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Carrying an arbitrarily large amount of information using a single quantum particle
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Theoretically speaking, a photon can travel arbitrarily long before it enters into a detector, resulting in a click.
How much information can a photon carry? We study a bipartite asymmetric “two-way signaling” protocol as
an extension of that proposed by Del Santo and Dakié. Suppose that Alice and Bob are distant from each other
and each of them has an n-bit string. They are tasked to exchange the information of their local n-bit strings with
each other, using only a single photon during the communication. It has been shown that the superposition of
different spatial locations in a Mach-Zehnder (MZ) interferometer enables bipartite local encodings. We show
that, after the travel of a photon through a cascade of n-level MZ interferometers in our protocol, the one of Alice
and Bob whose detector clicks can access the other’s full information of the n-bit string, while the other can gain
one bit of information. That is, the wave-particle duality makes two-way signaling possible, and a single photon
can carry an arbitrarily large (but finite) amount of information.
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I. INTRODUCTION

Communication is a process of sending and receiving
messages from one party to another [1]. More precisely, com-
munication is a physical process with physical information
carriers transmitted without violating any physical principle.
For instance, electromagnetic waves used in wireless com-
munication are governed by Maxwell’s equations in classical
physics. As a consequence of special relativity, faster-than-
light communication is impossible. Also, the unavoidable
energy consumption in Maxwell’s demon and Landauer’s
erasure indicates that information is physical [2], and the link
between thermodynamics and information has potential to
deliver new insights in physics and biology.

The role of information in physics theory has been exten-
sively investigated. For example, it is proposed that quan-
tum theory can be derived and reconstructed from purely
informational principles [3—6]. The effect of the uncertainty
relation in information processing can be stated in terms of
the information content principle [7] and the no-disturbance-
without-uncertainty principle [8]. Therein, a fundamental and
interesting concern is the channel capacity in communication.
According to the no-signaling principle, there is no informa-
tion gain without classical or quantum communication; the
transmission of the message is the cause that increases the
information.

It is well known that, in the dense-coding protocol, two
bits of information can be carried in one qubit with preshared
entanglement [9]. For the receiver to obtain # bits of informa-
tion, at least a total of n qubits have to be exchanged and at
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least n/2 qubits have to be sent from the sender [10-16]. As
a generalization of the no-signaling principle, respected both
in classical and quantum physics, information causality states
that one cannot gain more information than the number of bits
sent via classical communication [17].

Note that the protocols mentioned above are proposed
for one-way communication, and quantum entanglement as
a physical resource is initially distributed between the sender
and receiver.

Photons as flying qubits are usually exploited in quantum
communication.

Given a photon as an information carrier, its particle-
wave duality makes two-way communication possible. Very
recently a variant of the “guess your neighbor’s input” game
[18] was studied by Santo and Daki¢ [19], which we call
the SD game in this paper. They proposed a protocol (SD
protocol) to win the SD game with certainty, while a classical
strategy can win with probability at most 50%. We review
the SD game as follows. Two distant agents Alice and Bob
are given two input bits x, y € {0, 1}, respectively, which are
drawn uniformly at random, and they are asked to output
two bits a, b € {0, 1}, respectively. They win the game if
both of them output a bit that is equal to the other’s input
(i.e., a=y and b =x). A restriction here is that only an
information carrier, classical or quantum, can be manipulated.
Obviously, they cannot win with certainty using simply a
classical information carrier since it can transmit a single bit
of information within a specified time limit. Using a photon,
on the other hand, enables two-way signaling so that they can
win the SD game with certainty [20]. Notably, one of them
can gain one bit of information if no detector clicks.

According to Renninger’s negative result experiment
[21,22] or the bomb-testing problem [23], even if there is no
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FIG. 1. Optical implementation of the SD protocol. The photon
is initially injected into the level-1 MZ interferometer. After traveling
through the first 50 : 50 beam splitter (BS1), the incident photon is
half reflected and half transmitted in a coherent way. Alice and Bob
can locally access the halves depicted in the red solid line and blue
dashed line, respectively. For the local encoding at level 1, Alice
inserts the m-phase modulator (PM A) if x; = 0 and does nothing
if x; = 1; similarly, Bob inserts the -phase modulators (PM B) if
y1 = 0 and does nothing if y; = 1. After the interference of these
two coherent halves at the second 50 : 50 beam splitter (BS2), the
photon enters one of the two detectors [19].

interaction between the quantum object and the measuring de-
vice, one still learns definite knowledge of the quantum state.

