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For a bipartite state with equal local dimension d, we prove that one can obtain work gain under Landauer’s
erasure process on one party in the identically and independently distributed limit when the corresponding
fully entangled fraction is larger than 5. By processing a given state to the maximally mixed state, we give an
approximation for the largest extractable work with an error in the energy scale, which becomes negligible in
the large system limit. As a step to link quantum thermodynamics and quantum nonlocality, we also provide a
simple picture to approximate the optimal work extraction and suggest a potential thermodynamic interpretation

of the fully entangled fraction for isotropic states.
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I. INTRODUCTION

Quantum thermodynamics and quantum nonlocality share
similar capacity to tell quantum and classical regimes apart.
For quantum nonlocality, we have the famous Einstein-
Podolsky-Rosen (EPR) paradox [1] and Bell’s inequality [2]
to illustrate the bizarre nature of quantum theory. On the other
hand, for quantum thermodynamics, a multitude of intriguing
phenomena related to various definitions of work have been
addressed [3]. Examples such as Landauer’s principle [4,5],
different scenarios on work extraction [6-8], the minimal
work cost of running different processes such as a completely
positive trace-preserving map (CPTPM) [9,10], or an erasure
process [11], and other related results [12—18] certify the
importance in this direction.

Even though the awareness of the relations between work
and entanglement [13], coherence [19,20], or other quantum
correlations [14,16,21] has already been studied in the lit-
erature, a quantitative connection to nonlocal properties such
as quantum nonlocality [22], quantum steerability [23,24], and
the usefulness of teleportation [25-28] still remains as an open
question deserving further study. To this end, we adapt a well-
known quantity called fully entangled fraction (FEF) [27,28],
which acts as a useful measurement in characterizing different
nonlocal properties [22,29-32]. In this work, we try to bridge
quantum thermodynamics and quantum nonlocality together,
by relating work gain under different processes to FEF.

With the help of FEF, for a given bipartite quantum state p
acting on C? @ C¢, we derive an inequality to conclude that
in the identically and independently distributed (iid) limit, it is
always possible to have work gain (i.e., negative work cost) of
an erasure process on one party of p, provided that p has a FEF
larger than 5. This result gives an alternative interpretation for
every state useful for teleportation [25,27], which is equivalent
to enabling work gain under the local erasure process. For a
specified temperature 7', we define work extraction to be a
process mapping the initial state with a fully degenerate system
Hamiltonian to the final Gibbs state in 7 with the Hamiltonian
equal to the initial one. With some prerequisites, we obtain an
approximation for the largest extractable work, up to an error in
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the energy scale which can be dropped when the system is large
enough. This approximation not only provides a clear strategy
for work extraction, which consists of two local operations
and classical communications (LOCCs) plus one local erasure
process, but also suggests we interpret the FEF for isotropic
states [27] as a concept equivalent to the minimal work cost of
the erasure process on one party.

This paper is structured as follows. The notations used and
the underline scenario to define the erasure process and the
work extraction are described in Sec. II. Then, in Sec. III,
the first main result (Theorem 1) is illustrated and proved,
which gives an inequality linking the FEF and the work gain
of the local erasure process. The saturation for this inequality
is discussed in Sec. IV, as a corollary of the approximation of
the optimal extractable work (Theorem 2). Furthermore, we
apply this result to isotropic states and arbitrary pure states in
the remaining part of Sec. IV, where the former suggests to us
a thermodynamic interpretation of the FEF and the latter sug-
gests a nearly local protocol to extract the maximal work of an
arbitrary pure state. Finally, in Sec. V we give the conclusion.

II. PRELIMINARY NOTIONS

Throughout this paper, we only consider quantum states
p acting on a bipartite system, C? ® C¢, with equal local
dimension d = 2! for some natural number / € N. For such
a system, we call the first party “Alice” and the second party
“Bob.” The collection of all quantum states acting on this
bipartite system is denoted as £(C? @ C¢). The conditional
von Neumann entropies (see, for example, Ref. [33]) of a given
state p € L(C? ® C?) are

S(A|B), := S(p) — S(pB),

S(B|A), := S(p) — S(pa), (D
where S(p) := —tr(p log, p) is the von Neumann entropy of
the quantum state p and pa := trg(p) [pp := tra(p)] is the
local state on Alice’s (Bob’s) side.

