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Solvable dilation model of time-dependent PT -symmetric systems
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The dilation method is a practical way to experimentally simulate non-Hermitian, especially PT -symmetric,
quantum systems. However, the time-dependent dilation problem cannot be explicitly solved in general. In this
paper, we present a simple yet nontrivial exactly solvable dilation problem for two-dimensional time-dependent
PT -symmetric Hamiltonians. Our system is initially set in the unbroken PT -symmetric phase, then goes across
the so-called exceptional point, and ends in the broken PT -symmetric phase. For this system, the dilated
Hamiltonian and the evolution of PT -symmetric system are analytically worked out. By investigating the
large-time behaviors, we give an effective method to choose and adjust the dilation parameters. Our result also
shows that the exceptional points do not have much physical relevance in a time-dependent system.

DOI: 10.1103/PhysRevA.105.062205

I. INTRODUCTION

In recent years, researchers have witnessed growing in-
terest in discussing non-Hermitian systems, especially in the
field of dynamics and topology [1]. Lots of work has been
done, and many intriguing properties of non-Hermitian sys-
tems have been revealed and discussed. Related topics, such as
the skin effect, have been attracting increasing attention [2–8].

As one of the most important classes of non-Hermitian
systems, PT -symmetric systems are of great interest both
theoretically and experimentally. Systematic studies of such
systems began in 1998, with Bender and his colleagues’ dis-
cussion of the reality of the eigenvalues of PT -symmetric
Hamiltonians [9]. Since then, much work has been done to
investigate PT -symmetric quantum systems, among which
Mostafazadeh generalized PT -symmetric theory to pseudo-
Hermitian theory [10–13]. Recently, there have also been
discussions on anti-PT -symmetric systems [14,15].

In general, PT -symmetric systems are non-Hermitian, and
it is possible to use large Hermitian systems to simulate such
non-Hermitian systems. The simulation of PT -symmetric
systems is tightly related to the mathematical concept of op-
erator dilation. In 2008, Günther and Samsonov showed that
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a special two-dimensional unbroken PT -symmetric Hamil-
tonian can be dilated, and their results were experimentally
realized [16,17]. Later, the result was generalized to any
finite-dimensional case [18,19]. As for the broken PT sym-
metry, there are also different approaches. One way is to
utilize weak measurement, which can be viewed as an ap-
proximation paradigm [20]; another way is to simulate the
time-dependent broken PT -symmetric systems with the time-
dependent Hermitian systems [21,22]. In fact, time-dependent
PT -symmetric systems are important research issues in their
own right, e.g., the Floquet theory such as in [23,24] and
many other features of these systems [25–37]. In particular,
the work using Dyson maps by Fring and collaborators im-
plies that exceptional points (EPs) do not play an essential
role in such time-dependent systems [33–37]. The discussion
of time-dependent dilation gives an important approach for
investigating the topology and dynamics of non-Hermitian
systems. However, the problem is that usually, the time-
evolution operator and the dilated Hamiltonian cannot be
analytically worked out, owing to the fact that the Hamiltonian
at different times cannot be diagonalized in the same eigen-
states [21,38].

In this paper, we discuss a solvable example for the time-
dependent dilation problem. All the relevant matrix operators
are worked out explicitly. Our model shows that the excep-
tional points have no physical significance in a time-dependent
system as the dynamics throughout smoothly evolves.

This paper is organized as follows. In Sec. II, we briefly
review the elements of dilation. In Sec. III, we discuss the
time-dependent dilation problem and give a solvable model.
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In Sec. IV, we present the detailed results of a special case.
We offer some discussion in Sec. V and conclude our results
in In Sec. VI.

II. THE CONCEPT OF DILATION

In this section, we briefly recap the dilation method
described in [16,21,22]. Consider an n-dimensional, time-
dependent non-Hermitian Hamiltonian H (t ); it governs an
evolution by the Schrödinger equation,

iψ̇ (t ) = H (t )ψ (t ), (1)

where the overdot denotes the time derivative. Units with
h̄ = 1 are adopted. For simplicity, we may suppress the time
variable. To simulate such a system in experiments, we dilate
the state into 2n dimensions, i.e., � := [ ψ

τψ], where τ is an
ancillary matrix to be specified later. The dilated vector �

evolves under a Hermitian Hamiltonian

i�̇(t ) = H(t )�(t ). (2)