The concept of SD protocol is explained as follows, in
terms of the (level 1) optical implementation shown in Fig. 1.
A photon is emitted from a referee source and then injected
into the first beam splitter (BS 1) of a Mach-Zehnder (MZ)
interferometer. Consequently, this single photon is coherently
superposed over two different spatial locations. Hence the
two local agents Alice and Bob can each (i) perform local
operations on the incoming parts of the photon as information
encoding and (ii) access a detector to detect the photon at a
certain time window later. According to (i), Alice and Bob
encode their bits in the phase of the photon before it reaches
the second beam splitter (BS2). With a delicate design, the
parity of the two input bits completely determines the path
of the photon leaving BS2. Consequently, one knows with
certainty which detector will detect this photon while the other
will detect nothing. For example, Alice’s (Bob’s) detector
clicks if x = y (x # y) in the ideal case. Once Alice’s detector
does not receive any photon in a certain time window (no
interaction between the quantum object and the measuring de-
vice), she knows that x # y and outputs bita = x +1 mod 2.
As a result, using the spacial superposition of a single photon,
Alice and Bob can communicate a total of two-bit information
within a specified time window and hence win the game with
certainty. As opposed to this quantum communication, to win
the game with certainty using classical communication, the
time window would have been too short to exchange two
one-way classical communications [19].

In this paper, we characterize the power of a single photon
as an information carrier. Our concerns are twofold: how
much information a single photon can carry, and how much
information an agent can obtain even if an interaction-free
measurement occurs (no photon is detected by the detectors at

hand). We will design a generalized Santo and Daki¢ (GSD)
game and show that using one single photon one can win
the game with certainty and learn a total of (n + 1) bits of
information in an n-level GSD game, while one learns only
n bits of information by classical communication. When 7 is
arbitrarily large, this suggests that a single photon can carry
an arbitrarily large amount of information. We would like to
mention that in a related work [24] Horvat and Dakié¢ showed
that a single particle can be used to communicate simultane-
ously with n parties and achieves the so-called genuine n-way
signaling. Note that a photon as an information carrier here
can be replaced by a quantum particle the coherence of which
is under enough experimental control to exhibit coherence.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the GSD game. The experiment setup
of the n-level circuit is proposed. We characterize and then
optimize the total information gains for Alice and Bob. Sev-
eral specific cases are studied. In Sec. III, we investigate the
physics concerning the information gains. Finally, in Sec. IV
we estimate the performance of the GSD game in the physical
realization.

II. GENERALIZED SD GAME

A. Experimental setup

We consider a GSD game as follows. Alice and Bob are
assigned two independent input strings X = xj---Xx,, y =
y1---yn € {0, 1}", respectively, and they are asked to output
bit strings a =a; ---a, and b = b, - - - b, respectively. They
win the game if (i) one of them can know the other’s input
string and (ii) the other can gain at least one bit of information.
Only a single information carrier is allowed for the communi-
cation task within a specific time window.

Equipped with a single photon in the GSD game, it will be
shown that there is a total of n + 1 bits of information gain
for Alice and Bob as a result of two-way signaling in a time
window t. However, if the information carrier is classical,
they can exchange a total of at most # bits of information in
the same time window.

First consider a two-level circuit as the extension of the SD
protocol, as shown in Fig. 2. The two detectors in Fig. 1 are
replaced by MZ interferometers, followed by four detectors.
One of the four detectors will click according to the parities of
(x1,y1) and (x2, y2). A (k + 1)-level circuit can be constructed
by (i) replacing the detectors in the k-level circuit by the MZ
interferometers, and (ii) putting 2¢*! detectors at the output of
the interferometers. Naturally, an n-level circuit for the GSD
game can be recursively extended.

Our protocol for the GSD game is explained as follows
with the experimental setup shown in Fig. 3, which can be
schematically depicted as a perfect n-level binary tree. A
detector is placed at each leaf node, and a MZ interferometer
is placed at each parent node. According to the input bits x;
and y;, Alice and Bob perform phase encoding by inserting a
phase modulator (PM, bit value = 0) or not (bit value = 1)
into each of the 2 MZ interferometers at level i. Hence a
single photon injected into the root will travel through one of
the 2" light paths. Therein, after leaving a MZ interferometer
at level k, the photon goes either the even-k (x; = y;) path or
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FIG. 2. Left: The optical details of a two-level evolution circuit.
According to the local encoding at level 1, the leaving photon at
BS2 is injected into one of the two fibers (F1 and F2), and enters
one of these two MZ interferometers at level 2. Similarly, Alice
(Bob) inserts PMs into these two MZ interferometers at level 2 if
x; =1 (y2 =1) and does nothing if x, =0 (y, = 0). Right: The
topological unfolding of the two-level circuit as a full two-level
binary tree. The nodes therein denote the MZ interferometers, where
the photon is spatially superposed, and the directed edges between
nodes indicate the possible traveling paths of the photon.

odd-k (x; # yi) one, and then enters into a MZ interferometer
at level (k+ 1). Note that there are 2¥~! even-k and 2¢~!
odd-k paths.