The FEF [27,28] of a given state p € £L(C! ® C?) is
defined by

F(p) = r?\l?)x(W|p|W), 2
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where the maximization is taken over all maximally entangled
states |W) € C¢ @ C¢. It is well known that the FEF has
been successfully applied to characterize different nonlocal
properties. For instance, a quantum state p € £(C¢ ® C9) is
useful for the standard teleportation if and only if F(p) > 5
[27]; while p is k-copy nonlocal (and hence k-copy steerable) if
F(p) > 5 [30]. Sufficient conditions for quantum steerability
can also be given by the FEF [31,32]. Therefore, if one is
able to link the FEF with quantum thermodynamics, it can be
a good starting point for bridging quantum nonlocality and
quantum thermodynamics.

For a given state p € £(C? ®@ C?), we want to consider
extractable work from the information content of p. More
precisely, we tend to define work extraction by asking the
following: how much work can be extracted from p by
processing it to the maximally mixed state d_272 ? The reason to
adapt this definition is because we expect the maximally mixed
state to contain the least useful information content. Therefore
processing p to it should be a natural way to obtain the optimal
amount of work from the useful information possessed
by p.

To study work extraction and other processes, rigorously,
we need to specify our framework, which is inspired by
Ref. [11]. Let us consider that the system S = C? @ C?
couples to an environment E, so that SQ E is a closed
system with only unitary time evolution. We require the
initial system Hamiltonian to be fully degenerate. This means
any computational basis will be an energy eigenbasis; in
particular, we are allowed to choose the computational basis
in the form {|n;) ® |n2) @ --- ® |ny) | ny,n2, ...,n; € {0,1}},
where {|0),]1)} is a single qubit computational basis. The
environment consists of two parts: aheat bath Bz, in a finite and
positive temperature 7', and an observer O. We further assume
the observer possesses a subsystem, called a battery, which is
assumed to be the perfect energy storage to store or withdraw
energy without loss. The battery is also assumed to be able to
generate energy in the form of work. For example, it can be a
collection of work qubits [6] or a suspended weight that will
be raised or lowered [7,12]. In this sense, if energy is extracted
from the system by the observer and stored in the battery, one
can output the same amount of work from the battery. Theoret-
ically and ideally, it is in this sense that we talk about “work.”

With the above setting, we can now consider the process that
may help us to draw work from the system. For this purpose,
we introduce the allowed actions for the observer O to apply,
which amounts to the observer’s abilities to manipulate the
system.

(a) Raising or lowering the energy level. This action allows
the observer to raise or lower the energy level of the system
(e.g., by adjusting the magnetic field), which is a crucial
action for work extraction. If the system is at an energy level
n and the observer changes the corresponding energy from
E, to E;, we define the work gain (for the observer) to be
E, — E, [11]. Note that we call it work gain based on the
assumption of the existence of the ideal battery. This definition
can be generalized to arbitrary states p € £(C? ® C?) by
tr[p(H' — H)], where H is the initial system Hamiltonian and
H' is the final Hamiltonian after this action, i.e., raising or
lowering manipulation. We use Ag,, to denote the set of all
actions of this type.
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(b) Thermalization. Within this action, the observer will
make (part of) the system couple to the heat bath B to achieve
thermalization, and then the system will decouple from By at
the end of this action. This amounts to running some CPTPMs
on the system, which is mainly used to make the system go
to the Gibbs state. Although a CPTPM does need work cost
[10], we assume that this cost is covered by the heat bath rather
than the observer. Hence, we assume no energy change of the
observer in this action. We use A7 to denote the set of all
actions of this type with temperature 7.

(c) Unitary operations. This action includes mappings in
the form p — f vy UPU  PydU for some probability density
function Py over the unitary group U(d?). Also, we allow
the observer to select specific results and abandon the rest,
resulting in nonzero failure probability. Note that unlike the
actions of thermalization, this action needs work cost from the
observer [10]. In the case of negative work cost, we define it
to be work gain (upon success) given the existence of the ideal
battery. We use Ay to denote the set of all actions of this type.

Apart from the actions of unitary operations, we also allow
the following source of probabilistic nature, which is a special
action for the observer:

(d) § approximation. Within this action, the observer is
allowed to approximate the original input state by another
state which is § closed to it (a state p is & closed to another
state o if their trace distance [9] is upper bounded by 4, i.e.,
%H o — o1 < §). This conceptual action has no real effect on
the state, and it is introduced so that in our framework one can
define allowed processes rigorously and completely. Note that
this step will result in nonzero failure probability. We use .44
to denote the set of all actions with § precision of this type.