Here H := [h1 h2

h†
2 h4

], with h1 = h†
1 and h4 = h†

4. Equations (1)
and (2) yield the following conditions:

h1 + h2τ = H, (3)

h†
2 + h4τ = iτ̇ + τH. (4)

It follows from Eq. (4) that

h2 = −iτ̇ † + H†τ † − τ †h4. (5)

By substituting Eq. (5) into Eq. (3), we have

h1 = H + iτ̇ †τ − H†τ †τ + τ †h4τ. (6)

Thus, the dilated Hamiltonian H is determined by h4 and τ .
Apparently, h4 can be an arbitrary n×n Hermitian matrix, and
one needs to find only τ . By the Hermiticity of h1, we have

i
d

dt
(τ †τ ) = H†(1 + τ †τ ) − (1 + τ †τ )H. (7)

If we denote

η(t ) := (1 + τ †τ ), (8)

then

iη̇ = H†η − ηH. (9)

By construction, η is positive definite. If η happens to be
time independent, Eq. (9) indicates that the non-Hermitian
Hamiltonian is PT symmetric, H = HPT with unbroken PT
symmetry,

H†
PT η = ηHPT . (10)

Equation (10) is often called pseudo-Hermiticity in the lit-
erature. On the other hand, when η is positive definite, the
condition of η-pseudo-Hermiticity is equivalent to unbroken
PT symmetry in finite-dimensional spaces [19]. We will use
the term “PT symmetry” throughout this paper. In general,
an arbitrary non-Hermitian H (t ) is the combination of an
(unbroken) PT -symmetric Hamiltonian HPT and a gauge

term [22,39],

H = HPT − i

2
η−1η̇. (11)

Usually, η is called the metric operator. The key to dilate a
non-Hermitian system is to find a metric operator such that
Eq. (9) holds. An important observation is that the matrix τ

exists in Eq. (8) if and only if (η − 1) is semipositive definite.
Or equivalently, all the eigenvalues of the Hermitian matrix
(η − 1) are non-negative. In this case, we can always write
the solution of Eq. (8) in the polar decomposition as τ =
U

√
η − 1, where U is an arbitrary unitary matrix. A different

choice of U will lead to a different but equivalent dilation. For
simplicity, we choose a Hermitian τ with U = 1. Obtaining
τ , we can further construct the large Hermitian Hamiltonian
H. Note that the Hermitian Hamiltonian H is not determined
because h4 is an arbitrary n×n Hermitian matrix. One simple
way to specify h4 is to take it as the Hermitian part of H , h4 =
1
2 (H + H†). Another way is to follow Ref. [21] and demand
h4 = [H + (iτ̇ + τH )τ ]η−1. The above formalism allows us
to simulate, that is, effectively realize, non-Hermitian systems
using larger Hermitian systems.

To find η, let us take

η(t ) = ζ †(t )ζ (t ),

where ζ (t ) is a matrix satisfying the following differential
equation [22]:

iζ̇ †(t ) = H†(t )ζ †(t ). (12)

The solutions to Eq. (12) can be easily constructed from the
solutions to the dual Schrödinger equation whose Hamiltonian
is H†(t ). Note that the initial value of ζ (0) is arbitrary as long
as all the moduli of its eigenvalues are not smaller than 1.
Different choices of ζ (0) lead to different but equivalent η(t )
and the dilation Hamiltonian H(t ) [22].

In general, a closed form of the solution to Eq. (12) is hard
to find. In the next section, we discuss a simple but nontrivial
two-dimensional model whose dilation problem can be solved
exactly.

III. A SOLVABLE MODEL

In this section, we illustrate the general ideas using a
concrete example. We start with a 2×2 time-dependent non-
Hermitian Hamiltonian Hω(t ) and solve the Schrödinger
equation governed by it. Our goal is to obtain the dilated Her-
mitian Hamiltonian H as explicitly as possible. Equations (5)
and (6) show that H is determined by τ . The key step to
obtain τ is to find the metric operator η determined by Eq. (9).
The discussion near the end of Sec. II shows that η can be
constructed by the solutions to the dual Schrödinger equation.
Finally, by taking a square root of (η − 1), we get τ .