Consequently, the photon’s complete path is determined
by the parity relations of the n bit pairs (x1, y1), ..., (X, = Yn)
and finally flies into one of 2" detectors, D, ..., Dy, which
are locally accessible to either Alice or Bob. (Note that it is

photon
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FIG. 3. The unfolding layout of the n-level circuit as a perfect
n-level binary tree and the detectors. There are 2'~! MZ interferom-
eters at level i. The photon is initially injected into the level-1 MZ
interferometer. Then the parity of the bit pair (x;,y;) completely
determines which one of the two level-2 MZ interferometers the
photon will enter. Without loss of generality, let the photon go
to the right MZ interferometer at level 2 if x; = y;, and the left
MZ interferometer otherwise. More optical details are explained in
Fig. 1. Similarly, the parity of (x,,y,) determines the next target
interferometers at level 3. This process is continued for a cascade
of n MZ interferometers. As a result, the light path of the photon
completely depends on the n bit pairs (xy, y;), ..., (x,, y,). Finally,
the photon flies into one of the 2" detectors, each of which is held by
Alice (A) or Bob (B).
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FIG. 4. The time window in the n = 2 case. (a) Assume that
Alice holds the left two detectors (D, and D, in Fig. 2). Alice and
Bob each performs the local encoding operation for x; at # = 0 and
for y; at t = (d + 8)/c, respectively. Finally, the photon flies into
one of the detectors accessible to Alice at time (2d +6)/c < 7 <
(2d 4+ 8)/c + €. (b) In the same window 7, Alice and Bob can only
exchange some x; and y; by classical communication. (c) To finish
the same task as in (a) using a classical information carrier, it requires
a time window 3d/c < v/ < 3d/c + €.

not necessary that Alice and Bob have an equal number of de-
tectors.) The local agent whose detector clicks can learn these
n parities and hence knows the other’s # input bits exactly.

Next we discuss the physical settings so that Alice and
Bob can exchange a single information carrier for a total of
n times. Let Alice and Bob be located at a distance d from
each other, and, for simplicity, assume that an information
carrier, classical or quantum, travels at the speed c. Suppose
that an information carrier carries one bit of information in
classical one-way communication. So it takes time roughly
nd /c for transmitting » bits of information by a single carrier.
On the other hand, let the length of an odd-k or even-k path
be § for k < n. In other words, in Fig. 2, the photon travels
a distance d between BS1 and BS2, and the length of F1
or F2 is 6. In the experiment setup, let § < d by choosing
sufficiently large d; however, such a setup is not reflected from
the scale of our plots. Thus it takes time {[nd + (n — 1)8]/c}
to implement our protocol in Fig. 3. As a result, we allow
a specific time window 7 such that {[nd + (n — 1)é]/c} <
T < {[nd + (n — 1)8]/c} + €, where € > 01is a small constant
such that {[nd 4+ (n — 1)§]/c} + € < (n+ 1)d/c. This choice
of time window t allows Alice and Bob to exchange a total of
n + 1 bits of information (shown in the next subsection) using
our protocol, but this time window is not long enough so that
a classical scheme can exchange only # bits of information.
An example of n = 2 is illustrated in Fig. 4.

The implementation of Fig. 3 can be refined in the case
that the detectors at the left and right leaves belong to Alice
and Bob, respectively, assuming that 2"§ <« d. That is, n
cannot be arbitrarily large or n = O[log,(d/§)]. Specifically,
we can use only two detectors (one for Alice and the other for
Bob) and add a time domain coordinate to save the massive
number of 2" detectors required. This is done as shown in
Fig. 5, where the left path at level i has a time delay &
and the right light path at level i has an additional delay
of 2"~=1§ and both the left and right paths at level n have
delay §. Consequently, the 2" light paths from left to right in
Fig. 3 will have delays n8, n8, (n + 1)8, (n + 1)8, ..., (2" ! —
1)8,(2"' —1)8§ in Fig. 5, respectively. An important
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FIG. 5. An effective circuit with two detectors. All the left paths
have a time delay &, while the right paths have additional delays
denoted by longer optical fibers.

observation is that at the same level each of Alice and Bob
has the same input bit and applies the same PMs to the
corresponding light paths. Also a beam splitter has two input
ports, which allows us to connect both branches to the same
beam splitter. Therefore, from the time of clicking, one can
deduct the corresponding light path in the circuit of Fig. 3 and
learn the n-bit string.