Now, we are in a position to define process in our
framework: for a given state p € £(C¢ ® C?), we define an
allowed process for p, denoted by P,,, to be a finite sequence of
actions, P, = {An}r’lv=1 C Arj U A7 U Ay U A;, such that
its behavior on the system can be mathematically written as
AyoAy_jo---0 A}, where A is acting on p with the initial
system Hamiltonian H (fully degenerate) and Ay will output
a final state with the final system Hamiltonian being equal to
the original one, i.e., H. Note that due to this definition, the
observer can apply one and only one action at one time. To
illustrate our idea, let us consider the proof of Theorem 1.1
in del Rio ef al. [11] as an example. In their proof, in order
to construct an erasure process on the given state p, they first
choose a subsystem which is § closed to a maximally entangled
pure state | W), and then they apply work extraction “for |W)”
on the given system. The work extraction they use for |W)
consists of actions in Ag,; U Ar only (see Fig. 4 in Ref. [11]).
In our framework, such a process can therefore be written as
Pp = {An};i\]:]’ where A] € A5 and {A,1}’]1V=2 C -AR/L U.AT.
As mentioned previously, the action of § approximation
results in a probabilistic nature. This can be seen by the
failure probability for the above process, which is less than &
as proved by Supplementary Lemma IV.3 in Ref. [11].

Now, we define W4(p) to be the work gain for an action
A on p upon success. Following this definition, we can define
the work gain of an allowed process P, = {A,,}f:’zl, denoted
by W(P,), to be W(P,) := Zflv:] Wy, (p), upon the success
of all the involved actions. This also explains why we define
an allowed process to be a chain of actions rather than a single

012107-2



WORK EXTRACTION AND FULLY ENTANGLED FRACTION

mapping: if one defines a process to be a mapping, it may be
ill-defined physically: there may be different chains of actions
with different net work gains resulting in the same mapping,
which is, however, not the physical property that we expect.

III. LOCAL ERASURE PROCESS AND FULLY
ENTANGLED FRACTION

Consider a given quantum state p € £(C? ® C¢). Within
our framework introduced in Sec. II, we say PE”A is a local
(Landauer’s) erasure process for p on Alice’s side if (i)
PEIA = Piyyp)» Where [¢) (@] is a purification of p (and the
additional space needed for the purification is assumed to be
included in the space of the observer), and (ii) P4 maps
|p) (D] > 10)(0] @ tra|p)(¢], i.e., the state outside Alice’s
local system will be preserved. Here, we use the notation
10) (0] := (]0)(0[)®. This shows why we call it a local erasure
process. Also, we only consider the minimal deterministic
average work cost in the iid limit of erasure process defined as
follows [11] (note that we have a minus sign here because we
always reserve the positive value for work gain):

o0

— Wgi(p) := inf {w|3{P§;LA}k=1 s.t.

Jlim P[-W (P < kw] =1}, 3)

where P[—W(P) < x] is the probability for the process P
to achieve work cost —W(P) no greater than x (recall the
probabilistic nature of allowed actions). To understand the
meaning of this definition, note that only the regime k£ > 1 will
be important. Hence, — Wg;(p)k is the minimal work cost that
can be achieved almost with certainty for any large enough «,
and the probability of failure will go to zero when k — oo. This
justifies the interpretation of minimal deferministic average
work cost in the iid limit. From Ref. [11], we have the following
upper bounds:

— Wer(p) < S(A|B)pkpT In2. “4)

The remarkable consequence of the above inequality is the
existence of the negative work cost of the local erasure
process for some entangled states [11], which also implies
that Wg(p) > 0 serves as an entanglement witness. However,
how strong the entanglement needs to be in order to have work
gain under the local erasure process is still unknown. This is
one example of questions that can be answered by our first
main result, which is a direct consequence of the following
lemma, whose proof can be found in Appendix A:
Lemma 1.1f F(p) > 1, then

S(A[B), < —log, F(p)d. 3)
Combining Eq. (4) and Lemma 1, we obtain our first main
result:
Theorem 1.1f F(p) > 1. then
Wer(p) = kgT InF(p)d. (6)

In other words, states with a FEF larger than % enable work
gain under the local erasure process.
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A. Theorem 1 and teleportation

Several remarks can be made accordingly. As the first one,
we recall the famous result developed by Horodecki et al. [27]
that a given state p € £(C? ® C?) is useful for teleportation
if and only if F(p) > %. Together with Theorem 1, one learns
that a state p € L(C? ® C¢) admits deterministic work gain
in the iid limit under the local erasure process if it is useful
for teleportation. This build a simple but quantitative link
between the erasure process and the teleportation power. Also,
Ref. [11] shows that Wg.(p) > 0 is a sufficient condition of
entanglement. Via Theorem 1, one is able to partially address
the converse—we learn that F(p) > 5 is a sufficient condition
of Wg(p) > 0. This means when the entanglement is strong
enough (in the sense that FEF > %), there exists a local erasure
process inducing work gain.