The 2×2 time-dependent Hamiltonian is as follows:

Hω(t ) =
[

E + iωt 1
1 E − iωt

]
, (13)

where E and ω are real parameters. The parity operator is
chosen to be the first Pauli matrix, and the time-reversal op-
erator is chosen to be the complex conjugation (or Hermitian
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conjugation since the matrix is symmetric),

P = σx, T = ∗ or †. (14)

One can verify that Hω(t ) is PT symmetric, that is,

Hω(t )PT = PT Hω(t ). (15)

Such an example can be used to discuss the Jarzynski equal-
ity [40] and the time-dependent PT -symmetric quantum
mechanics [22,39]. The instantaneous eigenvalues are

λ(t ) = E ±
√

1 − (ωt )2. (16)

When ωt < 1, the PT symmetry is unbroken, and both eigen-
values are real. At the EP, ωt = 1, the Hamiltonian is not
diagonalizable. When ωt > 1, the eigenvalues are complex.
Thus, the PT symmetry is broken for ωt � 1. One may
expect that some critical phenomena happen at the EP. On
the contrary, as we will see later, that is not the case. The
dynamics evolves smoothly even when ωt crosses the EP.

We divide the process of solving dilation into several
sections. In Sec. III A, we solve the Schrödinger equation gov-
erned by Hω(t ),

iψ̇ (t ) = Hω(t )ψ (t ). (17)

In Sec. III B, we solve the dual Schrödinger equation to con-
struct η. In Sec. III C, we give the form of τ by taking the
square root of (η − 1). Thus, by arbitrarily choosing a Her-
mitian matrix h4, one can obtain H, and the dilation problem
is solved. In Sec. III D, we discuss some large-time behavior
which dictates when a given dilation may fail.

A. Solutions to the Schödinger equation (17)

We write the solution to Eq. (17) in the following compo-
nent form:

ψ (t ) =
[

x↑(t )
x↓(t )

]
.

Now Eq. (17) gives two combined equations,

iẋ↑(t ) = (E + iωt )x↑(t ) + x↓(t ), (18)

iẋ↓(t ) = x↑(t ) + (E − iωt )x↓(t ). (19)

By substituting Eq. (18) into Eq. (19) and eliminating x↓(t ),
we get a second-order differential equation,

ẍ↑(t ) + 2iE ẋ↑(t ) + [1 − E2 − ω(1 + wt2)]x↑(t ) = 0. (20)

By changing variables,

z := ωt2, w(z) := √
t eiEt x↑(t ), (21)

we obtain a Whittaker equation,

w′′(z) +
(

−1

4
+ 1 − ω

4ωz
+ 3

16z2

)
w(z) = 0. (22)

The general solution can be represented by the Whittaker
functions,

w(z) = C0Wκ,μ(z) + C1W−κ,μ(eiπ z), (23)

with

κ = − 1
4 + 1

4ω
, μ = 1

4 .

Here we follow the notations in Ref. [41]. In terms of the
original variables, we have

x↑(t ) = C0
e−iEt

√
t

Wκ,μ(ωt2) + C1
e−iEt

√
t

W−κ,μ(−ωt2). (24)

For simplicity, let us define two linearly independent solutions
as

x(0)
↑ (t ) := e−iEt

√
t

Wκ,μ(ωt2), x(1)
↑ (t ) := e−iEt

√
t

W−κ,μ(−ωt2).

(25)
Note that there is no singularity as t → 0 because
W±κ,μ(±ωt2) ∝ √

t for small t ([41], (13.14.18)). In princi-
ple, the corresponding lower components x(i)

↓ can be solved

similarly by eliminating x(i)
↑ from Eq. (18). Moreover, the

coefficients in x(i)
↓ are determined by the corresponding x(i)

↑ .
After a lengthy calculation (see Appendix A), compact results
are found,

x(0)
↓ (t ) = −2ie−iEt

√
ω

t
Wκ ′,μ(ωt2),

x(1)
↓ (t ) = e−iEt

2
√

ωt
W−κ ′,μ(−ωt2), (26)

where κ ′ = 1
4 + 1

4ω
. Note that all four Whittaker functions are

smooth near the EP, implying that nothing special happens.
Furthermore, since the Wronskian W of the Whittaker func-
tions is a constant [41], i.e.,

W{Wκ,μ(z),W−κ,μ(eπ iz)} = e−κπ i,

these two solutions will never coalesce.
It is also known that for some special values of parameters,

the Whittaker function can be truncated to Hermite polynomi-
als [41],

W1
4 + n

2 , 1
4
(z) = e−z/2

2n
z1/4Hn(

√
z). (27)

Therefore, when 1
2ω

is an integer, one of the solutions reduces
to elementary functions.