As a comparison, the previous scheme by Santo and Dakié
[19] uses one single-photon source and two detectors to
exchange two bits of information. Our scheme is able to
transmit more information at the cost of additional fibers, MZ
interferometers, and beam splitters.

B. Information gains

Let us quantify how many detectors Bob should have to
optimize his information gain I(X; B|Y'), where I(X;B|Y) =
H(B|Y)— H(B|X,Y) is the mutual information between Al-
ice’s input variable X and Bob’s output variable B condi-
tioned on Bob’s input variable Y; H(B|Y) is the conditional
Shannon entropy, and H(X) = — ) pxlog, px. Let m be the
number of detectors that belong to Bob. Since X and Y are

independent, it is clear that

IGBY)<H®B) =H|{1/2,...,1/2", 1 —m/2"
—_—

—n-— (1 - ;) log,(2" — m).
The total information gain of Alice and Bob is
I(Y;AIX) + I(X;B|Y)
=H(A)+ H(B)

m m u
=2n—ﬁlog2m—(1—g>log2(2 -—m)<n+1,

where the equality holds when m = 2"~!. The main result can
be stated as follows:

The optimal total information gain is n + 1.

To reach optimal total information gain, Alice and Bob
each should access half of the 2" detectors. It does not matter
which detectors Alice or Bob should hold since the one with
a clicking detector can learn n bits of information, while the
other learns one bit of information. As an illustration, we
analyze Bob’s information gain in the case of n = 2 as shown
in Fig. 2. Various detector assignments are listed in Table I,
assuming that one of Alice’s (Bob’s) detectors always clicks
(never clicks).

Note that, to win the GSD game with certainty, the one
that cannot learn the other’s n input bits must know one bit
of information. With a delicate initial assignment of these
2" detectors between Alice and Bob, they can exchange the
input bit pair (x,yr) with certainty for some specific k.
Specifically, denote two detector sets by Af and A,‘g. For all
i=1,...,2" the detector D; € Af (D; € A,?) if D; receives
a photon traveling through an even-k (odd-k) path. Let all 2"~
detector elements in A¥ (A?) be completely accessible to
Alice (Bob). In this case, once none of the detectors belonging
to Bob clicks, Bob can learn that that x; =y, and hence
he outputs the bit b, = x; with certainty. For example, as
shown in Table I, Bob can always learn x; using the detector
assignment in case 1 or 2, or learn x, using the detector
assignment in case 3 or 4.

It is noteworthy to mention the following detector assign-
ment. Let Alice occupy only one detector and let Bob occupy
the other 2" — 1 ones. With probability 27", Alice’s detector
receives a photon. In this case, the no-click on Bob’s side

TABLE I. Some detector assignments and Bob’s corresponding information gains, given that one of Alice’s detectors clicks. In cases 1 and
2 (3 and 4), Bob knows x; (x,) with certainty. In cases 5 and 6, Bob knows x; and x, simultaneously with probability 0.5, which indicates that
Bob can gain one-bit information on average. In case 7 Bob knows that x; # y; and x, # y, and his information gain is 2 (bits). In case 8, Bob
knows that (x;, x2) # (y1, y2) and hence his information gain is 2 — log, 3.

D, D, D Dy Bob’s knowledge on the bit-pair relations Bob’s information gain
Case 1 A A B B X1 # 1
Case 2 B B A A X1 =Yy 1
Case 3 A B A B X2 Yo 1
Case 4 B A B A X2 =Y 1
Case 5 B A A B Either x; #y;andx, # y, orx; = y; and x;, = y; 1
Case 6 A B B A Either x; # y; and x, = y, orx; = y; and x, # y; 1
Case 7 A B B B x; #yrand x; # y; 2
Case 8 B A A A (x1, %) # (1, ¥2) 2 —log, 3
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makes him exclude the possibility of 2" — 1 parity relation
sets and hence learn the input string X. In other words, if Alice
and Bob are tasked to output a =y and b = x, respectively,
in the GSD game, they can win the game with the probability
27", On the other hand, if one of Bob’s detectors clicks, Alice
still learns n — log, (2" — 1) bits of information.