B. Theorem 1 and nonlocal properties

As another remark, Theorem 1 can be used to establish a
sufficient condition of locality and nonsteerability for a certain
class of quantum states with FEF > }l To see this, we note
that Theorem 1 implies the following upper bound on the FEF
of the given state p with F(p) > é:

1 e

.7:(,0)< Ee kT

(7

As an example, consider the isotropic state [27] defined by
I
Piso(P) = pI¥ WY/ |+ (1 — p)ﬁ, ®)

where |\Ild+) = \/Lg Z?: lii) is the generalized singlet and
p € [—ﬁ,l] due to the positivity of a quantum state.
As a direct corollary, since pjs, is entangled if and only
if F(piso) > % [22], Theorem 1 implies pi, admits work
gain under the local erasure process if and only if piso is
entangled. For other nonlocal correlations, we make use of
the well-known property of isotropic states: there exist many
thresholds for different nonlocal properties [22]. For instance,
there exist Fiuv, Fpg, and Frys such that pi, is local
under general positive operator-valued measures (POVMs) if
F(piso) < Fruv [22,34]; piso is unsteerable under projective

POVMs if and only if F(piso) < Fifyg = 2L where
H, = Zleﬁ [24], and p;s, is unsteerable under general
POVMs if F(piso) < Fius = Pp(1 — 2) + =, where jy :=
3=1(1 — 1)4 [34]. Applying Eq. (7) on pis, with FEF > 1,
we learn that it is local if

We(piso) < kpT In Fruvd; 9)
it is unsteerable under general POVMs if
We(pro) < kaT In [m (d - é) + H (10)
it is unsteerable under projective POVMs if
Wiy < kT n T 02 (an

Because there is a hierarchy consisting of different thresh-
olds for the FEF of isotropic states, one may wonder whether
Eq. (7) can map this hierarchy onto the one consisting of
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different erasure work costs. This can be achieved if the upper
bound in Eq. (7) is saturated by isotropic states. We come back
to this issue in Sec. [V A.

IV. WORK EXTRACTION PROCESS AND FULLY
ENTANGLED FRACTION

In this section, we want to study the relation between
work extraction and the fully entangled fraction. Before
proceeding, let us first define the former. Consider a given
state p € L(C? ® C?). Wesay P is awork extraction process

for p if it is an allowed process having }—2 as the final state.
Note that the final Hamiltonian is also fully degenerate in our
formalism, which means that the maximally mixed state equals
the Gibbs state in the given temperature. Due to this definition,
we define the largest deterministic extractable work in the iid
limit for p as
Wroal(p) = sup {w|3{73¥k};il s.t.
: w
lim P[W (Pje) > kw] = 1}. (12)

Just like the definition of erasure work cost, Wry1(0) serves as
the maximal work gain from p with certainty in the iid limit.
This definition should be an answer to our initial question in the
iid limit, i.e., how much work can be extracted by processing
p to dlz?

As a direct observation from Eq. (4), since the composition
of processes P(%) ok © Pfgk is a work extraction process, we
conclude that (see Appendix C for the proof)

Wrowi(p) = kpT Ind* — S(p)kpT In2. (13)

Before stating the main result, we need to introduce an
estimate done by Dahlsten et al. [12]. Define an e-compression
action for p to be an action of unitary operations mapping
as p > UpUT such that UpU' is 2¢ close to a state of
the form o’ ® ) (|, with success probability Pyyccess =
1 —2¢ [35]. Then the process adapted by Ref. [12] is
given by {A,}_,, where A; is an e-compression action and
{A,,},’;’:2 amounts to a work extraction process on |[) (Y|
with work gain kT Indy,, where dy, is the dimension of the
local system |{)(1|. We call them compression-extraction
processes and use the notation P; to denote such processes
with Pyyecess = 1 — 2€. Then Theorem 2 in Ref. [12] states
that if the extractable work by a compression-extraction
process of a given bipartite state p € £L(C? ® C?) is lower
bounded by kzT Ind? — [HSin(p) +3In€elkpgT In2, then we
have Pgccess < 2€. Here Hg; (o) is the smooth min-entropy
of p, whose definition can be found in Eq. (D3) (we refer the
readers to Refs. [12,33] and references therein for the detail).

