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It turns out that the relation between the von Neumann entropy and the fully entangled fraction (FEF) is more complicated
than we expected, and Lemma 1 in our paper is valid only under special conditions. As state J (E†

ε ) in Eq. (B2) is in general
un-normalized, the proof of Lemma 1 is incomplete. Even though the inequality given in Lemma 1 can still hold for some states,
the absence of Lemma 1 implies that we have to modify our main theorems as Lemma 1 is the core of their proofs. Nevertheless,
we derive the modified Theorem 1, which gives a general fully entangled fraction threshold for achieving averaged positive
erasure work gain in the identically and independently distributed (iid) limit. This modified result also suggests a thermodynamic
interpretation of a fully entangled fraction when one assumes Landauer’s principle for a classical observer [1]. Moreover, the
modified Theorem 2 gives an upper bound on the difference between WTotal that we introduced in the original paper and the
average extractable work in terms of mutual information; in other words, it is a potential tool to estimate the difference of work
extractions between two different frameworks.

COUNTEREXAMPLE OF LEMMA 1 IN THE ORIGINAL PAPER

In general, we have the following inequality for isotropic states: (we define F+ := 〈�+
d |ρiso|�+

d 〉).
Fact 1. Given an isotropic state ρiso ∈ L(Cd ⊗ Cd ), then

S(ρiso) � − log2 F(ρiso), (1)

and the equality holds if and only if F+ = 0, 1
d2 , or 1.

Proof. First, we note that the von Neumann entropy of ρiso can be written as

S(ρiso) = −F+ log2 F+ − (1 − F+) log2

(
1 − F+
d2 − 1

)
. (2)

Then one can see the equality holds when F+ = 1. When F+ ∈ [ 1
d2 ,1), direct computation shows

S(ρiso) + log2 F+ = (1 − F+)

[
log2 F+ − log2

(
1 − F+
d2 − 1

)]

= (1 − F+)

[
log2

(
1

1 − F+
− 1

)
+ log2 (d2 − 1)

]

� (1 − F+)

[
log2

(
1

1 − 1
d2

− 1

)
+ log2 (d2 − 1)

]
= 0. (3)

The equality holds if and only if F+ = 1
d2 . Because F(ρiso) = F+ when F+ � 1

d2 , this proves the statement for F+ ∈ [ 1
d2 ,1].

In the region F+ ∈ [0, 1
d2 ), we have F(ρiso) = 1−F+

d2−1 . Thus, F+ = 0 implies F(ρiso) = 1
d2−1 and S(ρiso) = log2 (d2 − 1), which

achieves the equality. When F+ ∈ (0, 1
d2 ), we have

S(ρiso) + log2 F(ρiso) = −F+ log2
F+

1 − F+
− F+ log2 (d2 − 1). (4)

Define f (x) := −x log2
x

1−x
− x log2 (d2 − 1), then we note that on x ∈ (0, 1

d2 ) one has

∂xf (x) = − log2 x + log2(1 − x) − 1

ln 2

1

1 − x
− log2 (d2 − 1), (5)

∂2
x f (x) = − 1

ln 2

[
1

x
+ 1

1 − x
+ 1

(1 − x)2

]
< 0. (6)

Because ∂xf (x) > 0 when x → 0 and since f (0) = f ( 1
d2 ) = 0, we conclude that f (x) > 0 on (0, 1

d2 ). This completes the
proof. �
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Although this result shows that Lemma 1 in our paper will not hold in general, the inequality of Lemma 1 in our paper still
holds for some quantum states. For example, it holds for |�+

d 〉 and all the product pure states. Let D denote the set of quantum
states satisfying the inequality of Lemma 1 in our paper, then Theorem 1 in our paper is still true for ρ ∈ D. This also means
Theorem 2 in our paper can still work if we replace condition (i) by ρ ∈ D. Hence, Fig. 1 still holds but now only for ρ ∈ D;
also, Secs. IV A and IV B (and thus Fig. 2) are true only for |�+

d 〉.
Based on the counterexample illustrated above, our original results become less general than they were thereby being not

able to obtain the thermodynamic meaning of the FEF. Nevertheless, with the method to be introduced in the following section,
thermodynamic interpretation of the FEF can be obtained; also, although we no longer have WEr(ρiso) ≈ kBT ln F(ρiso)d, the
approach presented here gives us an alternative way to conclude a similar result.

Modification of Theorem 1

In this section, we will prove a result similar to Theorem 1 in our paper.
Modified Theorem 1. Given a quantum state ρ ∈ L(Cd ⊗ Cd ), then we have

WEr(ρ) � g[F(ρ)]kBT ln 2, (7)

where g(x) = log2 d + x log2 x + (1 − x) log2 ( 1−x
d2−1 ) is strictly increasing on [ 1

d2 ,1]. This means ρ can have work gain under a
local erasure process on one party in the iid limit if F(ρ) > FEr := g−1(0).