B. The metric operator

To determine the metric operator η(t ), we need to solve
Eq. (12), where H†(t ) is now given by H†

ω(t ). The column
vectors of ζ † are just the solutions to the “dual Schrödinger
equation,”

iφ̇(t ) = H†
ω(t )φ(t ). (28)

On the other hand, one can derive from the PT -symmetry
condition in Eq. (15) that

σxHω = H†
ωσx.

Let ψ be a solution to the Schrödinger equation (17); then

H†
ωσxψ = σxHωψ = i

d

dt
(σxψ ). (29)

That is, φ = σxψ is the solution to the dual Schrödinger equa-
tion (28). If we define

y(0) := σxx(1), y(1) := σxx(0),
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then the explicit forms of y(i) are

y(0)(t ) = e−iEt

√
t

[ 1
2
√

ω
W−κ ′,μ(−ωt2)

W−κ,μ(−ωt2)

]
, (30)

y(1)(t ) = e−iEt

√
t

[−2i
√

ωWκ ′,μ(ωt2)
Wκ,μ(ωt2)

]
. (31)

The two column vectors of ζ † are both linear combinations
of y(0) and y(1). To determine ζ †, one should determine four
linear combination coefficients. For simplicity, we consider a
solution to Eq. (12) with only two parameters, D0 and D1,

ζ †(t ) =
[

D0y(0)
↑ (t ) D1y(1)

↑ (t )

D0y(0)
↓ (t ) D1y(1)

↓ (t )

]
. (32)

With this choice, we have

η = ζ †ζ = |D0|2|y(0)〉〈y(0)| + |D1|2|y(1)〉〈y(1)|, (33)

where the bras and kets are conventional Dirac notation with
|·〉 = 〈·|†. From the definition of η in Eq. (8), (η − 1) must be
semipositive definite. Thus, it requires that all the eigenvalues
of η are not smaller than 1. Otherwise, one cannot find an ap-
propriate matrix τ such that Eq. (7) holds. In this case, dilation
fails. This imposes constraints on Di. In this model, for any
finite time interval, one can always find a set of appropriate Di

such that the eigenvalues of η are not smaller than 1; that is,
the dilation can be valid over any given time interval. For this
purpose, note that η = ζ †ζ has the eigenvalues

λ± = l

2
±

√
l2

4
− |D0D1|2
, (34)

where we define

l := |D0|2‖y(0)‖2 + |D1|2‖y(1)‖2,


 := ‖y(0)‖2‖y(1)‖2 − ∣∣〈y(0)|y(1)〉∣∣2
,

with the conventional notation ‖ · ‖ := √〈·|·〉.
There are various ways to choose appropriate Di so that

the eigenvalues are not smaller than 1. Moreover, since λ+ �
λ−, one needs to guarantee only that λ− � 1. For example,
one may choose D0 = D1 = D. According to the Schwartz
inequality, 
 > 0. We denote l̃ := ‖y(0)‖2 + ‖y(1)‖2; then
λ− �1 is equivalent to

|D|2 � l̃ +
√

l̃2 − 4


2

.

Note that right-hand side is a continuous function of l̃ and 
.
Thus, in any finite time interval, it has a maximal value. We
may always choose |D|2 so that it is larger than this maximum
to ensure the dilation is valid.

C. The dilation matrix τ

After solving the metric operator η(t ), we are ready to find
the dilation operator τ (t ) in the dilated state vectors � and
Hamiltonian H. As discussed before, we choose a Hermitian
τ for simplicity,

τ =
√

η − 1 =
[

d + c a − ib
a + ib d − c

]
. (35)

It can be shown that (see Appendix C for more details)

a = X√
2
√

W + √
W 2 − X 2 − Y 2 − Z2

,

b = Y√
2
√

W + √
W 2 − X 2 − Y 2 − Z2

,

c = Z√
2
√

W + √
W 2 − X 2 − Y 2 − Z2

,

d =
√

W + √
W 2 − X 2 − Y 2 − Z2

√
2

, (36)

where X , Y , Z , and W are matrix elements of η − 1,

τ 2 = η − 1 =
[

W + Z X − iY
X + iY W − Z

]
. (37)

According to Eq. (33), the explicit forms of the matrix ele-
ments of τ 2 are

X = 1
2 [|D0|2(y(0)

↑ y(0)∗
↓ + y(0)∗

↑ y(0)
↓ )

+ |D1|2(y(1)
↑ y(1)∗

↓ + y(1)∗
↑ y(1)

↓ )],

Y = i
2 [|D0|2(y(0)