This means whenever one is able to choose some P7 “to
extract Wroi(p) (therefore with Pgyccess = 2€), Theorem 2
in Ref. [12] becomes an upper bound on it: Wrya(p) <
kgT Ind?* — [Hii(0) +3InelkpT In2. With Lemma 1 in
hand, we are now able to estimate Wry () in terms of FEF and
conditional von Neumann entropy under the above conditions.
[We refer the reader to Appendix D for the proof; also, we
adapt the notation Spin(0) := min{S(pa); S(os)}.]

Theorem 2. Given 0 < € < % and §. := —31Ine, if (i)

1_
F(p) > 1, (ii) there exists P; “ which can extract Wrotal(0),
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W (p) [l—S(pB)lkpT In2

p=—>10)(0| ® ps 0)(0] ® 2
T~ _ kpTInd
Wrrotal (p) T -
T s 1
a2

FIG. 1. Schematic interpretation of Eq. (14). Assume Syin(0) =
S(pp) without a loss of generality. In this diagram, via an optimal
local erasure process in the iid limit on Alice’s side (the upper-left
arrow), a work extraction on Bob’s side (the upper-right arrow), and
a work extraction on Alice’s side (the downward arrow), Wryi(0) is
extracted (the dashed arrow), up to 8.kz7 In2.

and (iii) log, [|plloe = 10g, F(0)d — Smin(p). then
Wrotat(p) = kpT Ind” — Smin(p)kT In2 + Wer(p)  (14)

and
Wer(p) =~ kT In F(p)d, 15)

up to an error of 6.kpT In 2.

As a remark, Eq. (14) provides a picture (see Fig. 1) of an
approximately optimal global deterministic work extraction
in the iid limit. Note that the above approximation will be
faithful if §.kpT In2 < kgT Ind, i.e., if §. < [, where [ is the
number of qubits in a single party (d = 2'). In other words,
8¢kpT In 2, which is the best resolution for energy in this case,
will be an irrelevant scale. Theorem 2 can be regarded as an
approximately sufficient condition of the tightness of Theorem
1, and thus Eq. (4) and Lemma 1. In particular, approximate
saturation for Lemma 1 together with condition (3) in the above
theorem implies the following corollary:

S(p) = —log, [|ploo- (16)

up to an error of .

To illustrate the applications of Theorem 2, let us compute
some examples. In particular, what we want is a thermody-
namic interpretation of the FEF for certain quantum states.

Due to later consideration, let us define A(p):=
log, [l pllee — [log, F(0)d — Smin(p)]. The following subsec-
tions hold for € values satisfying Theorem 2.

A. Theorem 2 and isotropic states

From Eq. (8), one can see that A[pio(p)] =0 for all p
[to prove this, it suffices to note that F(pis0) = || Pisolleo and
Smin(piso) = log, d]. This means for isotropic states with FEF

1
. . 5 —€ .
> %, if there exists P,, which can extract Wrowi(piso),

then WTotal(piso) ~ kBT Ind + WEr(piso) and WEr(piso) ~
kpT In F(piso)d up to an energy scale of §.kg T In 2. In particu-
lar, the latter suggests a possible thermodynamic interpretation
of the FEF for isotropic states—up to §.kpT In2; the FEF of
isotropic states is a concept equivalent to the minimal deter-
ministic work cost in the iid limit of the local erasure process.

Also note that Wg(piso) & kT In F(piso)d builds an ap-
proximate hierarchy according to the result discussed in
Sec. III B from the approximate saturation of Eq. (7); namely,
by substituting different FEF thresholds of nonlocal properties
for isotropic states into the saturation bound, one obtains the
corresponding erasure work cost threshold for isotropic states,
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We: [T(4)]

T
|9) (9| ——T'(¢) 0)(0] @ &
T~ kpTlnd
Wrotal(¢) — ~ __ l
~~a )
2

FIG. 2. Schematic interpretation for the optimal deterministic
work extraction in the iid limit up to §.kp T In 2. The upper-left arrow
is the quantum twirling bringing the input pure state to an isotropic
state, and the remaining processes, i.e., the upper-right and downward
arrows, are just the consequence of Eq. (14) on isotropic states.

up to the energy scale §.kpT In2. For example, if pi5, (With
FEF > %) can achieve the equality in Eq. (7), then Eq. (11)
implies pjg, is steerable under projective measurement if and
only if Wg(piso) < kT In W. Being saturated with a
resolution of é.kp7T In2, we may interpret kg7 In %"d_d
as an approximate energy threshold for isotropic states with a
possible error of §.kpT In2, which will be small when the
system is large enough. Similar argument applies to other
thresholds found in Sec. III B.