Proof. First, for a given quantum state ρ ∈ L(Cd ⊗ Cd ), there exists a unitary operator U ∈ U (d) such that

F(ρ) = F(ρ̃) = 〈�+
d |ρ̃|�+

d 〉, (8)

where ρ̃ = (U ⊗ I)ρ(U ⊗ I)†. This meansF[T (ρ̃)] = F+ = F(ρ̃) = F(ρ) where we haveF+ := 〈�+
d |T (ρ̃)|�+

d 〉. Now we note
that

−S(A|B)T (ρ̃) = log2 d − S[T (ρ̃)] = log2 d + F+ log2 F+ + (1 − F+) log2

(
1 − F+
d2 − 1

)
= g(F+) = g[F(ρ)], (9)

where we define g(x) = log2 d + x log2 x + (1 − x) log2 ( 1−x
d2−1 ). One can check that g is a strictly increasing function on x ∈

[ 1
d2 ,1], which means g−1 exists within the interval [− log2 d, log2 d]. Combining with Eq. (4) in our paper, which is obtained

from Ref. [1], we obtain

WEr[T (ρ̃)] � g[F(ρ)]kBT ln 2. (10)

We note that, in the approach of Ref. [2], trace preserving completely positive maps that are unital (i.e., preserving the
identity operator) can be implemented without work cost, which is also the case in our framework. In this sense, we have
WEr(ρ) � WEr[T (ρ̃)] and WTotal(ρ) � WTotal[T (ρ̃)]. Hence, we have the following inequality:

WEr(ρ) � g[F(ρ)]kBT ln 2. (11)

In particular, it means that WEr(ρ) > 0 if g[F(ρ)] > 0, which is true if F(ρ) > g−1(0). �
To see the value of FEr := g−1(0), we consider the simplest case when d = 2. In this two-qubit system, computation shows

that Fd=2
Er ≈ 0.8107, which is much higher than the threshold of usefulness of the standard teleportation 0.5. Asymptotically,

this threshold will approach 0.5 when d → ∞. From here, we also note that, due to this modification, Sec. III A in our paper no
longer holds. One can use the g function to calculate results similar to Sec. III B in our paper. More precisely, an isotropic state
ρiso is local if WEr(ρiso) � g(FLHV)kBT ln 2 [3,4]; it is unsteerable under general positive operator-valued measures (POVMs) if
WEr(ρiso) � g[p̃φ(1 − 1

d2 ) + 1
d2 ]kBT ln 2 with p̃φ := 3d−1

d2−1 (1 − 1
d

)
d

[4]; it is unsteerable under projective POVMs if WEr(ρiso) �
g( Hd+Hdd−d

d2 )kBT ln 2 [5]. For a general input state ρ, we know that it is not useful for the standard teleportation if WEr(ρ) �
g( 1

d
)kBT ln 2 [6].

Thermodynamic meaning of the fully entangled fraction

It turns out that the above result suggests a direct thermodynamic interpretation of the fully entangled fraction. By Supplemental
Lemma I.5. in Ref. [1], Eq. (10) becomes an equality when we assume Landauer’s principle for a classical observer (we refer
the reader to the Supplemental Material of Ref. [1] for its definition), which implies the saturation of modified Theorem 1. This
means the following result:

Corollary 1. Assume Landauer’s principle for a classical observer. For a quantum state ρ ∈ L(Cd ⊗ Cd ), we have

F(ρ) = g−1

[
WEr(ρ)

kBT ln 2

]
. (12)

In other words, by assuming Landauer’s principle for a classical observer, the fully entangled fraction is physically equivalent to
the optimal erasure work gain averaged in the iid limit up to a strictly increasing function g−1 and an energy scale of kBT ln 2.
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We further note that in this case the erasure work gain WEr can be used to witness different nonlocal properties of ρ by using
different FEF thresholds [6,7]. For example, given the correctness of Landauer’s principle for a classical observer, ρ will be
useful for the standard teleportation [6] if WEr(ρ) > g( 1

d
)kBT ln 2; also, there exist fully entangled fraction thresholds FN and

FS [7] such that ρ is nonlocal (steerable) if F(ρ) > FN [F(ρ) > FN], which implies ρ is nonlocal (steerable) if WEr(ρ) >

g(FN)kBT ln 2 [WEr(ρ) > g(FS)kBT ln 2].