↑ y(0)∗
↓ − y(0)∗

↑ y(0)
↓ )

+ |D1|2(y(1)
↑ y(1)∗

↓ − y(1)∗
↑ y(1)

↓ )],

Z = 1
2 [|D0|2(|y(0)

↑ |2 − |y(0)
↓ |2)

+ |D1|2(|y(1)
↑ |2 − |y(1)

↓ |2)],

W = 1
2 (|D0|2‖y(0)‖2 + |D1|2‖y(1)‖2) − 1, (38)

and

W 2 − X 2 − Y 2 − Z2

= 1 − (|D0|2‖y(0)‖2 + |D1|2‖y(1)‖2)

+ |D0D1|2(‖y(0)‖2‖y(1)‖2 − |〈y(0)|y(1)〉|2). (39)

With a proper choice of h4, one can get the explicit dilated
Hamiltonian H. Regardless of the choice of h4, Eqs. (5)
and (6), as well as the more or less complicated form of η,
make the final form of H too long to present here.

D. Large-time behavior

The above discussion applies to only the situation of a finite
time interval. When time t tends to be infinitely large, the
simulation will always fail in this model. We may see this by
studying the large-time behaviors.

Applying formulas in Ref. [41], we can derive the large-
time behaviors for the eigenvalues of η as t → ∞ (see
Appendix B for details),

λ+ ∼
√

ω

(ωt2)
1

2ω

|D0|2eωt2
, (40)

λ− ∼ |D1|24ω
3
2 (ωt2)

1
2ω e−ωt2

. (41)

The decaying factor e−ωt2
in λ− indicates that the eigenvalue

will be smaller than 1 for sufficiently large time, regardless
of the choices of Di. That is, all dilation schemes will break
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down eventually. To quantitatively see when the dilation will
fail, we will discuss a special case in detail.

IV. THE SPECIAL CASE WITH ω = 1
2

In this section, we present the results for a special case with
ω = 1

2 in detail. The Hamiltonian becomes

H 1
2
(t ) =

[
E + 1

2 t i 1
1 E − 1

2 t i

]
. (42)

The eigenvalues of H 1
2
(t ) are λ± = E ±

√
1 − t2

4 . We con-
sider a finite time interval t ∈ [0, 4]. When t ∈ [0, 2), the
eigenvalues λ± are real, and PT symmetry is unbroken. When
t ∈ (2, 4], λ± are complex, and thus, PT symmetry is broken.
The EP occurs at t = 2.

For this case, the solution in Eq. (24) is

x↑(t ) = C0
e−iEt

√
t

W1
4 , 1

4

(
1

2
t2

)
+ C1

e−iEt

√
t

W− 1
4 , 1

4

(
−1

2
t2

)
. (43)

Note that W1
4 , 1

4
( 1

2 t2) ∝ √
t e− t2

4 and W− 1
4 , 1

4
(− 1

2 t2) is a linear

combination of
√

t e− t2

4 and
√

t e− t2

4 Erfi( t√
2

) ([41], (13.18.7)
and (13.18.16)), where Erfi(z) is the imaginary error function
(we adopt the definition in Ref. [41], i.e., Erfi(z) := ∫ z

0 ex2
dx).

Therefore, for convenience, we choose one solution vector as

|x(0)(t )〉 = e−iEt− t2

4

[
α

β

]
, (44)

with

α = 1, β = −it,

and the other solution vector as

|x(1)(t )〉 = e−iEt− t2

4

[
γ

δ

]
, (45)

where

γ = −i
√

2 Erfi

[
t√
2

]
, δ = e

t2

2 −
√

2 t Erfi

[
t√
2

]
.

To determine the metric operator η(t ), we take two inde-
pendent solutions to the dual Schrödinger equation as

|y(0)(t )〉 = e−iEt− t2

4

[
δ

γ

]
, (46)

|y(1)(t )〉 = e−iEt− t2

4

[
β

α

]
, (47)

where α, β, γ , and δ are defined in Eqs. (44) and (45).
It can be verified that

|x(0)(0)〉 = |y(0)(0)〉 = |0〉 =
[

1
0

]
,

|x(1)(0)〉 = |y(1)(0)〉 = |1〉 =
[

0
1

]
.

This justifies our labeling on |x〉 and |y〉. In addition, as time
increases, |y(0)〉 and |x(1)〉 tend to be infinitely large, while
|y(1)〉 and |x(0)〉 tend to vanish.