B. Theorem 2 and arbitrary pure states

Now let us consider the arbitrary pure states |¢p) € C¢ @ C?
(we adapt the notation ¢ := |¢)(¢|). From Ref. [27], we learn
thatevery state p € £(C¢ ® C%) canbe turned into an isotropic
state via quantum twirling:

T(p) = / (U ®U"p(U @ U dU, (17)
U(d)

where dU is the Haar measure representing uniform distribu-
tion over the unitary group U (d). Now, the minimal work cost
of the quantum twirling on ¢ is given by kg7 In ||T(I1g)||
[10], where Il is the projector onto the support of the state
¢. Because ¢ is pure, we have Iy = ¢. Since | pisolloc =
F(piso) and T(¢) is an isotropic state, the minimal work
cost of quantum twirling is kg T In [T (¢)]. By assuming the

1
existence of P;(|;><¢|), which can extract Wrowi [T (|¢) (¢])], we
use the result for the isotropic state to conclude the following
. . . . 1 .
approximation for pure states achieving F[7 (¢)] > ;:

Wrow(¢) ~ —kpT In F[T ($)] + kg T In F[T(¢)]d*
= kzT Ind?, (18)

up to the precision of §ckgT In2. This is the value predicted
by Landauer’s principle [5,11,16] (note that, however, this is
still an approximation because the result for isotropic states is
not exact). See Fig. 2 for the schematic interpretation.

V. CONCLUSION

In this work, we try to connect quantum thermodynamics
and quantum nonlocality. Consider a given state p € £(C? ®
C%) with dimension d = 2/ with/ € N, we prove an inequality
which shows that p can induce work gain under the local
erasure process deterministic in the iid limit if F(p), its fully
entangled fraction (FEF), is larger than , thereby connecting
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work gain under the erasure process to the usefulness of
quantum teleportation [27].

By considering work extraction under temperature 7 as
a process mapping the initial state p with a fully degenerate
Hamiltonian to the Gibbs state in 7' with the same Hamiltonian
(therefore %), we derive an approximation for the optimal
deterministic extractable work in the iid limit, with three pre-
requisites and an error in the energy scale, which is small in the
large system limit. The prerequisites of this approximation also
serve as a sufficient condition of the approximate saturation
of our first main result. Moreover, a simple picture of the
optimal work extraction process deterministic in the iid limit
is proposed by this approximation. When it is applicable to the
isotropic state, we further obtain a possible thermodynamic
interpretation of the FEF: up to an error in the energy scale,
the FEF of isotropic states is conceptually equivalent to the
minimal work cost (deterministic in the iid limit) of the
local erasure process. When we focus on pure states, an
improved version of the approximation can be derived. The
results we obtained can be a starting point of future research
on the interface of quantum thermodynamics and quantum
nonlocality.
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APPENDIX A: PROOF OF LEMMA 1
Proof. From Ref. [36], we learn that

S(A|IB), = lim 11m - A®* | BER) o

mm(

1
:=lim lim —  sup  Hpin(A®|B®Y),, (A1)

€7 0k=>00 K |1y pok||<e

where ||p — o || := +/2 — 2F(p,0) is the Bures distance [36]
(F 1is the fidelity defined in Ref. [9]). According to Theorem 2
in Ref. [36], we have

Hyin(A|B), = —log,[Q(A|B),d], (A2)

with
Q(A|B), := mgax(‘pjl(h ® EXP)IVY), (A3)
where &£ :L(C?% — L£(C?) is a CPTPM. Substituting

the above form, using Lemma 3, and noting the fact
Q(A®K|B®K) jor > F(p®F) = F(p)*, we conclude

o1
S(A|B), = — lim lim E log,[ Q(A®¥| B®X) jerd*]
— lim lim 10g2 [F(p)d]* = —log, F(p)d.
(A4)
[ ]
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APPENDIX B: NOTES ON THE Q FUNCTION

To start with, let us define the Hilbert-Schmidt norm on an
operator X as the norm induced by the Hilbert-Schmidt inner
product [9]:

1X1l> := V(X1 X). (BI)

First, we prove the following lemma.