III. DISCUSSION

A lesson learned from the dense coding is that sending one
qubit is equivalent to sending two classical bits; another lesson
from information causality is that, if there is no quantum
communication, the information gain is equal to the amount
of classical communication. Notably, the dense coding and
random access code each (i) are one-way communication,
and (ii) exploit quantum entanglement as physical resource.
Therein, the spatial coherent superposition and wave-particle
duality can be regarded as physical resources. From the two-
way signaling aspect, these two quantum properties of a
photon are more beneficial than quantum entanglement. In the
proposed two-way signaling protocol, sending a photon with
an n-level circuit is equivalent to sending n + 1 bits, where
n can be arbitrarily large. Which agent can obtain the other’s
information depends on the local bit strings x and y, and the
preassignment of these 2" detectors to Alice or Bob. In any
way, there is always a detector that clicks, which indicates
either I(Y;A|X) = n or I(X; B|Y) = n must hold, and hence
we can conclude thatn < I(Y;AIX)+I(X;BlY) <n—+1.

From the causal perspective, the optimal information gain
in the GSD game can be explained in a twofold way. First, an
information carrier is consumed therein. Notably, regarding
the classical communication, information causality states that
the information gain cannot exceed the amount of classical
communication. Thus sending and receiving a photon can
result in one-bit information gain. Second, the two distant
local operations at the same level fully determine in which
way the photon enters in the next level, and this contributes the
one-bit information. In other words, only when the coherent
superposed parts meet at BS2 of a MZ interferometer in every
level as shown in Fig. 3, the which-way uncertainty between
these two beam splitters in the MZ interferometer vanishes,
and consequently produces one-bit information. That is, a
level contributes one-bit information gain. At the end, at most
(n+ 1) bits of information can be generated during a photon
entering an n-level circuit.

For example, in the Elitzur-Vaidman bomb tester, a single
photon is emitted, but one of its coherent parts is blocked
and there is no interference at the second beam splitter of a
MZ interferometer [23]. In this case, only a bit of information
(whether the bomb explodes) is accessible. On the other hand,
in the simple one-way SD game, assume that the bit y; = 1 is
public, and the bit x; is unknown to Bob [19]. To inform Bob,
Alice performs local operations on the accessible coherent
superposed part. It is the interference at the second beam
splitter that brings Bob the bit value of x;.

IV. IMPLEMENTATION

Since the complexity of the n-level circuit grows exponen-
tially in n (or linearly in # if the scheme of Fig. 5 is used), it is
impossible to realize the optical circuit for arbitrarily large n

o o o
w EN »

probability of success

o
N

0.1 : : : '
0 20 40 60 80 100
number of levels

FIG. 6. The rate of success of our GSD protocol vs the number
of circuit levels.

with imperfect devices. Noisy components, such as the photon
source, beam splitters, and detectors, will cause the photon to
decay and hence limit the possible circuit level.

Here we estimate the performance of the protocol when
it is implemented under realistic experimental conditions.
We consider the following error sources. A realistic pulsed
single-photon source has a photon number probability P(n)
to generate n photons per pulse. A quantum dot single-photon
source can achieve P(1) =0.72 [25]. The beam splitters
in experiments may not have perfectly even split ratio
between transmission and reflection, but this uneven split
ratio can be compensated with experimental techniques, such
as using wave plates together with polarized beam splitters.
Therefore, we assume the split ratio is perfectly even. We also
assume the phase errors given by phase shifters or modulators
are negligible compared to other error sources. This is
justifiable when using piezoelectric phase shifters, which can
achieve a phase accuracy better than 27 /500. We consider
the optical loss to be a dominating error source, which can
result from the non-100% reflectivity of mirrors and the
nonperfect antireflection (AR) coatings of all transmissive
optical components. We estimate the optical loss € per stage
to be 1.5%. For example, we use two AR coated surfaces
for a wave plate and one AR coated surface for a beam
splitter, each of 0.5% loss. We assume the detection efficiency
np of the detectors to be 85%, which is achievable using
superconducting nanowire single-photon detectors (SNSPD).
The contribution from the dark counts of the detectors can be
negligible by using low-dark-count detectors such as SNSPD
or by applying gating techniques. Using these numbers, we
obtain the success rate of our protocol for n stages to be
P(1)(1 — €)*np, as shown in Fig. 6.
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