Now the problem is to find appropriate parameters Di

which give a successful dilation in a finite time interval. As
shown in Sec. III B, this reduces to finding Di such that λ− � 1
over the target time domain. The large-time behaviors often
help us to choose the parameters Di. To see this, we deduce
from Eq. (34) that λ− � 1 is equivalent to

2 � l � 1 + |D0|2|D1|2, (48)

where we substitute the result of 
 = 1 in this model. Now
suppose that we want to obtain the Di which gives a successful
dilation over the time interval [0,4]. Note that for large t , e.g.,
t = 4 in the present case, ‖y(1)‖ is small. Therefore, Eq. (48)
may be approximated as

|D0|2 � max
2

‖y(0)(t )‖2
≈ 3.43, (49)

|D1|2 � max‖y(0)(t )‖2 ≈ 237.80. (50)

Thus, a possible way to choose parameters is to take Di satis-
fying Eqs. (49) and (50) and verify whether these parameters
really ensure the dilation. For example, we can take D2

0 = 3.5
and D2

1 = 238. The smaller eigenvalue of the metric operator
λ−(t ) is plotted in the top panel of Fig. 1. The dilation fails
around 4.0001.

For this model, y(0) dominates for large time. When |D0| is
fixed, in order to extend the valid time for the dilation to t0,
we simply need to choose

|D1|2 � ‖y(0)(t0)‖2. (51)

In the bottom panel of Fig. 1, we plot a case which is valid up
to t = 4.5.

Note that Eq. (51) gives a very good estimation of the
breakdown time for t0 = 4 or lager. This is because y(0) is ex-
ponentially large for large t . However, the asymptotic analysis
may need to be fine-tuned for not so large a dilation interval.
For example, if we consider the time interval [0, 2.1] and
D2

0 = 3.5, we may guess that |D1|2 � |y(0)(2.1)|2 ≈ 4.129 ac-
cording to Eq. (51). However, the dilation actually breaks
down earlier at t ≈ 2.003 for D2

1 = 4.13. In such a situation,
we must use the full expression in Eq. (48) to make a better
estimation, which is equivalent to

|D1|2 � |D0|2‖y(0)‖2 − 1

|D0|2 − ‖y(1)‖2
. (52)

For the dilation to be valid up to t = 2.1, we must take
|D1|2 � 3.5‖y(0) (2.1)‖2−1

3.5−‖y(1) (2.1)‖2 ≈ 4.633. The actual breakdown time is

t ≈ 2.1003 with D2
1 = 4.634. The smaller eigenvalues of the

metric operator of both choices are plotted in Fig. 2. Once
again, both functions are smooth around the exceptional point
at t = 2.

V. DISCUSSION

The key to specify a metric operator is to determine the
parameters D0 and D1. They can take either the same or
different values. An advantage of taking different values is
improving the efficiency of dilation. According to Eq. (2),
for the state � = [ ψ

τψ], the PT -symmetric system is simulated
for the upper components. Hence, the dilation efficiency can
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−2
0

2

4

6

8

10

12

14

t

λ −
(t)

t=4.5

0 1 2 3 4 5

0
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20

30

t

λ −
(t)

FIG. 1. The smaller eigenvalue λ− of the metric η as a function
of time for t ∈ [0, 5]. Here we choose D2

0 = 3.5 for both panels. In
the top panel, D2

1 = 238. The dilation is valid up to t ≈ 4.0001. In
the bottom panel, D2

1 = 1474, and the dilation is valid up to t ≈ 4.5.
The solid lines are the smaller eigenvalue λ− of the metric operator
η. The blue dashed lines are the constant 1. The dilations are valid
when they are above the horizontal blue dashed lines. The vertical
red dashed lines mark the time limits when the dilations fail. Note
that both eigenvalues are smooth at the exceptional point t = 2.

be characterized by 〈ψ |ψ〉
〈ψ |1+τ †τ |ψ〉 = 〈ψ |ψ〉

〈ψ |η|ψ〉 . In our discussion of

the time interval [0,4], |D1|2 � 238. If we choose |D0| = |D1|,
the dilation efficiency for any state can be estimated by 1

2382 .

However, if we take |D0|2 = 3.5, then for state [ |0〉
τ (0)|0〉], its

dilation efficiency can be characterized by 1
3.52 > 1

2382 . Thus,
the dilation efficiency is improved.

