the physical
bounds for the scattering distributions. The known problems
with the inconsistency and related exception solutions in the
original Kerker’s second condition can be resolved by means
of the phase diagram. We also reveal that there exist a set
of implicit parameters (o« and B) to compose the scattering
coefficients and derive a generalized Kerker’s condition. In
the phase diagram, a perfect ZFS requires the asymptotic
conditions as the implicit parameter o goes to £o0o. To be
consistent with the optical theorem, only NZFS can be realized
for passive electromagnetic scatterers with a finite value of
the implicit parameter «. The robustness of NZFS also is
investigated in the phase diagram with a small variation in
the scattering strength or with material losses. To implement
NZFS and ZBS, a core-shell nanoparticle is proposed with
the real material dispersion relation taken into consideration.
Through the supported trajectories in the phase diagram, we
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predict a change from ZBS to NZFS in the scattering patterns
with the same geometric configuration but just decreasing the
incident wavelength in the optical domain. With the advances
in nanoparticle syntheses, these extreme limits on directional
scattering readily can promote the designs on nanodevices.
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