Modification of Theorem 2

Similar to Theorem 1, we have to modify the proof of Theorem 2 in our paper. In this section, we provide the following
result. Note that for a given ρ ∈ L(Cd ⊗ Cd ), there exists a unitary operator U ∈ U (d) such that ρ̃ := (U ⊗ I)ρ(U ⊗ I)† with
F(ρ) = F(ρ̃) = 〈�+

d |ρ̃|�+
d 〉. Here, we also define δε := −3 ln ε and see our paper for the definition of P (1/2)−ε

ρ .
Modified Theorem 2. Given a quantum state ρ ∈ L(Cd ⊗ Cd ), if there exists aP (1/2)−ε

ρ with ε ∈ (0, 1
2 ] that can extract WTotal(ρ),

then

0 � WTotal(ρ) − I (A:B)T (ρ̃)kBT ln 2 < {S[T (ρ̃)] + log2 ‖ρ‖∞ + δε}kBT ln 2, (13)

where I (A:B)η := S(ηA) + S(ηB) − S(η) is the quantum mutual information.
Proof. Recall that trace-preserving completely positive maps that are unital can be implemented with zero work cost in our

framework, which implies WTotal(ρ) � WTotal[T (ρ̃)]. Using Eq. (13) in our paper, we have

WTotal(ρ) � WTotal[T (ρ̃)] � kBT ln d2 − S[T (ρ̃)]kBT ln 2 = I (A:B)T (ρ̃)kBT ln 2. (14)

If there exists a P (1/2)−ε
ρ with ε ∈ (0, 1

2 ] which can extract WTotal(ρ), then Ref. [8] implies (δε := −3 ln ε),

WTotal(ρ) < kBT ln d2 − [
Hε

min(ρ) − δε

]
kBT ln 2 � kBT ln d2 + (log2 ‖ρ‖∞ + δε)kBT ln 2. (15)

By combining these two inequalities together we obtain

0 � WTotal(ρ) − I (A:B)T (ρ̃)kBT ln 2 < {S[T (ρ̃)] + log2 ‖ρ‖∞ + δε}kBT ln 2. (16)

The proof is completed. �
By using the relation ‖ρiso‖∞ = F(ρiso) for isotropic states ρiso, we have 0 � WTotal(ρiso) − I (A:B)ρisokBT ln 2 < [S(ρiso) +

log2 F(ρiso) + δε]kBT ln 2. Due to Fact 1 in this Erratum, we have S(ρiso) + log2 F(ρiso) � 0, and the equality holds if and
only if F+ = 0, 1

d2 , or 1. Hence, this quantity is small only when ρiso is very close to the maximally entangled state |�+
d 〉, the

maximally mixed state I
d2 , or the isotropic state with F+ = 0. Due to this property, we will no longer have Figs. 1 and 2 in our

paper as general schematic interpretations. This also means the conclusions given in Secs. IV A and IV B are too general to be
correct due to this modification.

Remark on modified Theorem 2

We note that both theorems in our paper and modified Theorem 2 have a very strong prerequisite: the existence of a compression-
extraction process P (1/2)−ε

ρ , which can extract WTotal(ρ). However, Eq. (14) is always true without this prerequisite, which
helps us to relate WTotal(ρ) to I (A:B)T (ρ̃)kBT ln 2 where the former is a single shot work extraction averaged in the iid limit
and the latter is the average work extraction of the isotropic state T (ρ̃) (one can see this as the average extractable work
by treating the isotropic state as a locally thermal state). Due to this reason, we can write Wmax(η) := I (A:B)ηkBT ln 2 for
a locally thermal state η from now on. We stress that this is an optimal average extractable work, which is by nature quite
different from the work extraction of single shot process WTotal. Hence, an interesting question is how they are related to each
other.

If the above-mentioned prerequisite of modified Theorem 2 is satisfied by a given state ρ, then modified Theorem 2 tells us
that WTotal(ρ) and Wmax[T (ρ)] are approximately the same up to an error of the energy of (S[T (ρ̃)] + log2 ‖ρ‖∞ + δε)-many
qubits. As an example, if the input state is the maximally entangled state |�+

d 〉 (or a pure state that is very close to it), we
have the approximation to be faithful up to an error of the energy of δε-many qubits, which is our old result. This also means
WTotal(|�+

d 〉) and Wmax(|�+
d 〉) can be very similar, even though they are work extractions from two different frameworks. Hence,

modified Theorem 2 can be a potential method to justify how close WTotal and Wmax are, connecting two different work extraction
frameworks together.

Another remark

Finally, we note that there is a typographical error in Eq. (12): It should be k → ∞ rather than k → 1, and Ref. [22] in our
paper should be replaced by Ref. [3] in this Erratum.
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