The EP plays a central role in many studies on non-
Hermitian Hamiltonians. A critical phenomenon is expected
at the exceptional point in a time-independent system because
the energy eigenstates coalesce and the Hamiltonian becomes
nondiagonalizable. However, in a time-dependent system like
ours, the instantaneous eigenstates are not solutions to the
Schrödinger equation. The critical behavior of the eigenstates
does not directly translate to the dynamical states of the sys-
tem. Therefore, one should not expect anything special to
happen at the exceptional point. As shown in our model, the
exceptional point is as normal as any other point within the
dilation interval.

t=2.1003

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

t

λ −
(t)

t = 2.003

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

t

λ −
(t)

FIG. 2. The smaller eigenvalue λ− of η as a function of time for
t ∈ [0, 2.5]. Here we choose D2

0 = 3.5 for both panels. For the top
panel, D2

1 = 4.13, and the dilation is valid up to t ≈ 2.003. For the
bottom panel, D2

1 = 4.634, and the dilation is valid up to t ≈ 2.1003.
The solid lines are the smaller eigenvalue of η. The blue dashed
lines are the constant 1. The dilations are valid when the solid lines
are above the horizontal blue dashed lines. The vertical red dashed
lines mark the time when the dilations fail. Note again that nothing
dramatic happens at the exceptional point t = 2.

As shown in Sec. III, for the given Hamiltonian in Eq. (13)
and any finite time interval, one can always find appropriate
η (and τ ) such that the dilation is valid. However, as t tends
to infinity, the dilation will eventually break down. Note that
this breakdown time can be arbitrarily postponed by different
dilation parameters Di. Thus, it cannot be an intrinsic critical
point of the original non-Hermitian system. Rather, such a
breakdown is only a limitation of our dilation technique.

It might be interesting from a mathematical point of view to
see what happens to the dilated Hamiltonian H after the break-
down time. If we keep the ancillary matrix as τ = U

√
η − 1

with an arbitrary unitary matrix U , then the dilated Hamilto-
nian H defined by Eqs. (5) and (6) is no longer Hermitian.
To see this, note that

√
η − 1 is not Hermitian for λ− < 1.

Therefore,

τ †τ + 1 = (
√

η − 1)†(
√

η − 1) + 1 �= η.

Plugging the above inequality into Eq. (6), in general, we have
that

h1 − h†
1 �= iη̇ − H†η + ηH = 0. (53)

062205-6



SOLVABLE DILATION MODEL OF TIME-DEPENDENT … PHYSICAL REVIEW A 105, 062205 (2022)

Further note that the non-Hermiticity of H cannot be saved by
any choice of h4.

VI. CONCLUSION

In summary, a two-dimensional solvable model for time-
dependent PT -symmetric systems was shown to have an
explicit scheme to dilate into a four-dimensional Hermitian
system. Furthermore, by investigating the large-time behav-
iors, we gave an effective method to choose and adjust the
dilation parameters. A good estimation of the breakdown time
for the dilation was also derived. As the dilated Hermitian
Hamiltonians play an important role in the simulation of PT -
symmetric systems, our results may shed new light on the
study of time-dependent PT -symmetric systems.
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APPENDIX A: THE LOWER COMPONENT OF THE
SOLUTION TO THE SCHRÖDINGER EQUATION

In this Appendix, we show how to derive the lower compo-
nent of the solution to the Schrödinger equation in Eq. (26).
Using Eq. (19), we easily express Eq. (18) as a second-order
differential equation for x↓, which is very similar to that for
x↑ in (20),

ẍ↓ + 2iE ẋ↓ + [1 − E2 + ω(1 − ωt2)]x↓ = 0. (A1)

The only difference between Eqs. (20) and (A1) is the sign of
ω. Thus, we can immediately read off that the general solution
for x↓ is the linear combination of two Whittaker functions,

x↓(t ) = C3
e−iEt

√
t

Wκ ′,μ(ωt2) + C4
e−iEt

√
t

W−κ ′,μ(−ωt2), (A2)

where κ ′ := 1
4 + 1

4ω
. We may guess that

x(0)
↓ (ω, t ) = C3

e−iEt

√
t

Wκ ′, 1
4
(ωt2), (A3)

x(1)
↓ (ω, t ) = C4

e−iEt

√
t

W−κ ′, 1
4
(−ωt2). (A4)

To determine the correct constants C3 and C4, let us plug
Eq. (25) into Eq. (18),

x↓ = iẋ↑ − (E + iωt )x↑. (A5)

Applying the identity ([41], (13.15.25)) with n = 1,

d

dz

[
e− 1

2 zzμ− 1
2 Wκ,μ(z)

] = −e− 1
2 zzμ−1Wκ+ 1

2 ,μ− 1
2
(z),

and recognizing that ([41], (13.14.31))

Wκ,μ(z) = Wκ,−μ(z),

we get from Eq. (A5) that

x(0)
↓ = −2iω

1
2

e−iEt

√
t

Wκ ′, 1
4
(ωt2). (A6)

That is,

C3 = −2i
√

ω.