Lemma 2. Q(A|B), is continuous on p € £(C? ® C?) with
the Hilbert-Schmidt norm.

Proof. Given ||p — o, < €, there exists a CPTPM &,
achieving [we choose Q(A|B), = (¥ |(Ix ® E)(p)|V;)
when Q(A[B), > Q(A|B), and Q(A|B), = (¥} |(Ix ®
E)(0)|W]) when Q(A|B), < Q(A|B),]

|Q(A[B), — Q(A|B),|
< WS ITA ® ENPIWS) — (¥ (T ® EN0)W,)]
= (W7 1([a ® E)p — )Y,
= Jtl(Ta ® ENNY )W, D(p — 0)]]

1 ,
= Enrw(e! )p — o)l (B2)

where J is the Choi-Jamiotkowski isomorphism [37]. Now,
we use the following generalized Cauchy-Schwarz inequality
of operators proved by Bhatia, which holds for arbitrary
operators X and Y and arbitrary unitarily invariant norms || - ||
[38,39]:

1
XY 1> < IX1yy, (B3)

where a norm || - || is unitarily invariant if | UXV| = || X||
holds for all operators X and unitary operators U and V. Since
| - |2 is unitarily invariant, direct computation shows that

1
IXI20Y N2 > 11XTY]2113
—u[|XTy|2 11Xy 2] = wixTy]. (B4

This implies (note that the inequality |tr(A)| < tr|A| holds for
any operator A')

1 , 1 )
Enrw(s!)(p — o)l < gtrlj(fl)(p — o)

1 . 1 €
< = &l - < =llp — -. B5
dIIJ( Dll2llo =l dllp ol < 7 (B5)
Note that || 7 (56T )2 < 1since J (S;r ) is a normalized state due
to the Choi-Jamiotkowski isomorphism theorem [37]. This
completes the proof. |
Now, we are in position to prove the following result.

"To prove |tr(A)| < tr|A| for an arbitrary operator A, we first choose
the polar decomposition [9] as A = UJ, where U is unitary and
J is positive. Then one can see it remains to prove [tr(UJ)| <
tr(J), where J is nothing but |A|. To show this, let us write the
spectrum decomposition [9] as J =Y, a,|¢,) (¢, where {|$,)} is
an orthonormal basis of the given state space and a, > 0 Vn. Then
direct computation shows [tr(U J)| = | Y, . (& |U by ) (B lbm)| =
[2°,(alUlgn)bul < 32, [(alU )by < 32, by = tr(J).
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Lemma 3. If F(p) > 1, then for all k € N and € € (0,1),
there exists 0 < o(¢) < log, (13% + 1) such that
inf log, O(A®¥| B®F), =log, Q(A®¥|B®*) e +o0(e).
In—p®llp<e
(B6)
Proof. Consider a fixed k value and a fixed € € (0,1). We
first note the relation ||p — o> < 2|lp — o||5.2 This means

In — p® 2 < 2€ if g — p* || < €. When |ln — p®||p <e,
Lemma 2 implies

1 2e

QAT B o — QA% |BE), | < 210 =il < —.
(B7)
For p with F(p) > 1, the function Q(A®|B®K) e only
takes values from the interval(%,l].Henee, iflx —y| < fl—f for
some x € (de,l] andy € (1;#,1] (assume x > y without loss
of generality), we have |log, x —log, y| < log, (dzk—fy +1) <
logz(lz—e26 + 1). Substituting x = Q(A®|B®),ec and y =
Q(A®*|B®%), and considering ||y — p®¥||5 < €, we conclude

inf  log, Q(A®*|B®),

lln—p®|lp<e

= log, Q(A®¥|B®") e — o(e), (B8)
with  the  function o(e) satisfying 0 < o(e) <
log, (25 + 1. O

APPENDIX C: PROOF OF EQ. (13)

Proof. First, we consider a fixed € € (0,1). For a
given k, we choose A =+/k for p® in Supplementary
Corollary 1.2 in Ref. [11], where their S amounts to
our system S and Q is now a trivial system (with
dimension 1) because we want to study work extraction
on S. Then this corollary implies the existence of a work
extraction process PZ‘Q,( such that %W(P%k) > kpT Ind?* —