Similarly, by applying ([41], (13.15.22)), with n = 1,

d

dz

[
e

1
2 zzμ− 1

2 Wκ,μ(z)
] = −

(
1

2
− κ − μ

)
e

1
2 zzμ−1Wκ− 1

2 ,μ− 1
2
(z),

we obtain

x(1)
↓ = 1

2
√

ω

e−iEt

√
t

W−κ ′, 1
4
(−ωt2).

Namely, C4 = 1
2
√

ω
. Putting them together, the explicit forms

of the two independent solutions to the Schrödinger equa-
tion are

x(0)(t ) = e−iEt

√
t

[
W− 1

4 + 1
4ω

, 1
4
(ωt2)

−2i
√

ωW1
4 + 1

4ω
, 1

4
(ωt2)

]
, (A7)

x(1)(t ) = e−iEt

√
t

[
W1

4 − 1
4ω

, 1
4
(−ωt2)

1
2
√

ω
W− 1

4 − 1
4ω

, 1
4
(−ωt2)

]
, (A8)

where −ωt2 = eiπωt2 for the branch cut of the Whittaker
function.

APPENDIX B: LARGE-TIME BEHAVIORS

In this Appendix, we derive the large-time behaviors of the
dilated system. Applying the identity ([41], (13.14.21))

Wκ,μ ∼ e− 1
2 zzκ , as z → ∞, | arg z| <

3

2
π − δ, (B1)

to the solution of the Schrödinger equation in Eqs. (A7)
and (A8), we get the large-time behaviors,

x(0) ∼ e−iEt− 1
2 ωt2

ω− 1
4 + 1

4ω t
1

2ω
−1

[
1

−2iωt

]
, (B2)

x(1) ∼ e−iEt+ 1
2 ωt2

(eiπω)
1
4 − 1

4ω t− 1
2ω

[
1
1

2iωt

]
. (B3)

Accordingly, the large-time behaviors of the solutions to the
“dual equation” are

y(0) ∼ e−iEt+ 1
2 ωt2

(−ω)
1
4 − 1

4ω t− 1
2ω

[
1

2iωt
1

]
, (B4)

y(1) ∼ e−iEt− 1
2 ωt2

ω− 1
4 + 1

4ω t
1

2ω
−1

[−2iωt
1

]
. (B5)

The large-time behaviors of y(i) imply that one of the eigen-
values of η will tend to vanish. This implies that the dilation
will fail when t is sufficiently large. In fact, using Eqs. (B4)
and (B5), we see that

y(0)
↑↓ → ∞, y(1)

↑↓ → 0, y(0)
↓ ∼ 2iωty(0)

↑ , y(1)
↓ ∼ − 1

2iωt
y(1)
↑ .
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Thus, we can further obtain

l = D2
0‖y(0)‖2 + D2

1‖y(1)‖2 ∼ 4ω2t2|D0y(0)
↑ |2 (B6)

and


 = y(0)
↑ y(1)

↓ − y(1)
↑ y(0)

↓ ∼ −2iωty(0)
↑ y(1)

↑ . (B7)

Plugging Eqs. (B6) and (B7) into Eq. (34), we get the large-
time behaviors of the two eigenvalues of η in Eqs. (40)
and (41).

APPENDIX C: THE FORM OF τ(t )

In the discussion of dilation problem, τ = √
η − 1 is semi-

positive definite. Direct calculation from Eqs. (35) and (37)

leads to

X = 2ad, (C1)

Y = 2bd, (C2)

Z = 2cd, (C3)

W = a2 + b2 + c2 + d2. (C4)

By substituting Eqs. (C1)–(C3) into Eq. (C4), we have

d2 = 1
2 (W ±

√
W 2 − X 2 − Y 2 − Z2). (C5)

Since τ is semipositive definite, its trace and determinant are
both non-negative. This means that d � 0 and d2 � a2 + b2 +
c2. Combining these with Eq. (C4), we know d2 � 1

2W � 0.
Thus, we have Eq. (36) in the main text.
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