[%H;lax(p‘g’k) + \/L;]kBT In2, except with a probability of

at most 4/ 2% 4 12¢. Here we use the notation HS . (n) =

Hy «(S1Q), for the e-smooth max-entropy of S conditional
on Q [11]. Using the fact limy_, %Hr;ax(,o@k) =S(p)Yee
(0,1), we conclude lim;_, o P{%W(P)ﬁék) > kpT Ind* —

S(p)kgT In2 — §} =1 — +/12¢ for all small enough values
6 > 0. In other words, this means for every § > 0, there
exists ks such that P{%W(P/V)gk) > kT Ind?* — S(p)ksT

In2—-6}>1—+/12¢e =8 VkZ>ks. For a fixed 0§,

*Note that le—cl2<llp =0l <2¢1=F(p,0)* <
221 = F(p,o)l =2|lp —olls [9], where |[A];:=tr|A| is
the trace norm. To see the fact ||p — o ||» < ||p — o |1, we first apply
polar decomposition [9] to write p — o = U J, where U is a unitary
operator and J is a positive operator. Then we have ||p — o, = || /]2
and |lp — o]l = ||/|l;. Choose the spectrum decomposition [9]
as J =Y a,l¢,){$.|, where {|¢,)} is an orthonormal basis and
a, >0 ¥n.One can verify that || /|3 = ¥, a2 < (3, a.)” = 1711},
which proves the desired result.
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we let € > 0 and obtain P{%W(vaék) > kT Ind* —
S(p)kgTIn2 -8} >1—-6 Yk > ks. This implies
kgTInd?> — S(p)kgTIn2 — 8 < Wrg(p) for all 8 > 0.
Letting 6 — 0 will result in the desired inequality. ]

APPENDIX D: PROOF OF THEOREM 2

We first prove the following proposition, which is a
general version of Theorem 2 [recall we define Sy,(p) :=

min {S(pa),S(oB)}].
Proposition 1. Given 0 < € < % and § > 6. := —31Ine.
1_
If () F(p)>1, (i) there exists P; ° which
can extract Wr(p), and (iii)) —68c <log, |pllec —
[log, F(p)d — Smin(p)] < § — 8, then we have

WTotal (;0)

2 [log, F(p)d® — Swmin 5.
kT In2 [log, F(p) (0] <

(D1)

Proof. From Lemma 1, Eq. (13), and Refs. [12,16], we
obtain

kgT Ind® — [HE, (p) +31InelkgT In2

> Wrow(p) = kpT Ind* — S(p)kpT In2

> kpT In F(p)d® — Smin(p)kpT In2, (D2)

where [12]

sup  (—log; [Inllec) = —1log, [[pllec.  (D3)

In—plis<e

Hriun(p) =

PHYSICAL REVIEW A 96, 012107 (2017)

This implies
Wrotat(0)
log, d* +10g, [|pllec — 3Ine > ICBOT‘#
> logy F(p)d® — Smin(p). (D4)
Hence, a sufficient condition for the inequality
Tt) — [log, F(p)d® — Smin()]| < & reads
0 < log, |pllec — [ogy F(p)d — Smin(0)] + 8. <8,  (D3)
where 6. := —31Ine > 0 is the best precision that we may

have, since it is the lower bound of all the allowed § values.
Note that being larger than 0 is necessary to guarantee no
contradiction. |
We are now in position to prove Theorem 2.
Proof. To begin with, note that Wg.(p) > kgT In F(p)d for
state p with F(p) > (1—1 from Theorem 1, and Wryi(p) <
SkpT In2 + kpT In2[log, F(p)d? — Smin(p)] if it is possi-

1
ble to choose P; ~ to extract Wrowal(p) and log, |[pllec =
log, F(p)d — Smin(p) (hence we can choose § ~ §. :=
—31Ine€), which is due to Theorem 2. Then direct computation
shows [choose Syin(p) = S(pp) without loss of generality]

0 < Wrowi(p) — [kgT Ind?* — Spin(0)kpT In2 + We(p)]
SkgTIn2 + kT In F(p)d — Wee(p)

<
< 8kpTIn2 ~ §:kpT In2,

(D6)
where the first inequality follows from the fact thatkz T In d* —
Smin(0)kpT In2 + Wg(p) can be interpreted as the determin-
istic work gain (in the iid limit) of a particular work extraction
process (see Fig. 1), thereby being smaller than the optimal
one, i.e., Wroa(p). This implies, up to the energy scale
S8ckpT In 2, the desired results. |
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